On the number of nonseparating vertices in strongly connected in-tournaments

Dirk Meierling
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen
Germany
meierling@math2.rwth-aachen.de

Abstract

A digraph without loops, multiple arcs and directed cycles of length two is called an in-tournament if the set of in-neighbors of every vertex induces a tournament. A local tournament is an in-tournament such that the set of out-neighbors of every vertex induces a tournament as well.

Let $p \geq 2$ be an integer and let T be a strongly connected tournament such that every vertex has at least p positive neighbors and at least p negative neighbors. In 2006, Kotani showed that T has at least k vertices $x_{1}, x_{2}, \ldots, x_{k}$, where $k=\min \{|V(D)|, 4 p-2\}$, such that $T-x_{i}$ $(i=1,2, \ldots, k)$ is strongly connected. One year later, Meierling and Volkmann proved that the same proposition is valid for the class of local tournaments. In this paper we shall generalize the result to the class of in-tournaments, thereby generalizing Kotani's as well as Meierling's and Volkmann's results.

1 Terminology and introduction

All digraphs mentioned here are finite without loops and multiple arcs. For a digraph D, we denote by $V(D)$ and $E(D)$ the vertex set and arc set of D, respectively. The number $|V(D)|$ is the order of the digraph D. The subdigraph induced by a subset A of $V(D)$ is denoted by $D[A]$. By $D-A$ we denote the digraph $D[V(D)-A]$. If $A=\{x\}$ is a single vertex, then we write $D-x$ instead of $D-\{x\}$.

If $x y \in E(D)$, then y is a positive neighbor of x and x is a negative neighbor of y, and we also say that x dominates y, denoted by $x \rightarrow y$. If A and B are two disjoint subdigraphs of a digraph D such that every vertex of A dominates every vertex of B in D, then we say that A dominates B, denoted by $A \rightarrow B$. The outset $N^{+}(x)$ of a vertex x is the set of positive neighbors of x. More generally, for arbitrary subdigraphs A and B of D, the outset $N^{+}(A, B)$ is the set of vertices in B to which there is an arc from a vertex in A. The insets $N^{-}(x)$ and $N^{-}(A, B)$
are defined analogously. The numbers $d^{+}(x)=\left|N^{+}(x)\right|$ and $d^{-}(x)=\left|N^{-}(x)\right|$ are called outdegree and indegree of x, respectively. The minimum outdegree $\delta^{+}(D)$ and the minimum indegree $\delta^{-}(D)$ of D are given by $\min \left\{d^{+}(x) \mid x \in V(D)\right\}$ and $\min \left\{d^{-}(x) \mid x \in V(D)\right\}$, respectively. Analogously, we define the maximum outdegree $\Delta^{+}(D)=\max \left\{d^{+}(x) \mid x \in V(D)\right\}$ and the maximum indegree $\Delta^{-}(D)=$ $\max \left\{d^{-}(x) \mid x \in V(D)\right\}$ of D. In addition, let $\delta(D)=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$ be the minimum degree and $\Delta(D)=\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\}$ be the maximum degree of D.

Throughout this paper, directed cycles and paths are simply called cycles and paths. A cycle of order k is a k-cycle. If C is a cycle of a digraph D with order $|V(D)|$, then C is called a Hamiltonian cycle. Let $C=x_{1} x_{2} \ldots x_{k} x_{1}$ be a cycle of D with order k. Then $C\left[x_{i}, x_{j}\right]$, where $1 \leq i, j \leq k$, denotes the subpath $x_{i} x_{i+1} \ldots x_{j}$ of C with initial vertex x_{i} and terminal vertex x_{j}. The notations for paths are defined analogously.

A digraph D is vertex pancyclic if every vertex of D belongs to cycles of lengths $3,4, \ldots,|V(D)|$.

We speak of a connected digraph if the underlying graph is connected. A digraph D is said to be strongly connected or just strong, if for every pair x, y of vertices of D, there is a path from x to y. A strong component of D is a maximal induced strong subdigraph of D. The strong component digraph $S C(D)$ of a digraph D is obtained by contracting the strong components of D into vertices and deleting any parallel arcs obtained in this process. In other words, if $D_{1}, D_{2}, \ldots, D_{p}$, where $p \geq 1$, are the strong components of D, the vertex set of $S C(D)$ is $V(S C(D))=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and the arc set of $S C(D)$ is $E(S C(D))=\left\{v_{i} v_{j} \mid N^{+}\left(D_{i}, D_{j}\right) \neq \emptyset\right\}$. Note that $S C(D)$ is acyclic and thus has an acyclic ordering, that is the strong components of D can be labeled $D_{1}, D_{2}, \ldots, D_{p}$ such that there is no arc from D_{j} to D_{i} unless $j<i$. We call this ordering the acyclic ordering of the strong components of D. The strong components corresponding to vertices with in-degree (out-degree) zero in $S C(D)$ are called initial (terminal) strong components of D.

A vertex x is called a nonseparating vertex of a strong digraph D if $D-x$ is strong. If D is a digraph such that each of its vertices is nonseparating, we call D a 2-connected digraph.

A digraph is semicomplete if for any two different vertices x and y, there is at least one arc between them. A tournament is a semicomplete digraph without 2cycles. A digraph D is locally semicomplete if $D\left[N^{+}(x)\right]$ as well as $D\left[N^{-}(x)\right]$ are semicomplete for every vertex x of D.

We speak of an r-regular tournament T if $\delta(T)=\Delta(T)=r$. Similarly, an almost-regular tournament is a tournament such that $|\Delta(T)-\delta(T)| \leq 1$.

Throughout this paper all subscripts are taken modulo the corresponding number.
Local tournaments were introduced by Bang-Jensen [1] in 1990. In transferring the general adjacency only to vertices that have a common positive or negative neighbor, local tournaments form an interesting generalization of tournaments.

In 1993, Bang-Jensen, Huang and Prisner [2] introduced a further generalization of local tournaments, the class of in-tournaments, in claiming adjacency only for vertices that have a common positive neighbor.

Figure 1: The locally semicomplete digraph with exactly one nonseparating vertex (left); Local tournaments with exactly two nonseparating vertices.

From the well-known result of Moon [9] that a tournament T is strongly connected if and only if it is vertex pancyclic, it follows immediately that a strongly connected tournament T of order greater or equal four contains at least two nonseparating vertices. This was formulated and proved by Korvin [4] in 1967.

Corollary 1.1 (Korvin [4] 1967). If T is a strong tournament with $|V(T)| \geq 4$, then T contains at least two nonseparating vertices.

In 1975, Las Vergnas [6] determined all strongly connected tournaments with exactly two nonseparating vertices.

Theorem 1.2 (Las Vergnas [6] 1975). A strong tournament T on n vertices has at least three nonseparating vertices, unless T is isomorphic to Q_{n}, where Q_{n} is the tournament of order n consisting of a path $x_{1} x_{2} \ldots x_{n}$ and all arcs $x_{i} x_{j}$ for $i>j+1$.

In 1990, Bang-Jensen [1] proved that every strongly connected locally semicomplete digraph that is not a cycle has at least one nonseparating vertex.

Theorem 1.3 (Bang-Jensen [1] 1990). Let D be a strong locally semicomplete digraph that is not a cycle. Then D has a nonseparating vertex.

Four years later, Guo and Volkmann showed that every strongly connected locally semicomplete digraph on $n \geq 4$ vertices has at least two nonseparating vertices if it has at least $n+2$ arcs and determined the digraph depicted in Figure 1 to be the only locally semicomplete digraph with exactly one nonseparating vertex.

Theorem 1.4 (Guo \& Volkmann [3] 1994). Let D be a strong locally semicomplete digraph.
(a) If D has at least $|V(D)|+2$ arcs, then D has at least two nonseparating vertices;
(b) The digraph D has exactly one nonseparating vertex if and only if D is isomorphic to the digraph depicted in Figure 1;
(c) Every vertex of D is a separating vertex if and only if D is a cycle.

Figure 2: A local tournament with exactly two nonseparating vertices.
In 2008, Meierling and Volkmann [7] characterized the strongly connected local tournaments on $n \geq 4$ vertices and at least $n+2$ arcs with exactly two nonseparating vertices to be either isomorphic to Q_{n}, to one of the digraphs depicted in Figure 1 or to the digraph depicted in Figure 2 (if $n=5$).

Theorem 1.5. Let D be a strong local tournament on n vertices with at least $n+2$ arcs. Then D has exactly two nonseparating vertices if and only if D is isomorphic to Q_{n} as defined in Theorem 1.2, to one of the digraphs depicted in Figure 1 or to the digraph depicted in Figure 2 (if $n=5$).

Concerning in-tournaments little is known about the number of nonseparating vertices. In their initial article [2], Bang-Jensen, Huang and Prisner proved the existence of a nonseparating vertex if the in-tournament in question is strongly connected and not a cycle. It is the analog of Theorem 1.3 for in-tournaments.

Theorem 1.6 (Bang-Jensen, Huang and Prisner [2] 1993). Let D be a strong intournament that is not a cycle. Then D has a nonseparating vertex.

Six years later, Tewes [10] gave a sufficient criterion for strongly connected intournaments to have at least two nonseparating vertices.

Theorem 1.7 (Tewes [10] 1999). Let D be a strong in-tournament of order $n \geq 4$ with $\max \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq 2$. Then D contains distinct vertices x_{1}, x_{2} such that $D-x_{i}$ is strong for $i=1,2$.

In 2006, Kotani [5] investigated how many nonseparating vertices a tournament with minimum degree greater or equal two has at the least, and proved several variants of Corollary 1.1.

Theorem 1.8 (Kotani [5] 2006). Let T be a strong tournament and let $p \geq 2$ be an integer. If $\delta(T) \geq p$, then T has at least $k=\min \{|V(T)|, 4 p-2\}$ vertices $x_{1}, x_{2}, \ldots, x_{k}$ such that $T-x_{i}$ is strong for $i=1,2, \ldots, k$.

Theorem 1.9 (Kotani [5] 2006). Let T be a strong tournament and let $p \geq 2$ be an integer. If $\delta(T) \geq p$ and $|V(T)| \geq 4 p$, then T has at least $k=4 p-1$ vertices $x_{1}, x_{2}, \ldots, x_{k}$ such that $T-x_{i}$ is strong for $i=1,2, \ldots, k$.

