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Abstract

A decycling set in a graph G is a set D of vertices such that G − D
is acyclic. The decycling number of G, φ(G), is the cardinality of a
smallest decycling set in G. We obtain sharp bounds on the value of
the cartesian product φ(G�Kr) when r ≥ 3 and prove that when G
belongs to one of several well-known families of graphs, including bipartite
graphs and graphs of maximum degree 3, then φ(G�K3) = n+φ(G) and
φ(G�Kr) = n(r − 2) for r ≥ 4, where n is the order of G. We prove also
that every cubic graph G 6= K4 contains an independent decycling set.

1 Introduction

A decycling set in a graph G, also known in the literature as a vertex feedback set,
is a set D of vertices such that G − D is acyclic. The decycling number of G,
denoted by φ(G), is the cardinality of a smallest decycling set in G. We call a
decycling set of minimum size a φ-set for G. The corresponding problem of finding
the minimum number of edges that must be deleted from a graph G of order n having
m edges and c components is known as the cycle rank of G and is easily shown to be
m − n + c (see for example [17], p.46). In contrast, it has been shown by Karp [6]
that the decision problem of finding φ(G) for an arbitrary graph G is NP-Complete.
The problem remains difficult even when restricted to some well-known families of
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graphs, for example, bipartite graphs or planar graphs. On the other hand, it has
been shown to be polynomial for graphs of maximum degree 3 in [9] and [16], grids in
[5], permutation graphs in [7], interval and comparability graphs in [8], and “snakes”
(graphs consisting of a finite sequence of chordless cycles, each having just one edge
in common with the preceding cycle and one with the following cycle) in [3].

Other results on the decycling number can be found in [2]. The decycling number
of cubic graphs is treated in [10],[13]; of regular graphs in general in [14], [15] and of
random regular graphs in [4]. Hypercubes are treated in [5], [11]; and the cartesian
product of two cycles in [12].

The cartesian product G := G1�G2 of two graphs G1 and G2 has V (G) = V (G1) ×
V (G2) and two vertices (u1, u2) and (v1, v2) are adjacent in G if and only if either (i)
u1 = v1 and u2v2 ∈ E(G2) or (ii) u2 = v2 and u1v1 ∈ E(G1). In [5] (Theorem 1.8),
the decycling number of the cartesian product of a graph G with K2 is considered
and sharp bounds for φ(G�K2) are obtained for an arbitrary graph G in terms of
φ(G) and α(G), where α(G) denotes the covering number of G.

Theorem 1.1 (Beineke, Vandell) For any graph G,

2φ(G) ≤ φ(G�K2) ≤ φ(G) + α(G).

It is easily seen that for all n ≥ 2, φ(Kn) = n − 2 and φ(Kn�K2) = 2n − 4, so that
the lower bound is achieved when G = Kn. The authors prove in [5] that the upper
bound is achieved by G = Pn, the path of order n.

In this paper we consider the problem of finding bounds on φ(H) when H is the
cartesian product of a graph G of order n with a complete graph Kr, where r ≥ 3.
In Section 2, we obtain a result analogous to Theorem 1.1 that

max{3φ(G), n + φ(G)} ≤ φ(G�K3) ≤ n + 2φ(G),

and further, that when G satisfies certain conditions, the upper bound in the second
inequality can be reduced to n+φ(G). In Section 3, we obtain bounds for φ(G�Kr)
when r ≥ 4 and show that if G satisfies a slightly stronger set of conditions, then
φ(G�Kr) = n(r − 2). These results enable us to prove that when G belongs to one
of several elementary families of graphs, including bipartite graphs and graphs with
maximum degree 3, then φ(G�K3) = n+φ(G) and φ(G�Kr) = n(r−2) when r ≥ 4.
This implies in particular that the problem of determining φ(G�Kr) when G has
maximum degree 3 is polynomial for r ≥ 3. We also show that every cubic graph
G 6= K4 contains an independent decycling set.

