Decycling sets in certain cartesian product graphs with one factor complete

B.L. Hartnell
Saint Mary's University
Halifax, N.S. B3H 3C3
Canada
bert.hartnell@stmarys.ca
C.A. Whitehead
Goldsmiths College
London SE14 6NW
U.K.
c.whitehead@onetel.com

Abstract

A decycling set in a graph G is a set D of vertices such that $G-D$ is acyclic. The decycling number of $G, \phi(G)$, is the cardinality of a smallest decycling set in G. We obtain sharp bounds on the value of the cartesian product $\phi\left(G \square K_{r}\right)$ when $r \geq 3$ and prove that when G belongs to one of several well-known families of graphs, including bipartite graphs and graphs of maximum degree 3 , then $\phi\left(G \square K_{3}\right)=n+\phi(G)$ and $\phi\left(G \square K_{r}\right)=n(r-2)$ for $r \geq 4$, where n is the order of G. We prove also that every cubic graph $G \neq K_{4}$ contains an independent decycling set.

1 Introduction

A decycling set in a graph G, also known in the literature as a vertex feedback set, is a set D of vertices such that $G-D$ is acyclic. The decycling number of G, denoted by $\phi(G)$, is the cardinality of a smallest decycling set in G. We call a decycling set of minimum size a ϕ-set for G. The corresponding problem of finding the minimum number of edges that must be deleted from a graph G of order n having m edges and c components is known as the cycle rank of G and is easily shown to be $m-n+c$ (see for example [17], p.46). In contrast, it has been shown by Karp [6] that the decision problem of finding $\phi(G)$ for an arbitrary graph G is NP-Complete. The problem remains difficult even when restricted to some well-known families of
graphs, for example, bipartite graphs or planar graphs. On the other hand, it has been shown to be polynomial for graphs of maximum degree 3 in [9] and [16], grids in [5], permutation graphs in [7], interval and comparability graphs in [8], and "snakes" (graphs consisting of a finite sequence of chordless cycles, each having just one edge in common with the preceding cycle and one with the following cycle) in [3].
Other results on the decycling number can be found in [2]. The decycling number of cubic graphs is treated in [10], [13]; of regular graphs in general in [14], [15] and of random regular graphs in [4]. Hypercubes are treated in [5], [11]; and the cartesian product of two cycles in [12].
The cartesian product $G:=G_{1} \square G_{2}$ of two graphs G_{1} and G_{2} has $V(G)=V\left(G_{1}\right) \times$ $V\left(G_{2}\right)$ and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in G if and only if either (i) $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or (ii) $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$. In [5] (Theorem 1.8), the decycling number of the cartesian product of a graph G with K_{2} is considered and sharp bounds for $\phi\left(G \square K_{2}\right)$ are obtained for an arbitrary graph G in terms of $\phi(G)$ and $\alpha(G)$, where $\alpha(G)$ denotes the covering number of G.

Theorem 1.1 (Beineke, Vandell) For any graph G,

$$
2 \phi(G) \leq \phi\left(G \square K_{2}\right) \leq \phi(G)+\alpha(G)
$$

It is easily seen that for all $n \geq 2, \phi\left(K_{n}\right)=n-2$ and $\phi\left(K_{n} \square K_{2}\right)=2 n-4$, so that the lower bound is achieved when $G=K_{n}$. The authors prove in [5] that the upper bound is achieved by $G=P_{n}$, the path of order n.
In this paper we consider the problem of finding bounds on $\phi(H)$ when H is the cartesian product of a graph G of order n with a complete graph K_{r}, where $r \geq 3$. In Section 2, we obtain a result analogous to Theorem 1.1 that

$$
\max \{3 \phi(G), n+\phi(G)\} \leq \phi\left(G \square K_{3}\right) \leq n+2 \phi(G),
$$

and further, that when G satisfies certain conditions, the upper bound in the second inequality can be reduced to $n+\phi(G)$. In Section 3, we obtain bounds for $\phi\left(G \square K_{r}\right)$ when $r \geq 4$ and show that if G satisfies a slightly stronger set of conditions, then $\phi\left(G \square K_{r}\right)=n(r-2)$. These results enable us to prove that when G belongs to one of several elementary families of graphs, including bipartite graphs and graphs with maximum degree 3, then $\phi\left(G \square K_{3}\right)=n+\phi(G)$ and $\phi\left(G \square K_{r}\right)=n(r-2)$ when $r \geq 4$. This implies in particular that the problem of determining $\phi\left(G \square K_{r}\right)$ when G has maximum degree 3 is polynomial for $r \geq 3$. We also show that every cubic graph $G \neq K_{4}$ contains an independent decycling set.
All graphs considered in this paper are simple. We use the following notation. For $X \subseteq V(G),\langle X\rangle$ denotes the subgraph of G induced by X. The number of components of G is denoted by $c(G)$ and the maximum vertex degree by $\Delta(G)$. Additionally, when we regard the graph $G \square K_{r}$ as the graph K_{r} in which each vertex is replaced by a copy of G, we label the vertices of K_{r} as $1,2, \ldots, r$, the copy of G replacing vertex i as G_{i} and the copy of vertex $v \in V(G)$ in G_{i} as $v_{i}, i=1,2, \ldots, r$. Similarly, for any subgraph $H \subseteq G$ or for any set $S \subseteq V(G), H_{i}$ denotes the copy of H in G_{i} and $S_{i}:=S \cap V\left(G_{i}\right), i=1,2, \ldots, r$.