Theorem 1.10 (Kotani [5] 2006). Let T be a strong tournament and let $p \geq 3$ be an integer. If $\delta(T) \geq p$ and $|V(T)| \geq 4 p+1$, then T has at least $k=4 p$ vertices $x_{1}, x_{2}, \ldots, x_{k}$ such that $T-x_{i}$ is strong for $i=1,2, \ldots, k$.

Inspired by this article, Meierling and Volkmann [8] considered the same question for the class of local tournaments and proved generalizations of Kotani's results. They showed that the conclusion of Theorem 1.8 is valid for local tournaments and characterized the classes of local tournaments that do not fulfill the conclusions of Theorems 1.9 and 1.10 (cf. Definition 2.1, Figure 3 and Corollaries 6.7-6.9).

In this paper we will show that the conclusion of Theorem 1.8 is also true for the class of in-tournaments and characterize the class of in-tournaments that do not fulfill the conclusions Theorems 1.9 and 1.10, thereby generalizing Kotani's as well as Meierling's and Volkmann's results.

2 The exceptional cases

In this section we introduce the classes of local tournaments and in-tournaments that satisfy the preconditions of Theorem 1.9 and Theorem 1.10 , but not the respective conclusions (cf. Figure 3).

Definition 2.1. Let $p \geq 2$ be an integer and let T_{1} and T_{2} be two ($p-1$)-regular tournaments. Furthermore, let u, v be two vertices such that $u, v \notin V\left(T_{i}\right)$ for $i=1,2$.

We define $\mathcal{T}_{\text {loc }}^{*}$ as the set of all local tournaments D with vertex set

$$
V(D)=V\left(T_{1}\right) \cup V\left(T_{2}\right) \cup\{u, v\}
$$

and arc set

$$
\begin{aligned}
E(D)= & E\left(T_{1}\right) \cup E\left(T_{2}\right) \cup\left\{u w \mid w \in V\left(T_{1}\right)\right\} \cup\left\{w v \mid w \in V\left(T_{1}\right)\right\} \cup \\
& \left\{v w \mid w \in V\left(T_{2}\right)\right\} \cup\left\{w u \mid w \in V\left(T_{2}\right)\right\} \cup A,
\end{aligned}
$$

where $A \in\{\{u v\},\{v u\}, \emptyset\}$.
Let $p \geq 3$ be an integer. Let T_{1} be defined as above and let T_{0} be a tournament on $2 p$ vertices such that $p-1 \leq \delta\left(T_{0}\right), \Delta\left(T_{0}\right) \leq p$. Moreover, let u, v be two vertices such that $u, v \notin V\left(T_{i}\right)$ for $i=0,1$. We define $\mathcal{T}_{\text {loc }}^{* *}$ as the set of all local tournaments D with vertex set

$$
V(D)=V\left(T_{0}\right) \cup V\left(T_{1}\right) \cup\{u, v\}
$$

and arc set

$$
\begin{aligned}
E(D)= & E\left(T_{0}\right) \cup E\left(T_{1}\right) \cup\left\{u w \mid w \in V\left(T_{1}\right)\right\} \cup\left\{w v \mid w \in V\left(T_{1}\right)\right\} \cup \\
& \left\{v w \mid w \in V\left(T_{0}\right)\right\} \cup\left\{w u \mid w \in V\left(T_{0}\right)\right\} \cup A,
\end{aligned}
$$

where $A \in\{\{u v\},\{v u\}, \emptyset\}$.
Definition 2.2. Let $p \geq 3$ be an integer, let T_{1} be a ($p-1$)-regular tournament and let T_{2} be a tournament on $2 p$ vertices such that $p-1 \leq \delta\left(T_{2}\right), \Delta\left(T_{2}\right) \leq p$. Furthermore, let u, v be two vertices such that $u, v \notin V\left(T_{i}\right)$ for $i=1,2$.

We define $\mathcal{T}_{\text {in }}^{*}$ as the set of all in-tournaments D with vertex set

$$
V(D)=V\left(T_{1}\right) \cup V\left(T_{2}\right) \cup\{u, v\}
$$

Figure 3: The classes $\mathcal{T}_{\text {loc }}^{*} / \mathcal{T}_{\text {loc }}^{* *}$ (left), $\mathcal{T}_{i n}^{*}$ (center) and $\mathcal{T}_{i n}^{* *}$ (right).
and arc set

$$
\begin{aligned}
E(D)= & E\left(T_{1}\right) \cup E\left(T_{2}\right) \cup\left\{u w \mid w \in V\left(T_{1}\right)\right\} \cup\left\{v w \mid w \in V\left(T_{2}\right)\right\} \cup \\
& \left\{w v \mid w \in V\left(T_{1}\right)\right\} \cup\left\{w u \mid w \in V\left(T_{2}\right) \text { and } d^{+}\left(w, T_{2}\right)=p-1\right\} \cup \\
& A \cup B_{1},
\end{aligned}
$$

where

$$
\begin{aligned}
A & \in\{\{u v\},\{v u\}, \emptyset\} \text { and } \\
B_{1} & \subseteq\left\{w u \mid w \in V\left(T_{2}\right) \text { and } d^{+}\left(w, T_{2}\right)=p\right\} .
\end{aligned}
$$

In addition, we define $\mathcal{T}_{\text {in }}^{* *}$ as the set of all in-tournaments D with vertex set

$$
V(D)=V\left(T_{1}\right) \cup V\left(T_{2}\right) \cup\{u, v\}
$$

and arc set

$$
\begin{aligned}
E(D)= & E\left(T_{1}\right) \cup E\left(T_{2}\right) \cup\left\{u w \mid w \in V\left(T_{1}\right)\right\} \cup\left\{v w \mid w \in V\left(T_{2}\right)\right\} \cup \\
& \left\{w v \mid w \in V\left(T_{1}\right)\right\} \cup\left\{w u \mid w \in V\left(T_{2}\right) \text { and } d^{+}\left(w, T_{2}\right)=p-1\right\} \cup \\
& A \cup B_{1} \cup B_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
A & \in\{\{u v\},\{v u\}\}, \\
B_{1} & \subseteq\left\{w u \mid w \in V\left(T_{2}\right) \text { and } d^{+}\left(w, T_{2}\right)=p\right\} \text { and } \\
\emptyset \neq B_{2} & \subseteq\left\{u w \mid w \in V\left(T_{2}\right) \text { and } d^{+}\left(w, T_{2}\right)=p\right\} .
\end{aligned}
$$

It is easy to check that the classes defined in the examples above do not fulfill Theorems 1.9 and 1.10, respectively.
Remark 2.3. Let $D \in \mathcal{T}_{\text {loc }}^{*} \cup \mathcal{T}_{\text {loc }}^{* *} \cup \mathcal{T}_{\text {in }}^{*} \cup \mathcal{T}_{\text {in }}^{* *}$ be a digraph. Then u and v are the only separating vertices of D. In addition the following holds.
(a) If $D \in \mathcal{T}_{\text {loc }}^{*}$, then $|V(D)|=4 p$ and $\delta(D)=p$. Hence D does not fulfill the conclusion of Theorem 1.9.
(b) If $D \in \mathcal{T}_{\text {loc }}^{* *} \cup \mathcal{T}_{\text {in }}^{*} \cup \mathcal{T}_{\text {in }}^{* *}$, then $|V(D)|=4 p+1$ and $\delta(D)=p$. Hence D does not fulfill the conclusion of Theorem 1.10.

3 Preliminary results

The next results will be frequently used in our proof. The first one is a useful observation about the interaction of a cycle and an external vertex.

Theorem 3.1. (Bang-Jensen, Huang \& Prisner [2] 1993) Let D be an intournament and let $C=u_{1} u_{2} \ldots u_{s} u_{1}$ be a cycle in D. If $\left|N^{+}(x, C)\right| \geq 1$ for a vertex $x \notin V(C)$, then either $x \rightarrow C$ or $u_{i} \rightarrow x \rightarrow u_{i+1}$ for an integer $1 \leq i \leq s$.

In 1993, Bang-Jensen, Huang and Prisner [2] generalized the well known result that a tournament is strong if and only if it is Hamiltonian to in-tournaments.

Theorem 3.2 (Bang-Jensen, Huang \& Prisner [2] 1993). An in-tournament is strong if and only if it has a Hamiltonian cycle.

Under certain assumptions the number of nonseparating vertices of a digraph D can be bounded from below as follows.

Lemma 3.3. Let D be a strong digraph of order n and let q be an integer such that $1 \leq q \leq n-1$. Suppose that for every subset $X \subseteq V(D)$ with $1 \leq|X| \leq q$ there exists a cycle C of order $n-1$ in D such that $X \subseteq V(C)$. Then D contains at least $q+1$ vertices $x_{1}, x_{2}, \ldots, x_{q+1}$ such that $D-x_{i}$ is strong for $i=1,2, \ldots, q+1$.

Proof. Let $X=\{x \in V(D) \mid D-x$ is strong $\}$ be the set of nonseparating vertices of D. If $|X| \geq q+1$, there is nothing to show. So suppose to the contrary that $|X| \leq q$. By the assumption of this lemma, there exists an $(n-1)$-cycle C in D such that $X \subseteq V(C)$. Let $\{v\}=V(D)-V(C)$. On the one hand this implies that $v \notin X$, but on the other hand C is a Hamiltonian cycle of $D-v$ and thus, $D-v$ is strong. It follows that $v \in X$, a contradiction.

In the next result we summarize some simple, but useful, lower bounds for the order of digraphs in terms of minimum degree.

Lemma 3.4. Let D be a digraph of order n without cycles of length two and let $r \geq 1$ be an integer.
(a) If $d^{-}(x)+d^{+}(y) \geq r$ for every arc $x y$ of D, then $n \geq r+1$;
(b) If $\delta^{+}(D) \geq r$ or $\delta^{-}(D) \geq r$, then $n \geq 2 r+1$;
(c) If $\delta^{+}(D) \geq r$ and $\Delta^{+}(D) \geq r+1$ or if $\delta^{-}(D) \geq r$ and $\Delta^{-}(D) \geq r+1$, then $n \geq 2 r+2$.

The last lemma will be needed in the characterization of the exceptional classes.
Lemma 3.5. Let $p \geq 3$ and let D be an in-tournament on $2 p+1$ vertices with vertex set $W \cup\{u\}$, where $W=\left\{w_{1}, w_{2}, \ldots, w_{2 p}\right\}$, such that

$$
p-1 \leq \delta(D[W]), \Delta(D[W]) \leq p
$$

If $d^{+}(w, D[W])=p-1$ implies that $w \rightarrow u$ for every vertex $w \in W$, then $D[W]$ is a 2-connected tournament.