All graphs considered in this paper are simple. We use the following notation. For
X ⊆ V (G), 〈X〉 denotes the subgraph of G induced by X. The number of compo-
nents of G is denoted by c(G) and the maximum vertex degree by ∆(G). Additionally,
when we regard the graph G�Kr as the graph Kr in which each vertex is replaced
by a copy of G, we label the vertices of Kr as 1, 2, . . . , r, the copy of G replacing
vertex i as Gi and the copy of vertex v ∈ V (G) in Gi as vi, i = 1, 2, . . . , r. Similarly,
for any subgraph H ⊆ G or for any set S ⊆ V (G), Hi denotes the copy of H in Gi

and Si := S ∩ V (Gi), i = 1, 2, . . . , r.
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2 Decycling G�K3

Let G be a graph of order n ≥ 2. We can visualise the graph G�Kr in two different
ways: either as the graph G in which each vertex v ∈ V (G) is replaced by a copy of
Kr, or as Kr in which each vertex is replaced by a copy of G. In this latter case, we
label the vertices of Kr as 1, 2, . . . , r, the copy of G replacing vertex i as Gi and the
copy of vertex v ∈ V (G) in Gi as vi, i = 1, 2, . . . , r. Similarly, for any set S ⊆ V (G),
Si denotes the set of copies of the vertices in S in Gi, i = 1, 2, . . . , r. In finding a
sharp lower bound for φ(G�K3), note that a graph G may contain a set of vertices
T that are no help in decycling G, in the sense that φ(G− T ) = φ(G). For example,
if G is a graph with minimum vertex degree 1 and T is the set of leaves in G, then
φ(G−T ) = φ(G). Again, if G′ is a graph obtained from G by successive subdivisions
of its edges, then we can set T := V (G′) \ V (G) and φ(G′) = φ(G).

Lemma 2.1 Let G be a graph of order n ≥ 2. Let T be a maximum set of vertices

in G such that φ(G − T ) = φ(G). Then

φ(G�K3) ≥ max{n + φ(G), 3φ(G) + |T |}.

Proof. Let D be a φ-set for G�K3. In order to decycle the copy of K3 at each
vertex of G, D contains at least one copy of each vertex of G. Furthermore, for
each cycle C in G, D contains at least two copies of some vertex of C. For, suppose
otherwise. Then G contains a cycle C such that only one copy of each of its vertices
occurs in D. Consider any edge of C, say xy. Then for some i, 1 ≤ i ≤ 3, D
contains neither xi nor yi. But then the edge xiyi occurs in the graph G�K3 − D.
Thus G�K3 − D contains a copy of each edge of C and hence contains a cycle, a
contradiction. It follows that each vertex of some decycling set for G occurs twice in
D. Hence |D| ≥ |V (G)| + φ(G).

However, D contains a decycling set for G in each copy of G. But no φ-set for G
contains any vertex of T . Since each vertex of G occurs at least once in D, we also
have |D| ≥ 3φ(G) + |T |, and the result follows. �

Although we are mostly concerned in the remainder of this section with graphs which
achieve the first of the lower bounds established in Lemma 2.1, the second bound is
higher in some cases. For example, suppose G is the graph obtained by appending p
leaves to arbitrarily chosen vertices of the complete graph Km, where m ≥ 5. Then
|T | = p, and the second bound gives an improvement of m − 4 over the first bound.

Lemma 2.2 Let G be a graph of order n ≥ 2 that admits a partition (X, Y ) of V (G)
such that 〈X〉 and 〈Y 〉 are acyclic. Let D be a decycling set for G. If

(i) D ∩ K contains a vertex cover of K for each non-trivial component K of 〈X〉
or 〈Y 〉; and

(ii) for each cycle C in G, there is a component K of 〈X〉 or 〈Y 〉 such that a

maximal path in 〈V (C) ∩ V (K)〉 has an endvertex in D,
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then

φ(G�K3) ≤ n + |D|.

Proof. Suppose D satisfies the conditions of the lemma. In G�K3, let S = X1∪Y2∪
D3 and consider H := G�K3 − S. Certainly Hi is acyclic for i = 1, 2, 3. Further,
there is no edge between H1 and H2 as X ∩ Y = ∅. Let {ui} be a component of Hi

of order 1. Then ui is an isolated vertex of H when u ∈ D; otherwise degH(ui) = 1,
for i = 1, 2, so that ui is not a vertex of any cycle in H.