2 Decycling $G \square K_{3}$

Let G be a graph of order $n \geq 2$. We can visualise the graph $G \square K_{r}$ in two different ways: either as the graph G in which each vertex $v \in V(G)$ is replaced by a copy of K_{r}, or as K_{r} in which each vertex is replaced by a copy of G. In this latter case, we label the vertices of K_{r} as $1,2, \ldots, r$, the copy of G replacing vertex i as G_{i} and the copy of vertex $v \in V(G)$ in G_{i} as $v_{i}, i=1,2, \ldots, r$. Similarly, for any set $S \subseteq V(G)$, S_{i} denotes the set of copies of the vertices in S in $G_{i}, i=1,2, \ldots, r$. In finding a sharp lower bound for $\phi\left(G \square K_{3}\right)$, note that a graph G may contain a set of vertices T that are no help in decycling G, in the sense that $\phi(G-T)=\phi(G)$. For example, if G is a graph with minimum vertex degree 1 and T is the set of leaves in G, then $\phi(G-T)=\phi(G)$. Again, if G^{\prime} is a graph obtained from G by successive subdivisions of its edges, then we can set $T:=V\left(G^{\prime}\right) \backslash V(G)$ and $\phi\left(G^{\prime}\right)=\phi(G)$.

Lemma 2.1 Let G be a graph of order $n \geq 2$. Let T be a maximum set of vertices in G such that $\phi(G-T)=\phi(G)$. Then

$$
\phi\left(G \square K_{3}\right) \geq \max \{n+\phi(G), 3 \phi(G)+|T|\} .
$$

Proof. Let D be a ϕ-set for $G \square K_{3}$. In order to decycle the copy of K_{3} at each vertex of G, D contains at least one copy of each vertex of G. Furthermore, for each cycle C in G, D contains at least two copies of some vertex of C. For, suppose otherwise. Then G contains a cycle C such that only one copy of each of its vertices occurs in D. Consider any edge of C, say $x y$. Then for some $i, 1 \leq i \leq 3, D$ contains neither x_{i} nor y_{i}. But then the edge $x_{i} y_{i}$ occurs in the graph $G \square K_{3}-D$. Thus $G \square K_{3}-D$ contains a copy of each edge of C and hence contains a cycle, a contradiction. It follows that each vertex of some decycling set for G occurs twice in D. Hence $|D| \geq|V(G)|+\phi(G)$.
However, D contains a decycling set for G in each copy of G. But no ϕ-set for G contains any vertex of T. Since each vertex of G occurs at least once in D, we also have $|D| \geq 3 \phi(G)+|T|$, and the result follows.

Although we are mostly concerned in the remainder of this section with graphs which achieve the first of the lower bounds established in Lemma 2.1, the second bound is higher in some cases. For example, suppose G is the graph obtained by appending p leaves to arbitrarily chosen vertices of the complete graph K_{m}, where $m \geq 5$. Then $|T|=p$, and the second bound gives an improvement of $m-4$ over the first bound.

Lemma 2.2 Let G be a graph of order $n \geq 2$ that admits a partition (X, Y) of $V(G)$ such that $\langle X\rangle$ and $\langle Y\rangle$ are acyclic. Let D be a decycling set for G. If
(i) $D \cap K$ contains a vertex cover of K for each non-trivial component K of $\langle X\rangle$ or $\langle Y\rangle$; and
(ii) for each cycle C in G, there is a component K of $\langle X\rangle$ or $\langle Y\rangle$ such that a maximal path in $\langle V(C) \cap V(K)\rangle$ has an endvertex in D,
then