Proof. Firstly we will show that $D[W]$ is a tournament. Suppose, without loss of generality, that w_{1} and w_{2} are not adjacent. It follows that $d^{+}\left(w_{1}, D[W]\right)=$ $d^{+}\left(w_{2}, D[W]\right)=p-1$ and thus, $\left\{w_{1}, w_{2}\right\} \rightarrow u$ by our assumption. Using the intournament property of D, we conclude that w_{1} and w_{2} are adjacent, a contradiction. So $D[W]$ is a tournament.

Secondly we will show that $D[W]$ is 2 -connected. Suppose, without loss of generality, that w_{1} is a separating vertex of $D[W]$ and let $D_{1}, D_{2}, \ldots, D_{q}$ be the strong decomposition of $D[W]-w_{1}$, where $q \geq 2$. Then there exists a vertex $w \in V\left(D_{1}\right)$ and a vertex $w^{\prime} \in V\left(D_{q}\right)$ such that

$$
d^{+}(w, D[W]) \geq \frac{\left|V\left(D_{1}\right)\right|-1}{2}+\left|V\left(D_{2}\right)\right|+\ldots+\left|V\left(D_{q}\right)\right|
$$

and

$$
d^{+}\left(w^{\prime}, D[W]\right) \leq \frac{\left|V\left(D_{q}\right)\right|-1}{2}+1 .
$$

Since $p-1 \leq \delta(D[W]), \Delta(D[W]) \leq p$, it follows that $q \leq 3$ and $\left|V\left(D_{i}\right)\right|=1$ for $1 \leq i \leq q$, a contradiction to the assumption that $p \geq 3$. So $D[W]-w$ is strong for every vertex $w \in W$ which means that $D[W]$ is 2-connected.

4 Structure of in-tournaments with high minimum degree

In this section we investigate the structure of in-tournaments that fulfill the assumptions of Theorems 1.9 and 1.10. Throughout this section, let $p \geq 2$ be an integer and let D be a strongly connected in-tournament such that $\delta(D) \geq p$. Let X be a subset of $V(D)$ such that $\emptyset \neq X \neq V(D)$. Obviously D contains a strongly connected induced subdigraph D^{\prime} such that $V(D)-V\left(D^{\prime}\right)-X \neq \emptyset$ (any vertex $x \in X$ satisfies this condition). Assume now that we have chosen a strongly connected subdigraph D^{\prime} of D under the following conditions:
A. $V(D)-V\left(D^{\prime}\right)-X \neq \emptyset$,
B. under condition A: $\left|V\left(D^{\prime}\right) \cap X\right|$ is maximal and
C. under condition $\mathrm{B}:\left|V\left(D^{\prime}\right)\right|$ is maximal.

Note that, since D^{\prime} is a strongly connected in-tournament, the digraph D^{\prime} has a Hamiltonian cycle $C=v_{1} v_{2} \ldots v_{k} v_{1}$ according to Theorem 3.2 (if $k=1$, then, for the sake of simplicity, the single vertex v_{1} will in the following be called a Hamiltonian cycle). Let

$$
Y=V(D)-V(C)-X
$$

and define

$$
\begin{aligned}
X^{+} & =\left\{v \in X-V(C) \mid N^{-}(v, C) \neq \emptyset \text { and } N^{+}(v, C)=\emptyset\right\}, \\
X^{-} & =\{v \in X-V(C) \mid v \rightarrow C\}, \\
\hat{X} & =X-V(C)-X^{+}-X^{-}, \\
Y^{+} & =\left\{v \in Y-V(C) \mid N^{-}(v, C) \neq \emptyset \text { and } N^{+}(v, C)=\emptyset\right\}, \\
Y^{-} & =\{v \in Y-V(C) \mid v \rightarrow C\} \text { and } \\
\hat{Y} & =Y-Y^{+}-Y^{-} .
\end{aligned}
$$

Note that, according to these definitions,

$$
\begin{equation*}
N^{+}\left(X^{+}, C\right)=N^{-}\left(X^{-}, C\right)=N^{+}\left(Y^{+}, C\right)=N^{-}\left(Y^{-}, C\right)=\emptyset . \tag{1}
\end{equation*}
$$

Using this notation, we prove the following claims.
Claim 1. $\hat{X}=\left\{x \in X-V(C) \mid N^{+}(x, C)=N^{-}(x, C)=\emptyset\right\}$.
Proof. Suppose that there exists a vertex $x \in \hat{X}$ such that $N^{+}(x, C) \neq \emptyset$. Then, according to Theorem 3.1, either $x \rightarrow C$ or there exists a cycle C^{\prime} in D such that $V\left(C^{\prime}\right)=V(C) \cup\{x\}$. But the first possibility is a contradiction to the definition of \hat{X} and the latter possibility contradicts condition B of the choice of C. So $N^{+}(\hat{X}, C)=$ \emptyset.

Suppose that there exists a vertex $x \in \hat{X}$ such that $N^{-}(x, C) \neq \emptyset$. Note that $N^{+}(x, C)=\emptyset$ by the observations above. It follows that $x \in X^{+}$, a contradiction. So $N^{-}(\hat{X}, C)=\emptyset$.

Analogously to Claim 1, we can prove the following claim.
Claim 2. If $|Y| \geq 2$, then $N^{+}(\hat{Y}, C)=N^{-}(\hat{Y}, C)=\emptyset$.
Claim 3. $N^{+}\left(\hat{X}, X^{+}\right)=N^{+}\left(\hat{X}, Y^{+}\right)=\emptyset$.
Proof. Suppose that there exists an arc $x v$ such that $x \in \hat{X}$ and $v \in X^{+} \cup Y^{+}$. Then v has negative neighbors both in C and \hat{X}. Since D is an in-tournament, this is a contradiction to Claim 1. It follows that $N^{+}\left(\hat{X}, X^{+}\right)=N^{+}\left(\hat{X}, Y^{+}\right)=\emptyset$.

Using Claim 2, we can prove the following claim analogously to Claim 3.
Claim 4. If $|Y| \geq 2$, then $N^{+}\left(\hat{Y}, X^{+}\right)=N^{+}\left(\hat{Y}, Y^{+}\right)=\emptyset$.
Claim 5. $N^{+}\left(X^{+}, X^{-}\right)=\emptyset$.
Proof. Suppose that there exists an arc $x_{1} x_{2}$ such that $x_{1} \in X^{+}$and $x_{2} \in X^{-}$. Since $x_{1} \in X^{+}$, we may assume, without loss of generality, that $v_{k} \rightarrow x_{1}$. But then the cycle

$$
C\left[v_{1}, v_{k}\right] x_{1} x_{2} v_{1}
$$

yields a contradiction to condition B of the choice of C. So $N^{+}\left(X^{+}, X^{-}\right)=\emptyset$.

Claim 6. Let $u, w \in V(D)-V(C)$ be two vertices of D such that $w \rightarrow C$ and $N^{-}(u, C) \neq \emptyset$. If P is a path with initial vertex u and terminal vertex w, then $Y \subseteq V(P)$.

Proof. We may assume, without loss of generality, that $v_{k} \rightarrow u$. Suppose that $Y \nsubseteq V(P)$. Then the cycle

$$
v_{k} P C\left[v_{1}, v_{k}\right]
$$

yields a contradiction to condition C of the choice of C. So $Y \subseteq V(P)$.
Claim 7. $\left|Y^{+}\right|,\left|Y^{-}\right| \leq 1$.
Proof. Suppose that $\left|Y^{+}\right| \geq 2$. Let $P=z_{0} z_{1} \ldots z_{r}$ be a shortest path in D such that $z_{0} \in Y^{+}$and $N^{+}\left(z_{r}, C\right) \neq \emptyset$. Then $V(P) \cap Y^{+}=\left\{z_{0}\right\}$ and $z_{r} \in X^{-} \cup Y^{-}$, but $V(P) \nsubseteq Y$, a contradiction to Claim 6 .

Claim 8. If $\left|Y^{+}\right|=\left|Y^{-}\right|=1$, then $N^{+}\left(X^{+}, Y^{-}\right)=N^{+}\left(Y^{+}, X^{-}\right)=\emptyset$.
Proof. Suppose that there exists an arc $u w$ such that $u \in X^{+}$and $w \in Y^{-}$or $u \in Y^{+}$ and $w \in X^{-}$. We may assume, without loss of generality, that $v_{k} \rightarrow u$. Then

$$
C\left[v_{1}, v_{k}\right] u w v_{1}
$$

contradicts condition B of the choice of C. So $N^{+}\left(X^{+}, Y^{-}\right)=N^{+}\left(Y^{+}, X^{-}\right)=\emptyset$.
Claim 9. Let D be a strong in-tournament and let $C, X^{+}, X^{-}, \hat{X}, X, Y^{+}, Y^{-}, \hat{Y}, Y$ be defined as above. Let $X-V(C) \neq \emptyset$. If $|Y| \geq 2$, then $X^{+} \cup Y^{+} \neq \emptyset$ and $X^{-} \cup Y^{-} \neq \emptyset$.
Proof. Assume to the contrary that $X^{-} \cup Y^{-}=\emptyset$. Note that, according to Claim 7, $\left|Y^{+}\right|,\left|Y^{-}\right| \leq 1$ and, according to Claim $1, N^{+}(\hat{X}, C)=\emptyset$. Since $|Y| \geq 2$ and $Y^{-}=\emptyset$, we conclude that $\hat{Y} \neq \emptyset$. Since D is strong, it follows that $N^{+}(\hat{Y}, C) \neq \emptyset$, a contradiction to Claim 2. So $X^{-} \cup Y^{-} \neq \emptyset$. We can analogously show that $X^{+} \cup Y^{+} \neq \emptyset$.
Claim 10. If $X \subseteq V(C)$, then $V(D)-V(C)=\hat{Y}$ and $|\hat{Y}|=1$.
Proof. We consider five cases depending on Y.
Case 1. Suppose that $\left|Y^{+}\right|=\left|Y^{-}\right|=1$ and $\hat{Y} \neq \emptyset$. Since D is strong, there exists an $Y^{+}-Y^{-}$-path in D. Let $P=y_{0} y_{1} \ldots y_{s}$ be a shortest such path. It follows that $V(P)=Y$ by Claim 6. But then, since $y_{0} \in Y^{+}$and because of the choice of P, it follows that $N^{+}\left(y_{0}\right)=\left\{y_{1}\right\}$ which contradicts $\delta^{+}(D) \geq 2$.