Suppose now H contains a cycle C and let ujvj be an edge of C in Hj, where
j ∈ {1, 2}. Then by condition (i) at least one of u or v is in D, say u ∈ D. But
then uj is the only copy of u in H and hence only one copy of the edge uv is in
H. It follows that identifying the three copies of v for each vertex v ∈ V (C) gives a
cycle C0 in G. Then by condition (ii), there is a component K of 〈X〉 or 〈Y 〉, say
V (K) ⊆ X, such that a maximal path in 〈V (C) ∩ V (K)〉 has an endvertex w ∈ D.
But then w has a neighbour y ∈ Y on C0. In H, C contains a copy w2 of w and y1 of
y. But w2 is the only copy of w in H and since y2 6∈ H, there is no edge in H between
w2 and any copy of y, a contradiction. Thus H is acyclic and S is a decycling set for
G�K3, giving φ(G�K3) ≤ |S| = n + |D|. �

Several well-known graph families satisfy φ(G�K3) = n + φ(G).

Theorem 2.3 Let G be a bipartite graph of order n ≥ 2. Then

φ(G�K3) = n + φ(G).

Proof. Take (X, Y ) as the bipartition of V (G) and D as any φ-set in G in Lemma 2.2.
Then every component of 〈X〉 and 〈Y 〉 is trivial, and hence the conditions of
Lemma 2.2 are satisfied with |D| = φ(G) giving φ(G�K3) ≤ n + φ(G). The re-
sult then follows from Lemma 2.1. �

Corollary 2.4 Let F be a forest of order n. Then φ(F�K3) = n. �

The problem of determining φ(G) when G is bipartite is known to be NP-hard,
see [6]. Theorem 2.3 implies the following sharp upper bound on φ(G�K3) for a
connected bipartite graph G, achieved by all complete bipartite graphs.

Corollary 2.5 Let G be a connected bipartite graph with partite sets of order n1, n2,

where n1 ≥ n2 ≥ 1. Then

φ(G�K3) ≤ n1 + 2n2 − 1. �

Lemma 2.6 Let G be a graph of order n ≥ 2 with ∆(G) = 3 and D be a φ-set for

G. Then no component of 〈D〉 has order greater than 2.
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Proof. Suppose otherwise. Then 〈D〉 contains a path P of order 3. Let P := uvw.
Then v has at most one neighbour in G − u − w and hence any cycle through v in
G also contains either u or w. Thus D \ {v} is a decycling set for G of cardinality
φ(G) − 1, a contradiction. �

Theorem 2.7 Let G be a graph of order n ≥ 2 with ∆(G) = 3. Then

φ(G�K3) = n + φ(G).

Proof. We may assume that G contains at least one odd cycle, since otherwise the
result is true by Theorem 2.3. Let D be a φ-set for G and D∗ be a minimal subset
of D such that H := 〈G − D∗〉 is bipartite. Let I denote the set of isolates in H.
Give V (H \ I) a proper 2-colouring with colours c1, c2. Let v ∈ D∗ be an uncoloured
vertex. By Lemma 2.6, v has at most one neighbour in D∗ and hence at least two
of the neighbours of v have already been coloured. If v has at least two neighbours
in the same colour, give v the other colour; otherwise, colour v arbitrarily with c1 or
c2. When every vertex of D∗ has been coloured, colour the vertices of I by the same
rule.

Let X, Y be the sets of vertices coloured c1 and c2 respectively. Let K be a non-
trivial component of 〈X〉 or 〈Y 〉. Clearly D contains a vertex cover of K. Further,
it is easily seen that if K has order 3 or more, then K contains no path of the form
xuy or xuvy where u, v ∈ D and x, y ∈ V (G) \ D. In particular, K is acyclic and
condition (ii) of Lemma 2.2 is satisfied. Thus (X, Y ) and D satisfy all the conditions
of that lemma, giving φ(G�K3) ≤ n + φ(G). The result follows from Lemma 2.1. �

Since the problem of determining φ(G) when G is cubic is polynomial, see [9] and
[16], the exact value of φ(G�K3) can be determined from Theorem 2.7 in polynomial
time. In the more general case, Alon et al. [1] prove that if G is a connected graph
with ∆(G) = 3, where G 6= K4, then

φ(G) ≤ ⌊(|E(G)| + 1)/4⌋.