$$
\phi\left(G \square K_{3}\right) \leq n+|D| .
$$

Proof. Suppose D satisfies the conditions of the lemma. In $G \square K_{3}$, let $S=X_{1} \cup Y_{2} \cup$ D_{3} and consider $H:=G \square K_{3}-S$. Certainly H_{i} is acyclic for $i=1,2,3$. Further, there is no edge between H_{1} and H_{2} as $X \cap Y=\emptyset$. Let $\left\{u_{i}\right\}$ be a component of H_{i} of order 1. Then u_{i} is an isolated vertex of H when $u \in D$; otherwise $\operatorname{deg}_{H}\left(u_{i}\right)=1$, for $i=1,2$, so that u_{i} is not a vertex of any cycle in H.
Suppose now H contains a cycle C and let $u_{j} v_{j}$ be an edge of C in H_{j}, where $j \in\{1,2\}$. Then by condition (i) at least one of u or v is in D, say $u \in D$. But then u_{j} is the only copy of u in H and hence only one copy of the edge $u v$ is in H. It follows that identifying the three copies of v for each vertex $v \in V(C)$ gives a cycle C_{0} in G. Then by condition (ii), there is a component K of $\langle X\rangle$ or $\langle Y\rangle$, say $V(K) \subseteq X$, such that a maximal path in $\langle V(C) \cap V(K)\rangle$ has an endvertex $w \in D$. But then w has a neighbour $y \in Y$ on C_{0}. In H, C contains a copy w_{2} of w and y_{1} of y. But w_{2} is the only copy of w in H and since $y_{2} \notin H$, there is no edge in H between w_{2} and any copy of y, a contradiction. Thus H is acyclic and S is a decycling set for $G \square K_{3}$, giving $\phi\left(G \square K_{3}\right) \leq|S|=n+|D|$.

Several well-known graph families satisfy $\phi\left(G \square K_{3}\right)=n+\phi(G)$.

Theorem 2.3 Let G be a bipartite graph of order $n \geq 2$. Then

$$
\phi\left(G \square K_{3}\right)=n+\phi(G) .
$$

Proof. Take (X, Y) as the bipartition of $V(G)$ and D as any ϕ-set in G in Lemma 2.2. Then every component of $\langle X\rangle$ and $\langle Y\rangle$ is trivial, and hence the conditions of Lemma 2.2 are satisfied with $|D|=\phi(G)$ giving $\phi\left(G \square K_{3}\right) \leq n+\phi(G)$. The result then follows from Lemma 2.1.

Corollary 2.4 Let F be a forest of order n. Then $\phi\left(F \square K_{3}\right)=n$.

The problem of determining $\phi(G)$ when G is bipartite is known to be NP-hard, see [6]. Theorem 2.3 implies the following sharp upper bound on $\phi\left(G \square K_{3}\right)$ for a connected bipartite graph G, achieved by all complete bipartite graphs.

Corollary 2.5 Let G be a connected bipartite graph with partite sets of order n_{1}, n_{2}, where $n_{1} \geq n_{2} \geq 1$. Then

$$
\phi\left(G \square K_{3}\right) \leq n_{1}+2 n_{2}-1 .
$$

Lemma 2.6 Let G be a graph of order $n \geq 2$ with $\Delta(G)=3$ and D be a ϕ-set for G. Then no component of $\langle D\rangle$ has order greater than 2.

Proof. Suppose otherwise. Then $\langle D\rangle$ contains a path P of order 3. Let $P:=u v w$. Then v has at most one neighbour in $G-u-w$ and hence any cycle through v in G also contains either u or w. Thus $D \backslash\{v\}$ is a decycling set for G of cardinality $\phi(G)-1$, a contradiction.

Theorem 2.7 Let G be a graph of order $n \geq 2$ with $\Delta(G)=3$. Then

$$
\phi\left(G \square K_{3}\right)=n+\phi(G) .
$$

Proof. We may assume that G contains at least one odd cycle, since otherwise the result is true by Theorem 2.3. Let D be a ϕ-set for G and D^{*} be a minimal subset of D such that $H:=\left\langle G-D^{*}\right\rangle$ is bipartite. Let I denote the set of isolates in H. Give $V(H \backslash I)$ a proper 2-colouring with colours c_{1}, c_{2}. Let $v \in D^{*}$ be an uncoloured vertex. By Lemma 2.6, v has at most one neighbour in D^{*} and hence at least two of the neighbours of v have already been coloured. If v has at least two neighbours in the same colour, give v the other colour; otherwise, colour v arbitrarily with c_{1} or c_{2}. When every vertex of D^{*} has been coloured, colour the vertices of I by the same rule.
Let X, Y be the sets of vertices coloured c_{1} and c_{2} respectively. Let K be a nontrivial component of $\langle X\rangle$ or $\langle Y\rangle$. Clearly D contains a vertex cover of K. Further, it is easily seen that if K has order 3 or more, then K contains no path of the form xuy or xuvy where $u, v \in D$ and $x, y \in V(G) \backslash D$. In particular, K is acyclic and condition (ii) of Lemma 2.2 is satisfied. Thus (X, Y) and D satisfy all the conditions of that lemma, giving $\phi\left(G \square K_{3}\right) \leq n+\phi(G)$. The result follows from Lemma 2.1.