Case 2. Suppose that $\left|Y^{+}\right|=\left|Y^{-}\right|=1$ and $\hat{Y}=\emptyset$. Let $Y^{+}=\left\{y_{1}\right\}$ and $Y^{-}=\left\{y_{2}\right\}$. Then $d^{+}\left(y_{1}\right), d^{-}\left(y_{2}\right) \leq 1$, a contradiction.

Case 3. Suppose that $\left|Y^{+}\right|=1, Y^{-}=\emptyset$ and $\hat{Y} \neq \emptyset$ or $\left|Y^{-}\right|=1, Y^{+}=\emptyset$ and $\hat{Y} \neq \emptyset$. By Claim $4 N^{+}(\hat{Y}, C)=N^{-}(\hat{Y}, C)=\emptyset$ and thus, D is not strong, a contradiction.

Case 4. Suppose that $\left|Y^{+}\right|=1$ and $Y^{-}=\hat{Y}=\emptyset$ or $\left|Y^{-}\right|=1$ and $Y^{+}=\hat{Y}=\emptyset$. It follows that D is not strong, again a contradiction.

Case 5. Suppose that $Y^{+}=Y^{-}=\emptyset$ and $\hat{Y} \neq \emptyset$. Since D is strong, we conclude that $N^{+}(\hat{Y}, C) \neq \emptyset$ and $N^{-}(\hat{Y}, C) \neq \emptyset$. By Claim 4 it follows that $|\hat{Y}|=1$ which completes the proof of this lemma.

5 Applications of the structural results

In this section we characterize $\mathcal{T}_{l o c}^{*}$ and $\mathcal{T}_{l o c}^{* *}$ as the classes of local tournaments that are exceptions for the conclusions of Theorem 1.9 and Theorem 1.10, respectively. Furthermore we characterize $\mathcal{T}_{i n}^{*}$ and $\mathcal{T}_{i n}^{* *}$ as the classes of in-tournaments that are exceptions for the conclusion of Theorem 1.10.

For the rest of this section let D be a strongly connected in-tournament and let $C, X^{+}, X^{-}, \hat{X}, X, Y^{+}, Y^{-}, \hat{Y}, Y$ be defined as in Section 4. Furthermore, let $\delta(D) \geq$ $p \geq 2$. Using the preparatory structural results of Section 4, we show the following results.

Lemma 5.1. Let $X-V(C) \neq \emptyset$. If $|X|=|V(D)|-1$, then $|X| \geq 4 p-2$.
Proof. Note that $V(C) \subseteq X$ by condition A of the choice of C. Let $V(D)-X=$ $Y=\{y\}$.

Case 1: Suppose that $X^{+} \neq \emptyset$ and $X^{-} \neq \emptyset$. We define the sets
$A=\left\{v \in V(D) \mid\right.$ there exists a path leading from X^{+}to v in $\left.D-y\right\}$ and
$B=\left\{v \in V(D) \mid\right.$ there exists a path leading from v to X^{-}in $\left.D-y\right\}$.
Note that $A \subseteq X^{+} \cup \hat{X}$ and $B \subseteq X^{-} \cup \hat{X}$. Furthermore, $A \cap B=\emptyset$ by Claim 6. In addition, $N^{+}(A)-A \subseteq\{y\}$ and $N^{-}(B)-B \subseteq\{y\}$. Using Lemma 3.4(b), it follows that $|A|,|B| \geq 2 p-1$ and thus,

$$
|X| \geq|A|+|B| \geq 4 p-2
$$

Case 2: Suppose that $X^{+}=\emptyset$. In order to show that $|V(C)| \geq 2 p-1$ we consider the three subcases $Y=\hat{Y}, Y=Y^{+}$and $Y=Y^{-}$.

Subcase 2.1: Suppose that $Y=\hat{Y}$. By (1) and Claim 1, it follows that $N^{+}(C)-$ $V(C) \subseteq\{y\}$. Using Lemma 3.4(b), we conclude that $|V(C)| \geq 2 p-1$.

Subcase 2.2: Suppose that $Y=Y^{+}$. By Claim 1, it follows that $N^{+}(C, \hat{X})=\emptyset$ and thus, $N^{+}(C)-V(C) \subseteq\{y\}$. Using Lemma 3.4(b), we conclude that $|V(C)| \geq$ $2 p-1$.

Subcase 2.3: Suppose that $Y=Y^{-}$. We derive $N^{+}(C) \subseteq V(C)$, a contradiction to the assumption that D is strong.

Note that $N^{-}\left(X^{-}, C\right)=\emptyset$ by definition and $N^{-}(\hat{X}, C)=\emptyset$ by Claim 1. Hence $N^{-}\left(X^{-} \cup \hat{X}\right)-\left(X^{-} \cup \hat{X}\right) \subseteq\{y\}$. Using Lemma 3.4(b), it follows that $\left|X^{-} \cup \hat{X}\right| \geq 2 p-1$ and thus,

$$
|X| \geq|V(C)|+\left|X^{+} \cup \hat{X}\right| \geq 4 p-2
$$

The case $X^{-}=\emptyset$ can be solved analogously to Case 2 which completes the proof of this lemma.

Lemma 5.2. Let $|X| \leq|V(D)|-2$ and $X-V(C) \neq \emptyset$.
(a) If $\delta(D) \geq p \geq 2$, then
(i) $|X| \geq 4 p-1$ or
(ii) $|X|=4 p-2$ and $D \in \mathcal{T}_{l o c}^{*}$.
(b) If $\delta(D) \geq p \geq 3$, then
(i) $|X| \geq 4 p$ or
(ii) $|X|=4 p-1$ and $D \in \mathcal{T}_{\text {in }}^{*} \cup \mathcal{T}_{\text {in }}^{* *} \cup \mathcal{T}_{\text {loc }}^{* *}$ or
(iii) $|X|=4 p-2$ and $D \in \mathcal{T}_{\text {loc }}^{*}$.

The proof of the above lemma is rather lengthy and is therefore divided in several cases (see below).

Proof of Lemma 5.2. Recall that $|Y| \geq 1$. If $|Y|=1$, we conclude $|V(C)-X| \geq 1$, since $|X| \leq|V(D)|-2$. If $|Y| \geq 2$, we derive by Claim 9 that $X^{+} \cup Y^{+} \neq \emptyset$ and $X^{-} \cup Y^{-} \neq \emptyset$. We will now consider several cases as follows.

1: $X^{+} \cup Y^{+} \neq \emptyset$ and $X^{-} \cup Y^{-} \neq \emptyset$
1.1: $\hat{Y}=\emptyset$ (Note: this implies $Y^{+} \cup Y^{-} \neq \emptyset$, since $Y \neq \emptyset$)
1.1.1: $X^{+} \neq \emptyset$ and $Y^{+} \neq \emptyset$
1.1.2: $X^{-} \neq \emptyset$ and $Y^{-} \neq \emptyset$
1.1.3: $Y^{+} \neq \emptyset$ and $Y^{-} \neq \emptyset$ (Note: this implies $X^{+}=X^{-}=\emptyset$ by 1.1.1 and 1.1.2 and hence, $\hat{X} \neq \emptyset)$
1.1.4: $Y^{+} \neq \emptyset$ and $Y^{-}=\emptyset$ (Note: this implies $X^{+}=\emptyset$ by 1.1.1 and $X^{-} \neq \emptyset$, since $\left.X^{-} \cup Y^{-} \neq \emptyset\right)$
1.1.5: $Y^{+}=\emptyset$ and $Y^{-} \neq \emptyset$ (Note: this implies $X^{+} \neq \emptyset$, since $X^{+} \cup Y^{+} \neq \emptyset$, and $X^{-}=\emptyset$ by 1.1.2)
1.2: $|\hat{Y}|=1$
1.3: $|\hat{Y}| \geq 2$

2: $X^{+} \cup Y^{+} \neq \emptyset$ and $X^{-} \cup Y^{-}=\emptyset$
3: $X^{+} \cup Y^{+}=\emptyset$ and $X^{-} \cup Y^{-} \neq \emptyset$
Case 1.1.1: Let $Y^{+}=\{y\}$. We define the sets
$A=\left\{v \in V(D) \mid\right.$ there exists a path leading from X^{+}to v in $\left.D-y\right\}$ and $B=\left\{v \in V(D) \mid\right.$ there exists a path leading from v to $X^{-} \cup Y^{-}$in $\left.D-y\right\}$.

Note that $A \subseteq X^{+} \cup \hat{X}$ and $B-Y^{-} \subseteq X^{-} \cup \hat{X}$. Furthermore, $A \cap B=\emptyset$ by Claim 6. Let $A_{1}, A_{2}, \ldots, A_{q}$ be an acyclic ordering of the strong components of $D[A]$, where $q \geq 1$, and let $B_{1}, B_{2}, \ldots, B_{r}$ be an acyclic ordering of the strong components of $D[B]$, where $r \geq 1$. Then $N^{+}\left(A_{q}\right)-V\left(A_{q}\right) \subseteq\{y\}$ and thus, $\left|V\left(A_{q}\right)\right| \geq 2 p-1$ by Lemma 3.4(b). Analogously, $N^{-}\left(B_{1}\right)-V\left(B_{1}\right) \subseteq\{y\}$ and thus, $\left|V\left(B_{1}\right)\right| \geq 2 p-1$ by

Lemma 3.4(b). Let C_{q} be a Hamiltonian cycle of A_{q}. Then $V(D)-V\left(C_{q}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C_{q}\right) \cap X\right| \geq 3$ by choice of C. It follows that

$$
|X| \geq|V(C) \cap X|+\left|V\left(A_{q}\right)\right|+\left|V\left(B_{1}\right)-Y^{-}\right| \geq 4 p
$$

Case 1.1.2: This case can be solved analogously to Case 1.1.1.
Case 1.1.3: Let $Y^{+}=\left\{y_{1}\right\}$ and $Y^{-}=\left\{y_{2}\right\}$. Let $D_{1}, D_{2}, \ldots, D_{q}$ be an acyclic ordering of the strong components of $D[\hat{X}]$, where $q \geq 1$. Then $N^{+}\left(D_{q}\right)-V\left(D_{q}\right) \subseteq$ $\left\{y_{2}\right\}$ and thus, $\left|V\left(D_{q}\right)\right| \geq 2 p-1$ by Lemma $3.4(\mathrm{~b})$ and $\left|V\left(D_{q}\right)\right| \geq 2 p$ if $D_{q} \nrightarrow y_{2}$ by Lemma 3.4(c). Let C_{q} be a Hamiltonian cycle of D_{q}. Then $V(D)-V\left(C_{q}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C_{q}\right) \cap X\right|$ by choice of C. If $\left|V\left(D_{q}\right)\right| \geq 2 p$ or if $q \geq 3$ or if $q=2$ and $\left|V\left(D_{1}\right)\right| \geq 3$, it follows that $|X| \geq 4 p$. So it remains to check the cases $q=2,\left|V\left(D_{2}\right)\right|=2 p-1$ and $\left|V\left(D_{1}\right)\right|=1$ (Subcase 1.1.3.1) and $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$ (Subcase 1.1.3.2). Note that $D_{q} \rightarrow y_{2}$, since $\left|V\left(D_{q}\right)\right|=2 p-1$.