This gives the following corollary to Theorem 2.7.

Corollary 2.8 Let G be a connected graph of order n ≥ 2 with ∆(G) = 3. If

G 6= K4, then

φ(G�K3) ≤ n + ⌊(|E(G)| + 1)/4⌋. �

Punnim [15] (Lemma 3.4) has shown that if G is a connected triangle-free graph of
order n with ∆(G) = 3 and such that G is not cubic, then φ(G) ≤ n/3. Thus we
have the following additional corollary to Theorem 2.7.

Corollary 2.9 Let G be a connected triangle-free graph of order n ≥ 2 with ∆(G) =
3. If G is not cubic, then

φ(G�K3) ≤ 4n/3.
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A cactus is a simple connected graph with the property that no two cycles have an
edge in common.

Theorem 2.10 Let G be a cactus of order n ≥ 2. Then

φ(G�K3) = n + φ(G).

Proof. We may assume that G contains at least one odd cycle, since otherwise the
result is true by Theorem 2.3. Let D be a φ-set for G and let D∗ be a minimum
subset of D containing a vertex of each odd cycle. Let C1, . . . , Ck, k ≥ 1, be the odd
cycles in G. For i = 1, . . . , k, let ui be a vertex of D∗ incident with Ci (note that the
vertices u1, . . . , uk are not necessarily distinct). For each cycle Ci make an arbitrary
choice of one of the two edges of Ci incident with ui and label it ei ∈ E(Ci). Then
H := G − {e1, . . . , ek} is bipartite with c(H) = c(G). Let (X, Y ) be a bipartition
of V (H). Let xy ∈ E(G). Then x, y are in the same set in this bipartition only if
one of them is in D∗. Further, if C is a cycle in G, then V (C) ∩ X or V (C) ∩ Y
contains an isolated vertex of D when C is even; and when C is odd, C intersects
some non-trivial component of X or Y in a path of order 2 containing a vertex of D∗.
Thus all the conditions of Lemma 2.2 are satisfied and hence φ(G�K3) ≤ n + φ(G).
The result then follows from Lemma 2.1. �

The maximum number of vertex disjoint cycles in a cactus G of order n is ⌊n/3⌋
and it follows that φ(G) ≤ ⌊n/3⌋. This upper bound is attained by the family of
graphs constructed from a cubic tree (that is, a tree in which every internal vertex
has degree 3) by replacing each vertex of T with a copy of K3.

Corollary 2.11 Let G be a cactus of order n ≥ 2. Then

φ(G�K3) ≤ ⌊4n/3⌋. �

We show in Proposition 3.6 that φ(Kn�K3) = 3(n− 2), for all n ≥ 4, and hence the
lower bound 3φ(G) of Lemma 2.1 is also sharp.

It is easily seen that K4 has a vertex partition and φ-set D satisfying the conditions
of Lemma 2.2. However, in any partition (X, Y ) of the vertex set of K5, one of
〈X〉 or 〈Y 〉 contains a 3-cycle and hence this lemma cannot be applied to any graph
with ω(G) ≥ 5. We next establish a sharp upper bound on the value of φ(G�K3)
applicable to any graph.

Lemma 2.12 Let G be a connected graph of order n ≥ 2. Then

φ(G�K3) ≤ n + 2φ(G).

Proof. Let D be a φ-set in G and (X, Y ) be the bipartition of V (G0), where G0 := G−
D. Then X∪D, Y ∪D are both vertex covers of G. Hence S := X1∪D1∪Y2∪D2∪D3

is a decycling set for G of cardinality |V (G)| + 2|D| and the result follows. �

The upper bound on φ(G�K3) of Lemma 2.12 is sharp: it is attained, for example,
by the family of graphs formed by the join of a path of order r ≥ 4 and an isolated
vertex.
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3 Decycling G�Kr, for r ≥ 4

Lemma 3.1 Let G be a graph of order n ≥ 2. Then for r ≥ 4,

φ(G�Kr) ≥ max{n(r − 2), rφ(G)}.