Since the problem of determining $\phi(G)$ when G is cubic is polynomial, see [9] and [16], the exact value of $\phi\left(G \square K_{3}\right)$ can be determined from Theorem 2.7 in polynomial time. In the more general case, Alon et al. [1] prove that if G is a connected graph with $\Delta(G)=3$, where $G \neq K_{4}$, then

$$
\phi(G) \leq\lfloor(|E(G)|+1) / 4\rfloor .
$$

This gives the following corollary to Theorem 2.7.

Corollary 2.8 Let G be a connected graph of order $n \geq 2$ with $\Delta(G)=3$. If $G \neq K_{4}$, then

$$
\phi\left(G \square K_{3}\right) \leq n+\lfloor(|E(G)|+1) / 4\rfloor .
$$

Punnim [15] (Lemma 3.4) has shown that if G is a connected triangle-free graph of order n with $\Delta(G)=3$ and such that G is not cubic, then $\phi(G) \leq n / 3$. Thus we have the following additional corollary to Theorem 2.7.

Corollary 2.9 Let G be a connected triangle-free graph of order $n \geq 2$ with $\Delta(G)=$ 3. If G is not cubic, then

$$
\phi\left(G \square K_{3}\right) \leq 4 n / 3 .
$$

A cactus is a simple connected graph with the property that no two cycles have an edge in common.

Theorem 2.10 Let G be a cactus of order $n \geq 2$. Then

$$
\phi\left(G \square K_{3}\right)=n+\phi(G) .
$$

Proof. We may assume that G contains at least one odd cycle, since otherwise the result is true by Theorem 2.3. Let D be a ϕ-set for G and let D^{*} be a minimum subset of D containing a vertex of each odd cycle. Let $C_{1}, \ldots, C_{k}, k \geq 1$, be the odd cycles in G. For $i=1, \ldots, k$, let u_{i} be a vertex of D^{*} incident with C_{i} (note that the vertices u_{1}, \ldots, u_{k} are not necessarily distinct). For each cycle C_{i} make an arbitrary choice of one of the two edges of C_{i} incident with u_{i} and label it $e_{i} \in E\left(C_{i}\right)$. Then $H:=G-\left\{e_{1}, \ldots, e_{k}\right\}$ is bipartite with $c(H)=c(G)$. Let (X, Y) be a bipartition of $V(H)$. Let $x y \in E(G)$. Then x, y are in the same set in this bipartition only if one of them is in D^{*}. Further, if C is a cycle in G, then $V(C) \cap X$ or $V(C) \cap Y$ contains an isolated vertex of D when C is even; and when C is odd, C intersects some non-trivial component of X or Y in a path of order 2 containing a vertex of D^{*}. Thus all the conditions of Lemma 2.2 are satisfied and hence $\phi\left(G \square K_{3}\right) \leq n+\phi(G)$. The result then follows from Lemma 2.1.

The maximum number of vertex disjoint cycles in a cactus G of order n is $\lfloor n / 3\rfloor$ and it follows that $\phi(G) \leq\lfloor n / 3\rfloor$. This upper bound is attained by the family of graphs constructed from a cubic tree (that is, a tree in which every internal vertex has degree 3) by replacing each vertex of T with a copy of K_{3}.

Corollary 2.11 Let G be a cactus of order $n \geq 2$. Then

$$
\phi\left(G \square K_{3}\right) \leq\lfloor 4 n / 3\rfloor .
$$

We show in Proposition 3.6 that $\phi\left(K_{n} \square K_{3}\right)=3(n-2)$, for all $n \geq 4$, and hence the lower bound $3 \phi(G)$ of Lemma 2.1 is also sharp.
It is easily seen that K_{4} has a vertex partition and ϕ-set D satisfying the conditions of Lemma 2.2. However, in any partition (X, Y) of the vertex set of K_{5}, one of $\langle X\rangle$ or $\langle Y\rangle$ contains a 3-cycle and hence this lemma cannot be applied to any graph with $\omega(G) \geq 5$. We next establish a sharp upper bound on the value of $\phi\left(G \square K_{3}\right)$ applicable to any graph.

Lemma 2.12 Let G be a connected graph of order $n \geq 2$. Then

$$
\phi\left(G \square K_{3}\right) \leq n+2 \phi(G) .
$$

Proof. Let D be a ϕ-set in G and (X, Y) be the bipartition of $V\left(G_{0}\right)$, where $G_{0}:=G-$ D. Then $X \cup D, Y \cup D$ are both vertex covers of G. Hence $S:=X_{1} \cup D_{1} \cup Y_{2} \cup D_{2} \cup D_{3}$ is a decycling set for G of cardinality $|V(G)|+2|D|$ and the result follows.

The upper bound on $\phi\left(G \square K_{3}\right)$ of Lemma 2.12 is sharp: it is attained, for example, by the family of graphs formed by the join of a path of order $r \geq 4$ and an isolated vertex.