Subcase 1.1.3.1: Suppose that $q=2,\left|V\left(D_{2}\right)\right|=2 p-1$ and $\left|V\left(D_{1}\right)\right|=1$. Let $V\left(D_{1}\right)=\{x\}$. Note that $N^{+}(\hat{X}, C)=N^{+}\left(\hat{X}, Y^{+}\right)=\emptyset$ by Claims 1 and 3. It follows that $N^{+}\left(x, D_{2}\right) \neq \emptyset$ and hence $x \rightarrow D_{2}$. Since $N^{-}(\hat{X}, C)=\emptyset$ by Claim 1 and $\delta(D) \geq 2$, it follows that $\left\{y_{1}, y_{2}\right\} \rightarrow x$. Let

$$
C^{\prime}=x C_{2} y_{2} x
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(C^{\prime}\right) \cap X\right| \geq 4 p
$$

Subcase 1.1.3.2: Suppose that $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$. Note that $N^{-}(\hat{X}, C)=$ \emptyset by Claim 1. The latter together with Lemma 3.4(c) implies that $y_{1} \rightarrow D_{1}$.

Subcase 1.1.3.2.1: Suppose that $\left|N^{-}\left(y_{1}, C\right)\right| \geq 2$. We may assume, without loss of generality, that $\left\{v_{i}, v_{k}\right\} \rightarrow y_{1}$, where $1 \leq i \leq k-1$. If $V\left(C\left[v_{1}, v_{i}\right]\right)-X \neq$ \emptyset and $V\left(C\left[v_{i+1}, v_{k}\right]\right)-X \neq \emptyset$, we may assume, without loss of generality, that $\left|V\left(C\left[v_{1}, v_{i}\right]\right) \cap X\right| \geq 2$. Let

$$
C^{\prime}=y_{1} C_{1} y_{2} C\left[v_{1}, v_{i}\right] y_{1}
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right|$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq\left|V\left(C^{\prime}\right) \cap X\right|+\left|V\left(D_{1}\right)\right| \geq 2\left|V\left(D_{1}\right)\right|+2=4 p
$$

So assume that $V\left(C\left[v_{1}, v_{i}\right]\right) \subseteq X$.
If $V(C) \nsubseteq X$, we consider

$$
C^{*}=y_{1} C_{1} y_{2} C\left[v_{1}, v_{i}\right] y_{1} .
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq\left|V\left(D_{1}\right)\right|+$ $\left|V\left(C\left[v_{1}, v_{i}\right]\right)\right|$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 2\left|V\left(D_{1}\right)\right|+\left|V\left(C\left[v_{1}, v_{i}\right]\right)\right|=4 p-2+\left|V\left(C\left[v_{1}, v_{i}\right]\right)\right| .
$$

So it remains to consider the case that $p \geq 3$ and $i=1$. If $v_{k} \in X$, let

$$
\hat{C}=y_{1} C_{1} y_{2} v_{k} v_{1} y_{1} .
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq\left|V\left(D_{1}\right)\right|+2=2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

So assume that $v_{k} \notin X$. Since $\delta(D) \geq 3$, there exists an arc $v_{j} y_{1}$ in D, where $j \neq k$. Then either $\left|V\left(C\left[v_{1}, v_{j}\right]\right) \cap X\right| \geq 2$ and $V\left(C\left[v_{j+1}, v_{k}\right]\right)-X \neq \emptyset$ or $\mid V\left(C\left[v_{j+1}, v_{k}\right]\right) \cap$ $X \mid \geq 2$ and $V\left(C\left[v_{1}, v_{j}\right]\right)-X \neq \emptyset$. We may assume, without loss of generality, that the former holds. Let

$$
\tilde{C}=y_{1} C_{1} y_{2} C\left[v_{1}, v_{j}\right] y_{1}
$$

Then $V(D)-V(\tilde{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\tilde{C}) \cap X| \geq\left|V\left(D_{1}\right)\right|+2=2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

If $V(C) \subseteq X$, note that D_{1} induces a $(p-1)$-regular tournament in D. Furthermore, note that $N^{+}(C)-V(C) \subseteq\left\{y_{1}\right\}$. So $|V(C)| \geq 2 p-1$ by Lemma $3.4(\mathrm{~b})$ and $|V(C)| \geq 2 p$ if $C \nrightarrow y_{1}$ by Lemma 3.4(c). If $|V(C)|=2 p-1$, it follows that $C \rightarrow y_{1}$. Since $\delta(D) \geq p$, the cycle C induces a ($p-1$)-regular tournament in D and thus, D is a member of $\mathcal{T}_{\text {loc }}^{*}$. If $|V(C)|=2 p$, the cycle C induces a tournament T in D such that $p-1 \leq \delta(T), \Delta(T) \leq p$. So if $C \rightarrow y_{1}$, the digraph D is a local tournament and a member of $\mathcal{T}_{l o c}^{* *}$. If $C \nrightarrow y_{1}$, the digraph D is not a local tournament and with the help of Lemma 3.5 we conclude that D is a member of $\mathcal{T}_{i n}^{*}$.

Subcase 1.1.3.2.2: Suppose that $\left|N^{-}\left(y_{1}, C\right)\right|=1$. We conclude that $y_{2} \rightarrow y_{1}$ and $p=2$. If $|V(C) \cap X| \geq 2 p=4$, it follows that $|X| \geq 4 p-1=7$. So assume that $|V(C) \cap X|=\left|V\left(D_{1}\right)\right|=2 p-1=3$. Let, without loss of generality, v_{k} be the negative neighbor of y_{1} on C. If there exists a vertex $v_{i} \in V(C) \cap X$ such that $V\left(C\left[v_{1}, v_{i-1}\right]\right)-X \neq \emptyset$, we consider the cycle

$$
C^{\prime}=y_{1} C_{1} y_{2} C\left[v_{i}, v_{k}\right] y_{1}
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq\left|V\left(D_{1}\right)\right|+1=4$ by choice of C, a contradiction. So $V(C) \cap X=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $v_{i} \notin X$ for every index $4 \leq i \leq k$. Note that $k \geq 4$. If D has an arc $v_{i} v_{j}$, where $1 \leq i \leq 3$ and $5 \leq j \leq k$, we consider the cycle

$$
C^{*}=y_{1} C_{1} y_{2} v_{i} C\left[v_{j}, v_{k}\right] y_{1} .
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq\left|V\left(D_{1}\right)\right|+1=4$ by choice of C, a contradiction. So $N^{+}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)-\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq\left\{v_{4}\right\}$ and thus, $\left\{v_{1}, v_{2}\right\} \rightarrow v_{4}$ and $v_{3} \rightarrow v_{1}$. The latter implies that $v_{k} \rightarrow v_{3}$ and hence $k>4$. Since $\left\{v_{1}, v_{2}, v_{3}\right\} \rightarrow v_{4}$, it follows that there is an arc $v_{4} v_{j}$, where $5<j \leq k$. Let

$$
\hat{C}=y_{1} C_{1} y_{2} C\left[v_{1}, v_{4}\right] C\left[v_{j}, v_{k}\right] y_{1} .
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq\left|V\left(D_{1}\right)\right|+3=6$ by choice of C, the final contradiction.

Case 1.1.4: Let $Y^{+}=\{y\}$. Note that $N^{-}\left(X^{-} \cup \hat{X}\right)-\left(X^{-} \cup \hat{X}\right) \subseteq\{y\}$. Let $D_{1}, D_{2}, \ldots, D_{q}$ be an acyclic ordering of the strong components of $D\left[X^{-} \cup \hat{X}\right]$, where $q \geq 1$. Then $N^{-}\left(D_{1}\right)-V\left(D_{1}\right) \subseteq\{y\}$ and thus, $\left|V\left(D_{1}\right)\right| \geq 2 p-1$ by Lemma 3.4(b) and $\left|V\left(D_{1}\right)\right| \geq 2 p$ if $y \nrightarrow D_{1}$ by Lemma 3.4(c). Let C_{1} be a Hamiltonian cycle of D_{1}. Then $V(D)-V\left(C_{1}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C_{1}\right) \cap X\right|$ by choice of C. If $\left|V\left(D_{1}\right)\right| \geq 2 p$ or if $q \geq 3$ or if $q=2$ and $\left|V\left(D_{1}\right)\right| \geq 3$, it follows that $|X| \geq 4 p$. So it remains to check the cases $q=2,\left|V\left(D_{1}\right)\right|=2 p-1$ and $\left|V\left(D_{2}\right)\right|=1$ (Subcase 1.1.4.1) and $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$ (Subcase 1.1.4.2). Note that $y \rightarrow D_{1}$, since $\left|V\left(D_{1}\right)\right|=2 p-1$.

Subcase 1.1.4.1: Suppose that $q=2,\left|V\left(D_{1}\right)\right|=2 p-1$ and $\left|V\left(D_{2}\right)\right|=1$. Let $V\left(D_{2}\right)=\left\{x_{2}\right\}$. Since $d^{+}\left(x_{2}\right) \geq 2$, it follows that D has an arc leading from x_{2} to C. So $x_{2} \in X^{-}$and hence, $x_{2} \rightarrow C$. Since $d^{-}\left(x_{2}\right) \geq 2$, it follows that D has an arc leading from D_{1} to x_{2}, say $x_{1} x_{2}$. If $x_{2} \rightarrow y$, let

$$
C^{\prime}=y C_{1}\left[x_{1}^{+}, x_{1}\right] x_{2} y .
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right|=2 p$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right|+1 \geq 4 p
$$

If $x_{2} \nrightarrow y$, the vertex y has at least two negative neighbors on C. We may assume, without loss of generality, that $\left\{v_{i}, v_{k}\right\} \rightarrow y$, where $1 \leq i \leq k-1$. Since $|V(C) \cap X| \geq$ 3 and $V(C)-X \neq \emptyset$, we may assume, without loss of generality, that $\mid V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap$ $X \mid \geq 1$ and $V\left(C\left[v_{1}, v_{i}\right]\right)-X \neq \emptyset$. Let

$$
C^{*}=y C_{1}\left[x_{1}^{+}, x_{1}\right] x_{2} C\left[v_{i+1}, v_{k}\right] y .
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right|+1 \geq 4 p+1
$$

Subcase 1.1.4.2: Suppose that $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$. The latter together with Lemma 3.4(c) implies that every vertex of D_{1} has at least one positive neighbor on C. So $D_{1} \rightarrow C$. Recall that y has at least $p \geq 2$ negative neighbors on C.