Proof. To decycle the copy of Kr at each vertex of G requires at least n(r − 2)
vertices. But to decycle the copy of G at each vertex of Kr requires at least rφ(G)
vertices, and the result follows. �

We use the following notation. For any r ≥ 3, we call a φ-set in (G�Kr) a φr-set.

Lemma 3.2 Let r, s be integers with r > s ≥ 3 and G be a graph of order n. Then

φ(G�Kr) ≤ φ(G�Ks) + n(r − s).

Proof. Let D be a φs-set for G�Ks and let Di := Gi ∩ D, for 1 ≤ i ≤ s. Now
construct a decycling set Q in G�Kr by setting Qi := Di when 1 ≤ i ≤ s, and
Qi := V (G) when s + 1 ≤ i ≤ r. �

Lemma 3.3 Let G be a graph of order n ≥ 2 that admits a partition (X, Y ) of V (G)
such that 〈X〉 and 〈Y 〉 are acyclic. Let D be an independent decycling set for G. If

(i) D ∩ K contains a vertex cover of K for each non-trivial component K of 〈X〉
or 〈Y 〉; and

(ii) for each cycle C in G, there is a component K of 〈X〉 or 〈Y 〉 such that a

maximal path in 〈V (C) ∩ V (K)〉 has an endvertex in D;

then for all r ≥ 4,
φ(G�Kr) = n(r − 2).

Proof. Suppose D satisfies the conditions of the lemma. Let W := V (G)\D and note
that since D is independent, W is also a decycling set for G. Define a set Q in G�K4

by Q1 := X1, Q2 = Y2, Q3 = D3, Q4 = W4. For 1 ≤ i ≤ 4, let Si = V (Gi)\Qi. Then
since D∗ := Q1 ∪Q2 ∪Q3 and (X, Y ) satisfy the conditions of Lemma 2.2 in G�K3,
〈S1 ∪ S2 ∪ S3〉 is a forest F . However, S4 = D4 is a set of independent vertices,
each of which has degree 1 in G�K4 \Q and hence 〈S1 ∪ S2 ∪ S3 ∪ S4〉 is a forest in
G�K4. Thus Q is a decycling set in G�K4 of cardinality 2n, giving φ(G�K4) = 2n,
by Lemma 3.1. The result then follows from Lemma 3.2 with s = 4 and Lemma 3.1.
�

Theorem 3.4 Let G be a bipartite graph of order n ≥ 2. Then for all r ≥ 4,

φ(G�Kr) = n(r − 2).
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Proof. This result follows from Lemma 3.3 by taking (X, Y ) as a bipartition of V (G)
and D := Y . �

Theorem 3.5 Let G be a cactus of order n ≥ 2. Then for all r ≥ 4,

φ(G�Kr) = n(r − 2).

Proof. We may assume that G contains at least one odd cycle, since otherwise the
result is true by Theorem 3.4. Choose a decycling set D for G with the property that
each odd cycle contains just one vertex of D and no two vertices of D are adjacent
(the set D will not necessarily be a φ-set for G). Let C1, . . . , Ck, k ≥ 1, be the odd
cycles in G. For i = 1, . . . , k, let ui be the unique vertex of D incident with Ci.
Make an arbitrary choice of one of the two edges of Ci incident with ui and label
it ei. Then H := G − {e1, . . . , ek} is bipartite with c(H) = c(G). Let (X, Y ) be a
bipartition of V (H) and let K be a non-trivial component of 〈X〉 or 〈Y 〉. Then D
contains a vertex cover of K. Further, for each cycle C in G, there is a component
K of 〈V (C) ∩ X〉 or 〈V (C) ∩ Y 〉 which has order 2 and one of its endvertices in D
when C is odd; and is a single vertex of D when C is even. Let V (G) \ D := W .
Then W is also a decycling set for G and hence (X, Y ) and D satisfy the conditions
of Lemma 3.3. The result follows. �

Proposition 3.6 Let n, r be integers with n ≥ r ≥ 3. Then

φ(Kr�Kn) =

{

r(n − 2) when n > r
(r − 1)2 when n = r

.