3 Decycling $G \square K_{r}$, for $r \geq 4$

Lemma 3.1 Let G be a graph of order $n \geq 2$. Then for $r \geq 4$,

$$
\phi\left(G \square K_{r}\right) \geq \max \{n(r-2), r \phi(G)\} .
$$

Proof. To decycle the copy of K_{r} at each vertex of G requires at least $n(r-2)$ vertices. But to decycle the copy of G at each vertex of K_{r} requires at least $r \phi(G)$ vertices, and the result follows.

We use the following notation. For any $r \geq 3$, we call a ϕ-set in $\left(G \square K_{r}\right)$ a ϕ_{r}-set.
Lemma 3.2 Let r, s be integers with $r>s \geq 3$ and G be a graph of order n. Then

$$
\phi\left(G \square K_{r}\right) \leq \phi\left(G \square K_{s}\right)+n(r-s) .
$$

Proof. Let D be a ϕ_{s}-set for $G \square K_{s}$ and let $D_{i}:=G_{i} \cap D$, for $1 \leq i \leq s$. Now construct a decycling set Q in $G \square K_{r}$ by setting $Q_{i}:=D_{i}$ when $1 \leq i \leq s$, and $Q_{i}:=V(G)$ when $s+1 \leq i \leq r$.

Lemma 3.3 Let G be a graph of order $n \geq 2$ that admits a partition (X, Y) of $V(G)$ such that $\langle X\rangle$ and $\langle Y\rangle$ are acyclic. Let D be an independent decycling set for G. If
(i) $D \cap K$ contains a vertex cover of K for each non-trivial component K of $\langle X\rangle$ or $\langle Y\rangle$; and
(ii) for each cycle C in G, there is a component K of $\langle X\rangle$ or $\langle Y\rangle$ such that a maximal path in $\langle V(C) \cap V(K)\rangle$ has an endvertex in D;
then for all $r \geq 4$,

$$
\phi\left(G \square K_{r}\right)=n(r-2) .
$$

Proof. Suppose D satisfies the conditions of the lemma. Let $W:=V(G) \backslash D$ and note that since D is independent, W is also a decycling set for G. Define a set Q in $G \square K_{4}$ by $Q_{1}:=X_{1}, Q_{2}=Y_{2}, Q_{3}=D_{3}, Q_{4}=W_{4}$. For $1 \leq i \leq 4$, let $S_{i}=V\left(G_{i}\right) \backslash Q_{i}$. Then since $D^{*}:=Q_{1} \cup Q_{2} \cup Q_{3}$ and (X, Y) satisfy the conditions of Lemma 2.2 in $G \square K_{3}$, $\left\langle S_{1} \cup S_{2} \cup S_{3}\right\rangle$ is a forest F. However, $S_{4}=D_{4}$ is a set of independent vertices, each of which has degree 1 in $G \square K_{4} \backslash Q$ and hence $\left\langle S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right\rangle$ is a forest in $G \square K_{4}$. Thus Q is a decycling set in $G \square K_{4}$ of cardinality $2 n$, giving $\phi\left(G \square K_{4}\right)=2 n$, by Lemma 3.1. The result then follows from Lemma 3.2 with $s=4$ and Lemma 3.1.

Theorem 3.4 Let G be a bipartite graph of order $n \geq 2$. Then for all $r \geq 4$,

$$
\phi\left(G \square K_{r}\right)=n(r-2) .
$$

Proof. This result follows from Lemma 3.3 by taking (X, Y) as a bipartition of $V(G)$ and $D:=Y$.

Theorem 3.5 Let G be a cactus of order $n \geq 2$. Then for all $r \geq 4$,

$$
\phi\left(G \square K_{r}\right)=n(r-2) .
$$

Proof. We may assume that G contains at least one odd cycle, since otherwise the result is true by Theorem 3.4. Choose a decycling set D for G with the property that each odd cycle contains just one vertex of D and no two vertices of D are adjacent (the set D will not necessarily be a ϕ-set for G). Let $C_{1}, \ldots, C_{k}, k \geq 1$, be the odd cycles in G. For $i=1, \ldots, k$, let u_{i} be the unique vertex of D incident with C_{i}. Make an arbitrary choice of one of the two edges of C_{i} incident with u_{i} and label it e_{i}. Then $H:=G-\left\{e_{1}, \ldots, e_{k}\right\}$ is bipartite with $c(H)=c(G)$. Let (X, Y) be a bipartition of $V(H)$ and let K be a non-trivial component of $\langle X\rangle$ or $\langle Y\rangle$. Then D contains a vertex cover of K. Further, for each cycle C in G, there is a component K of $\langle V(C) \cap X\rangle$ or $\langle V(C) \cap Y\rangle$ which has order 2 and one of its endvertices in D when C is odd; and is a single vertex of D when C is even. Let $V(G) \backslash D:=W$. Then W is also a decycling set for G and hence (X, Y) and D satisfy the conditions of Lemma 3.3. The result follows.