Subcase 1.1.4.2.1: Suppose that $p=2$. Let, without loss of generality, $\left\{v_{i}, v_{k}\right\} \rightarrow$ y, where $1 \leq i \leq k-1$. Since $V(C)-X \neq \emptyset$ and $|V(C) \cap X| \geq 2 p-1=$ 3, we may assume, without loss of generality, that $\left|V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X\right| \geq 1$ and $V\left(C\left[v_{1}, v_{i}\right]\right)-X \neq \emptyset$. Let

$$
C^{\prime}=y C_{1} C\left[v_{i+1}, v_{k}\right] y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p=4$ by choice of C. Hence

$$
|X|=\left|V\left(D_{1}\right)\right|+|V(C) \cap X| \geq 4 p-1=7
$$

Subcase 1.1.4.2.2: Suppose that $p \geq 3$. We may assume, without loss of generality, that $\left\{v_{i}, v_{j}, v_{k}\right\} \rightarrow y$, where $1 \leq i<j \leq k-1$. Since $|V(C) \cap X| \geq 3$ and $V(C)-X \neq \emptyset$, we may assume, without loss of generality, that $\left|V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X\right| \geq$ 2 and $V\left(C\left[v_{1}, v_{i}\right]\right)-X \neq \emptyset$. Let

$$
C^{*}=y C_{1} C\left[v_{i+1}, v_{k}\right] y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=\left|V\left(D_{1}\right)\right|+|V(C) \cap X| \geq 4 p
$$

Case 1.1.5: Let $Y^{-}=\{y\}$. Note that $N^{+}\left(X^{+} \cup \hat{X}\right)-\left(X^{+} \cup \hat{X}\right) \subseteq\{y\}$. Let $D_{1}, D_{2}, \ldots, D_{q}$ be an acyclic ordering of the strong components of $D\left[X^{+} \cup \hat{X}\right]$, where $q \geq 1$. Then $N^{+}\left(D_{q}\right)-V\left(D_{q}\right) \subseteq\{y\}$ and thus, $\left|V\left(D_{q}\right)\right| \geq 2 p-1$ by Lemma 3.4(b) and $\left|V\left(D_{q}\right)\right| \geq 2 p$ if $D_{q} \nrightarrow y$ by Lemma 3.4(c). Let C_{q} be a Hamiltonian cycle of D_{q}. Then $V(D)-V\left(C_{q}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C_{q}\right) \cap X\right|$ by choice of C. If $\left|V\left(D_{q}\right)\right| \geq 2 p$ or if $q \geq 3$ or if $q=2$ and $\left|V\left(D_{q}\right)\right| \geq 3$, it follows that $|X| \geq 4 p$. So it remains to check the cases $q=2,\left|V\left(D_{2}\right)\right|=2 p-1$ and $\left|V\left(D_{1}\right)\right|=1$ (Subcase 1.1.5.1) and $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$ (Subcase 1.1.5.2). Note that $D_{q} \rightarrow y$, since $\left|V\left(D_{q}\right)\right|=2 p-1$.

Subcase 1.1.5.1: Suppose that $q=2,\left|V\left(D_{2}\right)\right|=2 p-1$ and $\left|V\left(D_{1}\right)\right|=1$. Let $V\left(D_{1}\right)=\{x\}$. Since $d^{+}(x) \geq 2$, it follows that D has an arc leading from x to D_{2}. Hence $x \rightarrow D_{2}$.

If $y \rightarrow x$, let

$$
C^{\prime}=y x C_{2} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right|=2 p$. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(D_{2}\right)\right|+1 \geq 4 p
$$

If $y \nrightarrow x$, the vertex x has at least two negative neighbors on C. Let, without loss of generality, $\left\{v_{i}, v_{k}\right\} \rightarrow x$, where $1 \leq i \leq k-1$. Since $|V(C) \cap X| \geq 3$ and $V(C)-X \neq \emptyset$, we may assume, without loss of generality, that $\left|V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X\right| \geq$ 1 and $V\left(C\left[v_{1}, v_{i}\right]\right)-X \neq \emptyset$. Let

$$
C^{*}=y C\left[v_{i+1}, v_{k}\right] x C_{2} y .
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{2}\right)\right|+1 \geq 4 p+1
$$

Subcase 1.1.5.2: Suppose that $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$. The latter together with Lemma 3.4(c) yields that every vertex of D_{1} has at least one negative neighbor on C. Note that $N^{-}\left(D_{1}, C\right) \rightarrow D_{1}$. Let, without loss of generality, $v_{k} \rightarrow D_{1}$.

Assume that there exists a vertex $v_{i} \in V(C)-X$ such that $\left|V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X\right| \geq$ 2. Let

$$
C^{\prime}=y C\left[v_{i+1}, v_{k}\right] C_{1} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right|=2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(D_{2}\right)\right| \geq 4 p
$$

So assume the contrary. That means that C has the following structure. Let $i=\min \left\{j \mid v_{j} \notin X\right\}$ be the minimal index such that v_{i} is not in X. Then there is at most one vertex on $C\left[v_{i+1}, v_{k}\right]$ that belongs to X, that is $\left|V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X\right| \leq 1$.

Subcase 1.1.5.2.1: Suppose that $i=k$. Then $V(C)-X=\left\{v_{k}\right\}$.
If there exists an index j such that $2 \leq j \leq k-1$ and $v_{j} \rightarrow D_{1}$, let

$$
C^{\prime}=y C\left[v_{1}, v_{j}\right] C_{1} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq\left|V\left(D_{1}\right)\right|+2=$ $2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

If $v_{1} \rightarrow D_{1}$, let

$$
C^{*}=y v_{1} C_{1} y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq\left|V\left(D_{1}\right)\right|+1=2 p$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p-1
$$

and it remains to consider the case that $p \geq 3$. In this case v_{1} has a negative neighbor $v_{r} \neq v_{k}$ on C. Let

$$
\hat{C}=y v_{r} v_{1} C_{1} y
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq\left|V\left(D_{1}\right)\right|+2=2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

So $v_{j} \nrightarrow D_{1}$ for every index j with $1 \leq j \leq k-1$. Since $N^{+}(V(C) \cap X)-X \subseteq\left\{v_{k}\right\}$ and $v_{k} \rightarrow v_{1} \in X$, it follows that $|V(C) \cap X| \geq 2 p$ by Lemma 3.4(c). So if $|X|=4 p-1$ we conclude by Lemma 3.5 that D is a member of $\mathcal{T}_{i n}^{* *}$.

Subcase 1.1.5.2.2: Suppose that $i \neq k$ and $V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X=\emptyset$. We conclude that $|V(C)-X| \geq 2$.

If D has an $\operatorname{arc} v_{j} v_{k}$, where $j \neq k-1$, let

$$
C^{\prime}=y C\left[v_{1}, v_{j}\right] v_{k} C_{1} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

So $N^{-}\left(v_{k}, C\right)=\left\{v_{k-1}\right\}$ which implies that $p=2$. It suffices to show that $\mid V(C) \cap$ $X \mid \geq 4$. So assume to the contrary that $V(C) \cap X=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $i=4$. Note that $N^{+}\left(\left\{v_{1}, v_{2}, v_{3}\right\}, C\right)-\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq\left\{v_{4}\right\}$.

If $v_{j} \rightarrow D_{1}$ for an index $j \in\{1,2,3\}$, let

$$
C^{*}=y C\left[v_{1}, v_{j}\right] C_{1} y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 4$ by choice of C, a contradiction.

So $N^{+}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)-\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq\left\{v_{4}\right\}$. It follows that $v_{3} \rightarrow v_{1}$ and $\left\{v_{1}, v_{2}, v_{3}\right\} \rightarrow$ v_{4}. Then v_{4} has a positive neighbor v_{j} on C, where $j \geq 6$. Let

$$
\hat{C}=y C\left[v_{1}, v_{4}\right] C\left[v_{j}, v_{k}\right] C_{1} y
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq 6$, again a contradiction.

Subcase 1.1.5.2.3: Suppose that $i \neq k$ and $V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X=\{x\}$.
Assume that $x \neq v_{k}$. If $N^{-}\left(D_{1}, C\right) \neq\left\{v_{k}\right\}$, let $v_{j} \rightarrow D_{1}$, where $j \neq k$. If $1 \leq j \leq i-1$, let

$$
C^{\prime}=y C\left[x, v_{j}\right] C_{1} y
$$

and if $i \leq j \leq k-1$, let

$$
C^{\prime}=y C\left[v_{1}, v_{j}\right] C_{1} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

So $N^{-}\left(D_{1}, C\right)=\left\{v_{k}\right\}$. We show that $p=2$. If $v_{k-1}=x$, assume that v_{k-1} has a negative neighbor $v_{j} \neq v_{k-2}$ on C. Let

$$
C^{*}=y C\left[v_{1}, v_{j}\right] v_{k-1} v_{k} C_{1} y .
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

So $\left|N^{-}\left(v_{k-1}, C\right)\right|=1$ and thus, $p=2$. If $v_{k-1} \neq x$, assume that v_{k} has a negative neighbor $v_{j} \neq v_{k-1}$ on C. Let

$$
\hat{C}=y C\left[v_{1}, v_{j}\right] v_{k} C_{1} y .
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

So $\left|N^{-}\left(v_{k}, C\right)\right|=1$ and thus, $p=2$. Therefore it remains to show that $|X| \geq$ $4 p-1=7$. Let $A=V\left(C\left[v_{1}, v_{i-1}\right]\right)$. Note that $A \subseteq X$ and $|V(C) \cap X|=|A|+1$. If there is a vertex $v_{j} \in A$ that has a positive neighbor $v_{r} \in V(C)-A$ besides v_{i}, let

$$
\tilde{C}=y C\left[v_{1}, v_{j}\right] C\left[v_{r}, v_{k}\right] C_{1} y
$$

Then $V(D)-V(\tilde{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\tilde{C}) \cap X| \geq 2 p=4$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p-1=7
$$