Proof. By Lemma 3.1, φ(Kr�Kn) ≥ r(n − 2). When n > r, let u1, u2, . . . , ur+1 be
distinct vertices of G ∼= Kn and set S := {u1

1, u
2
1, u

2
2, u

3
2, u

3
3, u

4
3, . . . , u

r+1
r }. Clearly 〈S〉

is a path. Thus D := V (Kn�Kr)\S is a decycling set for Kn�Kr and φ(Kr�Kn) ≤
|D| = nr − 2r and the result follows.

Now suppose n = r and let S ⊆ V (Kr�Kr) be a maximum set such that 〈S〉
is acyclic. Since S contains at most two copies of each vertex of Kr, |S| ≤ 2r.
However, Si contains copies of no more than two distinct vertices for 1 ≤ i ≤ r, so
that if |S| = 2r, then 〈S〉 is 2-regular, a contradiction. Hence |S| ≤ 2r − 1. Let
V (Kr) := {u1, u2, . . . , ur}. Setting S := {u1

1, u
2
1, u

2
2, u

3
2, u

3
3, u

4
3, . . . , u

r
r}, 〈S〉 is a path.

Hence |S| = 2r − 1. Then D := V (Kr�Kr) \ S is a φ-set for Kr�Kr of cardinality
r2 − 2r + 1. �

Lemma 3.7 Let G 6= K4 be a connected cubic graph. Then G contains an indepen-

dent decycling set.

Proof. Partition V (G) into two sets (D0, X0) so that D0 is an independent set and
among all such choices of D0, 〈X0〉 contains as few cycles as possible. Without loss
of generality, we may assume that D0 is maximal independent. If 〈X0〉 is acyclic,
then put D := D0 and D is an independent decycling set for G.
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Assume therefore that 〈X0〉 contains an r-cycle C0. Each vertex of C0 has two
neighbours in X0 and hence its neighbour in V (G) \ V (C0) is in D0. Let y ∈ V (C0)
and u be the neighbour of y in D0 and NG(u) := {y, v1, v2}. If G contains no v1v2-
path P1 such that V (P1) ⊆ X0, put D := (D0 ∪ {y}) \ {u} and X := V (G) \ D.
Then D is independent and 〈X〉 contains one less cycle than 〈X0〉, contradicting the
choice of the partition (D0, X0). Suppose then that there is a v1v2-path P1 such that
V (P1) ⊆ X0. Then either {v1, v2} ⊂ V (C0) \ {y}, or {v1, v2} ∩ V (C0) = ∅.

Suppose {v1, v2} ⊂ V (C0) \ {y}. Note that r > 3, since otherwise G ∼= K4, contrary
to hypothesis. Thus {y, v1, v2} contains at least one pair of non-adjacent vertices.
Denote such a pair by {x′, x′′} and put D := (D0 ∪ {x′, x′′}) \ {u}, X := V (G) \ D.
Then D is an independent set and 〈X〉 contains one less cycle than 〈X0〉, again con-
tradicting the choice of (D0, X0). We may therefore assume that {v1, v2}∩V (C0) = ∅
and hence V (P1) ∩ V (C0) = ∅. Thus each vertex of C0 has a distinct neighbour in
D0. Let C1 denote the cycle uP1. Put D1 := (D0 ∪ {y}) \ {u} and X1 := V (G) \D1.
Now C1 is a cycle in 〈X1〉 and repeating the arguments above with C1, D1 in place of
C0, D0, we may conclude that each vertex of C1 has a distinct neighbour in D1 and
hence each vertex of V (C1) \ {u} has a distinct neighbour in D0 \ {u}. Now suppose
there is a vertex w ∈ D0 such that w has neighbours z ∈ V (C1) and z′ ∈ V (C0). But
then putting D := (D0∪{z, z′})\{u} and X := V (G)\D, D is independent and 〈X〉
contains one less cycle than 〈X0〉, contradicting the choice of the partition (D0, X0).
Hence each vertex of V (C0) ∪ V (C1) \ {u} has a distinct neighbour in D0 \ {u}.