Proposition 3.6 Let n, r be integers with $n \geq r \geq 3$. Then

$$
\phi\left(K_{r} \square K_{n}\right)=\left\{\begin{array}{ll}
r(n-2) & \text { when } n>r \\
(r-1)^{2} & \text { when } n=r
\end{array} .\right.
$$

Proof. By Lemma 3.1, $\phi\left(K_{r} \square K_{n}\right) \geq r(n-2)$. When $n>r$, let $u^{1}, u^{2}, \ldots, u^{r+1}$ be distinct vertices of $G \cong K_{n}$ and set $S:=\left\{u_{1}^{1}, u_{1}^{2}, u_{2}^{2}, u_{2}^{3}, u_{3}^{3}, u_{3}^{4}, \ldots, u_{r}^{r+1}\right\}$. Clearly $\langle S\rangle$ is a path. Thus $D:=V\left(K_{n} \square K_{r}\right) \backslash S$ is a decycling set for $K_{n} \square K_{r}$ and $\phi\left(K_{r} \square K_{n}\right) \leq$ $|D|=n r-2 r$ and the result follows.
Now suppose $n=r$ and let $S \subseteq V\left(K_{r} \square K_{r}\right)$ be a maximum set such that $\langle S\rangle$ is acyclic. Since S contains at most two copies of each vertex of $K_{r},|S| \leq 2 r$. However, S_{i} contains copies of no more than two distinct vertices for $1 \leq i \leq r$, so that if $|S|=2 r$, then $\langle S\rangle$ is 2-regular, a contradiction. Hence $|S| \leq 2 r-1$. Let $V\left(K_{r}\right):=\left\{u^{1}, u^{2}, \ldots, u^{r}\right\}$. Setting $S:=\left\{u_{1}^{1}, u_{1}^{2}, u_{2}^{2}, u_{2}^{3}, u_{3}^{3}, u_{3}^{4}, \ldots, u_{r}^{r}\right\},\langle S\rangle$ is a path. Hence $|S|=2 r-1$. Then $D:=V\left(K_{r} \square K_{r}\right) \backslash S$ is a ϕ-set for $K_{r} \square K_{r}$ of cardinality $r^{2}-2 r+1$.

Lemma 3.7 Let $G \neq K_{4}$ be a connected cubic graph. Then G contains an independent decycling set.

Proof. Partition $V(G)$ into two sets $\left(D_{0}, X_{0}\right)$ so that D_{0} is an independent set and among all such choices of $D_{0},\left\langle X_{0}\right\rangle$ contains as few cycles as possible. Without loss of generality, we may assume that D_{0} is maximal independent. If $\left\langle X_{0}\right\rangle$ is acyclic, then put $D:=D_{0}$ and D is an independent decycling set for G.

Assume therefore that $\left\langle X_{0}\right\rangle$ contains an r-cycle C_{0}. Each vertex of C_{0} has two neighbours in X_{0} and hence its neighbour in $V(G) \backslash V\left(C_{0}\right)$ is in D_{0}. Let $y \in V\left(C_{0}\right)$ and u be the neighbour of y in D_{0} and $N_{G}(u):=\left\{y, v_{1}, v_{2}\right\}$. If G contains no $v_{1} v_{2}{ }^{-}$ path P_{1} such that $V\left(P_{1}\right) \subseteq X_{0}$, put $D:=\left(D_{0} \cup\{y\}\right) \backslash\{u\}$ and $X:=V(G) \backslash D$. Then D is independent and $\langle X\rangle$ contains one less cycle than $\left\langle X_{0}\right\rangle$, contradicting the choice of the partition $\left(D_{0}, X_{0}\right)$. Suppose then that there is a $v_{1} v_{2}$-path P_{1} such that $V\left(P_{1}\right) \subseteq X_{0}$. Then either $\left\{v_{1}, v_{2}\right\} \subset V\left(C_{0}\right) \backslash\{y\}$, or $\left\{v_{1}, v_{2}\right\} \cap V\left(C_{0}\right)=\emptyset$.
Suppose $\left\{v_{1}, v_{2}\right\} \subset V\left(C_{0}\right) \backslash\{y\}$. Note that $r>3$, since otherwise $G \cong K_{4}$, contrary to hypothesis. Thus $\left\{y, v_{1}, v_{2}\right\}$ contains at least one pair of non-adjacent vertices. Denote such a pair by $\left\{x^{\prime}, x^{\prime \prime}\right\}$ and put $D:=\left(D_{0} \cup\left\{x^{\prime}, x^{\prime \prime}\right\}\right) \backslash\{u\}, X:=V(G) \backslash D$. Then D is an independent set and $\langle X\rangle$ contains one less cycle than $\left\langle X_{0}\right\rangle$, again contradicting the choice of $\left(D_{0}, X_{0}\right)$. We may therefore assume that $\left\{v_{1}, v_{2}\right\} \cap V\left(C_{0}\right)=\emptyset$ and hence $V\left(P_{1}\right) \cap V\left(C_{0}\right)=\emptyset$. Thus each vertex of C_{0} has a distinct neighbour in D_{0}. Let C_{1} denote the cycle $u P_{1}$. Put $D_{1}:=\left(D_{0} \cup\{y\}\right) \backslash\{u\}$ and $X_{1}:=V(G) \backslash D_{1}$. Now C_{1} is a cycle in $\left\langle X_{1}\right\rangle$ and repeating the arguments above with C_{1}, D_{1} in place of C_{0}, D_{0}, we may conclude that each vertex of C_{1} has a distinct neighbour in D_{1} and hence each vertex of $V\left(C_{1}\right) \backslash\{u\}$ has a distinct neighbour in $D_{0} \backslash\{u\}$. Now suppose there is a vertex $w \in D_{0}$ such that w has neighbours $z \in V\left(C_{1}\right)$ and $z^{\prime} \in V\left(C_{0}\right)$. But then putting $D:=\left(D_{0} \cup\left\{z, z^{\prime}\right\}\right) \backslash\{u\}$ and $X:=V(G) \backslash D, D$ is independent and $\langle X\rangle$ contains one less cycle than $\left\langle X_{0}\right\rangle$, contradicting the choice of the partition $\left(D_{0}, X_{0}\right)$. Hence each vertex of $V\left(C_{0}\right) \cup V\left(C_{1}\right) \backslash\{u\}$ has a distinct neighbour in $D_{0} \backslash\{u\}$.
Put $y:=y_{0}, u:=u_{1}$. Suppose we have extended the sequence C_{0}, C_{1} to a sequence $C_{0}, C_{1}, \ldots, C_{k}$ of distinct cycles, where $k \geq 1$, with the following properties:

1. for $1 \leq i \leq k, C_{i}$ contains a unique vertex $u_{i} \in D_{0}$;
2. for $0 \leq i \leq k-1, C_{i}$ contains a vertex y_{i} adjacent to u_{i+1};
3. each vertex of $V\left(C_{0}\right) \cup V\left(C_{1}\right) \cdots \cup V\left(C_{k}\right) \backslash\left\{u_{1}, \ldots, u_{k}\right\}$ has a distinct neighbour in $D_{0} \backslash\left\{u_{1}, \ldots, u_{k}\right\}$.

Now let $y_{k} \in V\left(C_{k}\right) \backslash\left\{u_{k}\right\}$ and u_{k+1} be the vertex of D_{0} adjacent to y_{k}. Let $N_{G}\left(u_{k+1}\right)=\left\{y_{k}, w_{1}, w_{2}\right\}$. Assume there is a $w_{1} w_{2}$-path P_{k+1} with $V\left(P_{k+1}\right) \subseteq X_{0}$. Since $u_{k+1} \in D_{0}$, either $\left\{w_{1}, w_{2}\right\} \subset V\left(C_{i}\right) \backslash\left\{u_{i}\right\}$ for some $i \in\{0, \ldots, k\}$, or $\left\{w_{1}, w_{2}\right\} \cap$ $V\left(C_{i}\right)=\emptyset$ for $0 \leq i \leq k$. However, the first alternative implies that two vertices of $V\left(C_{i}\right) \backslash\left\{u_{i}\right\}$ have the same neighbour in $D_{0} \backslash\left\{u_{i}\right\}$, contrary to property 3. Hence $\left\{w_{1}, w_{2}\right\} \cap V\left(C_{0}\right)=\emptyset$ and G contains a cycle $C_{k+1}:=u_{k+1} P_{k+1}$ distinct from C_{i}, for $i=0,1, \ldots, k$. Now let $D_{1}:=\left(D_{0} \cup\left\{y_{0}, \ldots, y_{k-1}\right\}\right) \backslash\left\{u_{1}, \ldots u_{k}\right\}$ and $X_{1}:=V(G) \backslash D_{1}$. Then C_{k} is a cycle in $\left\langle X_{1}\right\rangle$. Repeating the arguments above for C_{k}, C_{k+1}, D_{1} in place of C_{0}, C_{1}, D_{0}, we conclude that each vertex of C_{k+1} has a distinct neighbour in D_{1} and hence each vertex of $V\left(C_{k+1}\right) \backslash\left\{u_{k+1}\right\}$ has a distinct neighbour in $D_{0} \backslash\left\{u_{1}, \ldots, u_{k}\right\}$. Now suppose that there is a vertex $s \in D_{0} \backslash\left\{u_{1}, \ldots, u_{k}\right\}$ having neighbours t, t^{\prime}, where $t \in V\left(C_{k+1}\right)$ and $t^{\prime} \in V\left(C_{i}\right)$ for some $i \in\{0, \ldots, k\}$. But putting $D:=$ $\left(D_{0} \cup\left\{t, t^{\prime}\right\}\right) \backslash\left\{u_{i}, u_{k+1}\right\}$ when $i \geq 1$ and $D:=\left(D_{0} \cup\left\{t, t^{\prime}\right\}\right) \backslash\left\{u_{k+1}\right\}$ when $i=0$, and putting $X:=V(G) \backslash D$, we obtain an independent set D such that $\langle X\rangle$ contains
one less cycle than $\left\langle X_{0}\right\rangle$, contradicting the choice of the partition $\left(D_{0}, X_{0}\right)$, so that this does not occur. Thus the cycle C_{k+1} has properties 1 to 3 and the sequence of distinct cycles C_{0}, \ldots, C_{k} can be extended to $C_{0}, \ldots, C_{k}, C_{k+1}$. Since the sequence exists for $k=1$, it can be extended indefinitely, by induction. But this is impossible, since G is finite. Hence G contains an independent decycling set.