So $N^{+}(A)-A \subseteq\left\{v_{i}\right\}$ and thus, $|A| \geq 2 p-1=3$ by Lemma 3.4(b). It follows that

$$
|X| \geq|A|+1+\left|V\left(D_{1}\right)\right| \geq 4 p-1=7
$$

Assume that $x=v_{k}$. Let $A=V\left(C\left[v_{1}, v_{i-1}\right]\right)$. Note that $A \subseteq X$ and $|V(C) \cap X|=$ $|A|+1$. If there is a vertex $v_{j} \in A$ that has a positive neighbor $v_{r} \in V(C)-A$ besides v_{i}, let

$$
C^{\prime}=y C\left[v_{1}, v_{j}\right] C\left[v_{r}, v_{k}\right] C_{1} y .
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

If there is a vertex $v_{j} \in A$ that dominates D_{1}, let

$$
C^{*}=y C\left[v_{k}, v_{j}\right] C_{1} y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

So $N^{+}(A)-A \subseteq\left\{v_{i}\right\}$ and thus, $|A| \geq 2 p-1$ by Lemma 3.4(b). Hence

$$
|X| \geq|A|+1+\left|V\left(D_{1}\right)\right| \geq 4 p-1
$$

It remains to check the case $p \geq 3$. In this case D has an arc $v_{j} v_{k}$, where $j \neq k-1$. Let

$$
\hat{C}=y C\left[v_{1}, v_{j}\right] v_{k} C_{1} y .
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

Case 1.2: Let $\hat{Y}=\{y\}$. Similar to the case $\hat{Y}=\emptyset$, we define

$$
\begin{aligned}
& A=\left\{v \in V(D) \mid \text { there exists a path leading from } X^{+} \cup Y^{+} \text {to } v \text { in } D-y\right\} \text { and } \\
& B=\left\{v \in V(D) \mid \text { there exists a path leading from } v \text { to } X^{-} \cup Y^{-} \text {in } D-y\right\} .
\end{aligned}
$$

Note that $A \subseteq X^{+} \cup Y^{+} \cup \hat{X}, B \subseteq X^{-} \cup Y^{-} \cup \hat{X}$ and $A \cap B=\emptyset$ by Claim 6. Let $A_{1}, A_{2}, \ldots, A_{q}$ be an acyclic ordering of the strong components of $D[A]$, where $q \geq 1$. Then $N^{+}\left(A_{q}\right)-V\left(A_{q}\right) \subseteq\{y\}$ and thus, $\left|V\left(A_{q}\right)\right| \geq 2 p-1$ by Lemma 3.4(b) and $\left|V\left(A_{q}\right)\right| \geq 2 p$ if $A_{q} \nrightarrow y$ by Lemma 3.4(c). Analogously, let $B_{1}, B_{2}, \ldots, B_{r}$ be an acyclic ordering of the strong components of $D[B]$, where $r \geq 1$. Then $N^{-}\left(B_{1}\right)-$ $V\left(B_{1}\right) \subseteq\{y\}$ and thus, $\left|V\left(B_{1}\right)\right| \geq 2 p-1$ by Lemma $3.4(\mathrm{~b})$ and $\left|V\left(B_{1}\right)\right| \geq 2 p$ if $y \nrightarrow B_{1}$ by Lemma 3.4(c). Since $\left|V\left(A_{q}\right) \cap X\right|=\left|V\left(A_{q}\right)-Y^{+}\right| \geq 2 p-2$ and
$\left|V\left(B_{1}\right) \cap X\right|=\left|V\left(B_{1}\right)-Y^{-}\right| \geq 2 p-2$, it follows that $|V(C) \cap X| \geq \max \left\{\mid V\left(A_{q}\right) \cap\right.$ $X\left|,\left|V\left(B_{1}\right) \cap X\right|\right\} \geq 2 p-2$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(A_{q}\right) \cap X\right|+\left|V\left(B_{1}\right) \cap X\right| \geq 6 p-6 .
$$

Since $6 p-6 \geq 4 p$ if and only if $p \geq 3$, it remains to check the case $p=2$. In this case we have to show that $|X| \geq 4 p-1=7$.

So assume to the contrary that $|X| \leq 4 p-2=6$. Then $\left|V\left(A_{q}\right) \cap X\right|=\mid V\left(B_{1}\right) \cap$ $X\left|=|V(C) \cap X|=2, V\left(A_{q}\right)=A, V\left(B_{1}\right)=B, X-A-B-V(C)=\emptyset\right.$ and $A \rightarrow y \rightarrow B$. Furthermore, $V(C)-X \neq \emptyset$. Let $C_{A}=x_{1} x_{2} y_{1} x_{1}$ be a Hamiltonian cycle of A, where $\left\{y_{1}\right\}=Y^{+}$, and let $C_{B}=x_{3} x_{4} y_{2} x_{3}$ be a Hamiltonian cycle of B, where $\left\{y_{2}\right\}=Y^{-}$. If D has an arc $u v$ from B to A, let

$$
C^{\prime}=y u^{+} u^{-} u v v^{+} v^{-} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right|=4$ by choice of C, a contradiction. So D has no arc leading from B to A. Since $\delta(D) \geq 2$, it follows that $N^{+}(u, C) \neq \emptyset$ and $N^{-}(v, C) \neq \emptyset$ for every vertex $u \in B$ and $v \in A$. Hence $B \rightarrow C$ by Claim 1. Let $w \in V(C)$ be a negative neighbor of x_{1} and let

$$
C^{*}=y x_{3} x_{4} y_{2} w x_{1} x_{2} y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 4$ by choice of C, again a contradiction.

Case 1.3: Note that $N^{+}(\hat{Y}, C)=N^{-}(\hat{Y}, C)=\emptyset$ by Claim 2. Let $P=z_{0} z_{1} \ldots z_{r}$ be a shortest $\left(X^{+} \cup Y^{+}\right)-\left(X^{-} \cup Y^{-}\right)$-path in D. Then $z_{0} \in X^{+} \cup Y^{+}, z_{r} \in X^{-} \cup Y^{-}$ and $\left\{z_{1}, z_{2}, \ldots, z_{r-1}\right\} \subseteq \hat{X} \cup \hat{Y}$. Furthermore, $\hat{Y} \subseteq V(P)$ by Claim 6 and thus, $r \geq 3$. Let $i=\min \left\{s \mid z_{s} \in \hat{Y}\right\}$ be the smallest integer such that $z_{i} \in \hat{Y}$ and let $j=\max \left\{s \mid z_{s} \in \hat{Y}\right\}$ be the greatest integer such that $z_{j} \in \hat{Y}$. We consider the positive and negative neighborhood of $z_{s} \in V(P)$, where $1 \leq s \leq r-1$. In view of Claims 1 and 2, we have $N^{-}\left(z_{s}, C\right)=\emptyset$ and in view of Claims 1-4 we have $N^{+}\left(z_{s}\right) \subseteq X^{-} \cup Y^{-} \cup \hat{X} \cup \hat{Y}$. Because of the choice of P, it follows that $N^{-}\left(z_{s}\right) \subseteq \hat{X} \cup \hat{Y} \cup X^{-} \cup Y^{-}$for $s \geq 2$ and $N^{+}\left(z_{s}\right) \subseteq \hat{X} \cup \hat{Y}$ for $s \leq r-2$.

If z_{s} has a positive neighbor $z_{t} \in V(P)$ besides z_{s+1}, we conclude $t \leq s-2$ because of the choice of P. Using the in-tournament property of D and the choice of P, it follows that $z_{s} \rightarrow z_{0} \in X^{+} \cup Y^{+}$, a contradiction to Claim 3 or 4. So $N^{+}\left(z_{s}, P\right)=\left\{z_{s+1}\right\}$.

If z_{s} has a negative neighbor $z_{t} \in V(P)$ besides z_{s-1}, we conclude $t \geq s+2$ because of the choice of P. Due to the observations above, it follows that $t=r$. So $N^{-}\left(z_{s}, P\right) \subseteq\left\{z_{s-1}, z_{r}\right\}$.

Now we consider $D-z_{i}$ and $D-z_{j}$ and define the sets
$A=\left\{v \in V(D) \mid\right.$ there exists a path leading from z_{i-1} to v in $\left.D-z_{i}\right\}$ and
$B=\left\{v \in V(D) \mid\right.$ there exists a path leading from v to z_{j+1} in $\left.D-z_{j}\right\}$.

Note that $A \subseteq X^{+} \cup Y^{+} \cup V\left(P\left[z_{0}, z_{i-1}\right]\right) \cup(\hat{X}-V(P)), B \subseteq X^{-} \cup Y^{-} \cup V\left(P\left[z_{j+1}, z_{r}\right]\right) \cup$ $(\hat{X}-V(P))$ and $A \cap B=\emptyset$ by Claim 6. Let $A_{1}, A_{2}, \ldots, A_{q}$ be an acyclic ordering of the strong components of $D[A]$, where $q \geq 1$, and let $B_{1}, B_{2}, \ldots, B_{s}$ be an acyclic ordering of the strong components of $D[B]$, where $s \geq 1$. Then $N^{+}\left(A_{q}\right)-V\left(A_{q}\right) \subseteq\left\{z_{i}\right\}$ and thus, $\left|V\left(A_{q}\right)\right| \geq 2 p-1$ by Lemma $3.4(\mathrm{~b})$ and $\left|V\left(A_{q}\right)\right| \geq 2 p$ if $A_{q} \nrightarrow z_{i}$ by Lemma 3.4(c). Analogously, $N^{-}\left(B_{1}\right)-V\left(B_{1}\right) \subseteq\left\{z_{j}\right\}$ and thus, $\left|V\left(B_{1}\right)\right| \geq 2 p-1$ by Lemma 3.4(b) and $\left|V\left(B_{1}\right)\right| \geq 2 p$ if $z_{j} \nrightarrow B_{1}$ by Lemma 3.4(c). Since $\left|V\left(A_{q}\right) \cap X\right|=$ $\left|V\left(A_{q}\right)-Y^{+}\right| \geq 2 p-2$ and $\left|V\left(B_{1}\right) \cap X\right|=\left|V\left(B_{1}\right)-Y^{-}\right| \geq 2 p-2$, it follows that $|V(C) \cap X| \geq \max \left\{\left|V\left(A_{q}\right) \cap X\right|,\left|V\left(B_{1}\right) \cap X\right|\right\} \geq 2 p-2$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(A_{q}\right) \cap X\right|+\left|V\left(B_{1}\right) \cap X\right| \geq 6 p-6
$$