Put y := y0, u := u1. Suppose we have extended the sequence C0, C1 to a sequence
C0, C1, . . . , Ck of distinct cycles, where k ≥ 1, with the following properties:

1. for 1 ≤ i ≤ k, Ci contains a unique vertex ui ∈ D0;

2. for 0 ≤ i ≤ k − 1, Ci contains a vertex yi adjacent to ui+1;

3. each vertex of V (C0)∪V (C1) · · ·∪V (Ck)\{u1, . . . , uk} has a distinct neighbour
in D0 \ {u1, . . . , uk}.

Now let yk ∈ V (Ck) \ {uk} and uk+1 be the vertex of D0 adjacent to yk. Let
NG(uk+1) = {yk, w1, w2}. Assume there is a w1w2-path Pk+1 with V (Pk+1) ⊆ X0.
Since uk+1 ∈ D0, either {w1, w2} ⊂ V (Ci)\{ui} for some i ∈ {0, . . . , k}, or {w1, w2}∩
V (Ci) = ∅ for 0 ≤ i ≤ k. However, the first alternative implies that two vertices of
V (Ci) \ {ui} have the same neighbour in D0 \ {ui}, contrary to property 3. Hence
{w1, w2} ∩ V (C0) = ∅ and G contains a cycle Ck+1 := uk+1Pk+1 distinct from Ci, for
i = 0, 1, . . . , k. Now let D1 := (D0∪{y0, . . . , yk−1})\{u1, . . . uk} and X1 := V (G)\D1.
Then Ck is a cycle in 〈X1〉. Repeating the arguments above for Ck,Ck+1,D1 in place
of C0,C1,D0, we conclude that each vertex of Ck+1 has a distinct neighbour in D1 and
hence each vertex of V (Ck+1) \ {uk+1} has a distinct neighbour in D0 \ {u1, . . . , uk}.

Now suppose that there is a vertex s ∈ D0 \ {u1, . . . , uk} having neighbours t, t′,
where t ∈ V (Ck+1) and t′ ∈ V (Ci) for some i ∈ {0, . . . , k}. But putting D :=
(D0 ∪ {t, t′}) \ {ui, uk+1} when i ≥ 1 and D := (D0 ∪ {t, t′}) \ {uk+1} when i = 0,
and putting X := V (G)\D, we obtain an independent set D such that 〈X〉 contains
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one less cycle than 〈X0〉, contradicting the choice of the partition (D0, X0), so that
this does not occur. Thus the cycle Ck+1 has properties 1 to 3 and the sequence of
distinct cycles C0, . . . , Ck can be extended to C0, . . . , Ck, Ck+1. Since the sequence
exists for k = 1, it can be extended indefinitely, by induction. But this is impossible,
since G is finite. Hence G contains an independent decycling set. �

Lemma 3.8 Let G 6= K4 be a connected graph with ∆(G) = 3. Then G contains an

independent decycling set.

Proof. By Lemma 3.7, the result is true when G is cubic, so we may also assume that
G contains at least one vertex of degree less than 3. Let H be the graph constructed
from K4 by subdividing one of its edges. If G has a vertex x of degree 2, construct a
new graph from G by joining x to the vertex of degree 2 in a copy of H. Repeat this
procedure, joining each vertex of degree 2 in G to the vertex of degree 2 in a distinct
copy of H. If G contains a leaf y, join y to the vertex of degree 2 in each of two
distinct copies of H. Repeat this procedure for each leaf of G. The resulting graph
is cubic and hence contains an independent decycling set S by Lemma 3.7. But then
D := S ∩ V (G) is an independent decycling set for G, proving the result. �

Theorem 3.9 Let G 6= K4 be a connected graph with ∆(G) = 3. Then for all r ≥ 4,

φ(G�Kr) = n(r − 2).

Proof. By Lemma 3.8, G admits an independent decycling set D. Let D∗ be a
minimal subset of D such that H := 〈G−D〉∗ is bipartite. Obtain a partition (X, Y )
of V (G) as in Theorem 2.7. Then the conditions of Lemma 3.3 are satisfied and the
result follows. �
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