Lemma 3.8 Let $G \neq K_{4}$ be a connected graph with $\Delta(G)=3$. Then G contains an independent decycling set.

Proof. By Lemma 3.7, the result is true when G is cubic, so we may also assume that G contains at least one vertex of degree less than 3. Let H be the graph constructed from K_{4} by subdividing one of its edges. If G has a vertex x of degree 2 , construct a new graph from G by joining x to the vertex of degree 2 in a copy of H. Repeat this procedure, joining each vertex of degree 2 in G to the vertex of degree 2 in a distinct copy of H. If G contains a leaf y, join y to the vertex of degree 2 in each of two distinct copies of H. Repeat this procedure for each leaf of G. The resulting graph is cubic and hence contains an independent decycling set S by Lemma 3.7. But then $D:=S \cap V(G)$ is an independent decycling set for G, proving the result.

Theorem 3.9 Let $G \neq K_{4}$ be a connected graph with $\Delta(G)=3$. Then for all $r \geq 4$,

$$
\phi\left(G \square K_{r}\right)=n(r-2) .
$$

Proof. By Lemma 3.8, G admits an independent decycling set D. Let D^{*} be a minimal subset of D such that $H:=\langle G-D\rangle^{*}$ is bipartite. Obtain a partition (X, Y) of $V(G)$ as in Theorem 2.7. Then the conditions of Lemma 3.3 are satisfied and the result follows.

References

[1] N. Alon, D. Mubayi and R. Thomas, Large induced forests in sparse graphs, J. Graph Theory 38 (2001), 113-123.
[2] Sheng Bau and Lowell W. Beineke, The decycling number of graphs, Australas. J. Combin. 25 (2002), 285-298.
[3] Sheng Bau, Lowell W. Beineke and Robert C. Vandell, Decycling snakes, Congressus Numer. 134 (1998), 79-87.
[4] Sheng Bau, Nicholas C. Wormald and Sanming Zhou, Decycling numbers of random regular graphs, Random Structures and Algorithms 21 (2002), 397-413.
[5] Lowell W. Beineke and Robert C. Vandell, Decycling graphs, J. Graph Theory 25 (1997), 59-77.
[6] R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, (eds. R.E. Miller and J.W. Thatcher), Plenum Press, New York, London (1972), 85-103.
[7] Y.D. Liang, On the feedback vertex set problem in permutation graphs, Inf. Process Lett. 52 (1994), 123-129.
[8] Y.D. Liang and M.-S. Chang, Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs, Acta Inf. 34 (1997), 337-346.
[9] D.-M. Li and Y.-P. Liu, A polynomial algorithm for finding the mimimum feedback vertex set of a 3-regular simple graph, Acta Math. Sci. 19 no. 4 (1999), 375-381.
[10] J.-P. Liu and C. Zhao, A new bound on the feedback vertex sets in cubic graphs, Discrete Math. 148 (1996), 119-131.
[11] David A. Pike, Decycling hypercubes, Graphs Combin. 19 no. 4 (2003), 547-550.
[12] David A. Pike and Yubo Zou, Decycling cartesian product of two cycles, SIAM J. Discrete Math. 19 (2005) no. 3, 551-663.
[13] Narong Punnim, The decycling number of cubic graphs, Combinatorial Geometry and Graph Theory, pp.141-145, Lec. Notes Comp. Sci. 3330, Springer, Berlin, 2005.
[14] Narong Punnim, Decycling regular graphs, Australas. J. Combin. 32 (2005), 147-162.
[15] Narong Punnim, Decycling connected regular graphs, Australas. J. Combin. 35 (2006), 155-169.
[16] S. Ueno, Y. Kajitani and S. Gotoh, On the non-separating independent set problem and feedback set problem for graphs with no vertex degree exceeding three, Discrete Math. 72 (1988), 355-360.
[17] R.J. Wilson, Introduction to graph theory (4th ed.), Addison-Wesley/Longman, Reading, MA (1996).