Since

$$
6 p-6 \geq 4 p \Leftrightarrow p \geq 3
$$

it remains to check the case $p=2$. In this case we have to show that $|X| \geq 4 p-1=7$.
So assume to the contrary that $|X| \leq 4 p-2=6$. Then $\left|V\left(A_{q}\right) \cap X\right|=\mid V\left(B_{1}\right) \cap$ $X\left|=|V(C) \cap X|=2, V\left(A_{q}\right)=A, V\left(B_{1}\right)=B, X-A-B-V(C)=\emptyset, A \rightarrow z_{i}\right.$ and $z_{j} \rightarrow B$. Furthermore, $V(C)-X \neq \emptyset$. Hence $Y^{+}, Y^{-} \neq \emptyset, X^{+} \cup Y^{+} \subseteq A$ and $X^{-} \cup Y^{-} \subseteq B$. Since $z_{j} \rightarrow B$ and P has minimal length, it follows that $j=r-1$. Analogously, since $A \rightarrow z_{i}$ and P has minimal length, it follows that $i=1$. Let $A=\left\{x_{1}, x_{2}, y\right\}$, where $\left\{x_{1}, x_{2}\right\} \in X$ and $Y^{+}=\{y\}$. Since A induces a 3-cycle in D, we may assume, without loss of generality, that $D[A]=x_{1} x_{2} y x_{1}$. So $x_{2} \notin \hat{X}$ by Claim 3. Hence $x_{2} \in X^{+}$. Let v be a negative neighbor of x_{2} on C and let

$$
C^{\prime}=x_{2} P\left[z_{i}, z_{r}\right] C\left[v^{+}, v\right] x_{2}
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and $\left|V\left(C^{\prime}\right) \cap X\right| \geq|V(C) \cap X|+1$, a contradiction to the choice of C.

Case 2: Suppose that $X^{+} \cup Y^{+} \neq \emptyset$ and $X^{-} \cup Y^{-}=\emptyset$. In this case $N^{-}(C)-V(C) \subseteq$ \hat{Y}, since $N^{+}(\hat{X}, C)=\emptyset$ by Claim 1. Since D is strong, it follows that D has an arc from \hat{Y} to C and thus, $|\hat{Y}|=1$ and $Y^{+}=\emptyset$ by Claim 2. Let $\hat{Y}=\{y\}$. Since $y \notin Y^{-}$, it follows that $N^{-}(y, C) \neq \emptyset$.

If $\hat{X} \neq \emptyset$, note that $N^{+}(\hat{X}, C)=\emptyset$ by Claim 1 and $N^{+}\left(\hat{X}, X^{+}\right)=\emptyset$ by Claim 3. Since $N^{-}(y, C) \neq \emptyset$, it follows that $N^{+}(\hat{X}, y)=\emptyset$ and thus, D is not strong, a contradiction. So $\hat{X}=\emptyset$.

Let $D_{1}, D_{2}, \ldots, D_{q}$ be an acyclic ordering of the strong components of $D\left[X^{+}\right]$, where $q \geq 1$. Then $N^{+}\left(D_{q}\right)-V\left(D_{q}\right) \subseteq\{y\}$ and thus, $\left|V\left(D_{q}\right)\right| \geq 2 p-1$ by Lemma 3.4(b) and $\left|V\left(D_{q}\right)\right| \geq 2 p$ if $D_{q} \nrightarrow y$ by Lemma 3.4(c). Let C_{q} be a Hamiltonian cycle of D_{q}. Then $V(D)-V\left(C_{q}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C_{q}\right)\right|$ by choice of C. So if $\left|V\left(D_{q}\right)\right| \geq 2 p$ or if $q \geq 3$ or if $\left|V\left(D_{q-1}\right)\right| \geq 3$, it follows that $|X| \geq 4 p$. It remains to check the case that $q=2,\left|V\left(D_{2}\right)\right|=2 p-1$ and $\left|V\left(D_{1}\right)\right|=1$ (Subcase 2.1) and the case that $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$ (Subcase 2.2). Note that in both cases $D_{q} \rightarrow y$, since $\left|V\left(D_{q}\right)\right|=2 p-1$.

Subcase 2.1. Suppose that $q=2,\left|V\left(D_{2}\right)\right|=2 p-1$ and $\left|V\left(D_{1}\right)\right|=1$. Let $V\left(D_{1}\right)=\{x\}$. Since $d^{+}(x) \geq 2$ and $N^{+}(x, C)=\emptyset$, it follows that x has a positive
neighbor in D_{2}. Hence $x \rightarrow D_{2}$. Since $d^{-}(x) \geq 2$, either $y \rightarrow x$ or y has at least two positive neighbors on C.

Subcase 2.1.1. Suppose that $y \rightarrow x$. Let

$$
C^{\prime}=y x C_{2} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right|=2 p$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

Subcase 2.1.2. Suppose that $y \nrightarrow x$. Then $\left|N^{+}(y, C)\right| \geq 2$ and $\left|N^{-}(x, C)\right| \geq 2$. We may assume, without loss of generality, that $v_{k} \rightarrow y \rightarrow v_{1}$. Since D is an intournament, it follows subsequently that $v_{k} \rightarrow D_{2}$ and $v_{k} \rightarrow x$. Let v_{i} be a second negative neighbor of x on C, where $1 \leq i \leq k-1$.

If $V\left(C\left[v_{i+1}, v_{k}\right]\right)-X \neq \emptyset$, let

$$
C^{\prime}=y C\left[v_{1}, v_{i}\right] x C_{2} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $V\left(C\left[v_{i+1}, v_{k}\right]\right) \subseteq X$ and thus, $V(C)-X \subseteq V\left(C\left[v_{1}, v_{i}\right]\right)$. Let v_{j} be a second positive neighbor of y on C, where $2 \leq j \leq k-1$.

If $i+1 \leq j \leq k-1$, let

$$
C^{*}=y C\left[v_{j}, v_{k}\right] x C_{2} y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $2 \leq j \leq i$.
If $V\left(C\left[v_{1}, v_{j-1}\right]\right)-X \neq \emptyset$, let

$$
\hat{C}=y C\left[v_{j}, v_{k}\right] x C_{2} y
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $V\left(C\left[v_{1}, v_{j-1}\right]\right) \subseteq X$. Let $r=\min \left\{s \mid v_{s} \notin X\right\}$. Then $r \leq i$. Let $A=$ $\left\{v_{1}, v_{2}, \ldots, v_{r-1}\right\}$.

If there is a vertex $v_{s} \in A$ that has a positive neighbor v_{t} on C outside of $A \cup\left\{v_{r}\right\}$, let

$$
\tilde{C}=y C\left[v_{1}, v_{s}\right] C\left[v_{t}, v_{k}\right] x C_{2} y,
$$

if there is a vertex $v_{s} \in A$ that dominates x, let

$$
\tilde{C}=y C\left[v_{1}, v_{s}\right] x C_{2} y
$$

and if there is a vertex $v_{s} \in A$ that has a positive neighbor in D_{2}, let

$$
\tilde{C}=y C\left[v_{1}, v_{s}\right] C_{2} y
$$

Then $V(D)-V(\tilde{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\tilde{C}) \cap X| \geq 2 p$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $N^{+}(A)-A=\left\{v_{r}\right\}$ and thus, $|A| \geq 2 p-1$ by Lemma 3.4(b). Since $v_{k} \notin A$ and $v_{k} \in X$, it follows that $|V(C) \cap X| \geq 2 p$ and thus,

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

Subcase 2.2. Suppose that $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$. In this case $\left|N^{+}(y, C)\right| \geq$ 2. We consider two subcases depending on the structure of the negative neighborhood of y on C.

Subcase 2.2.1. Suppose that there exist two vertices $v \neq w$ on C such that $\{v, w\} \rightarrow y \rightarrow\left\{v^{+}, w^{+}\right\}$. Let, without loss of generality, $v=v_{k}$ and $w=v_{i}$, where $i \neq k$. Then $\left\{v_{i}, v_{k}\right\} \rightarrow D_{1}$. We may assume, without loss of generality, that $V\left(C\left[v_{1}, v_{i}\right]\right) \cap X \neq \emptyset$ and $V\left(C\left[v_{i+1}, v_{k}\right]\right)-X \neq \emptyset$.

If $\left|V\left(C\left[v_{1}, v_{i}\right]\right) \cap X\right| \geq 2$, let

$$
C^{\prime}=y C\left[v_{1}, v_{i}\right] C_{1} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $\left|V\left(C\left[v_{1}, v_{i}\right]\right) \cap X\right|=1$. Since $|V(C) \cap X| \geq 3$, it follows that $\mid V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap$ $X \mid \geq 2$. If $V\left(C\left[v_{1}, v_{i}\right]\right)-X \neq \emptyset$, let

$$
C^{*}=y C\left[v_{i+1}, v_{k}\right] C_{1} y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $V\left(C\left[v_{1}, v_{i}\right]\right) \subseteq X$ and thus, $v_{1}=v_{i} \in X$, again a contradiction.
Subcase 2.2.2. Suppose that there do not exist two vertices $v \neq w$ on C such that $\{v, w\} \rightarrow y \rightarrow\left\{v^{+}, w^{+}\right\}$. Then we may assume, without loss of generality, that $v_{k} \rightarrow y \rightarrow\left\{v_{1}, v_{2}\right\}$. It follows that $v_{k} \rightarrow D_{1}$. If $v_{1} \notin X$, let

$$
C^{\prime}=y C\left[v_{2}, v_{k}\right] C_{1} y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p+2$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p+1
$$

So $v_{1} \in X$. Analogously we can show that $v_{2} \in X$ if $p \geq 3$.

Subcase 2.2.2.1. Suppose that $N^{-}\left(D_{1}, C\right) \neq\left\{v_{k}\right\}$. Let i be the minimal index such that $v_{i} \rightarrow D_{1}$.

Subcase 2.2.2.1.1: Suppose that $p=2$. Then it suffices to show that $|X| \geq$ $4 p-1=7$.

If $V\left(C\left[v_{i+1}, v_{k}\right]\right)-X \neq \emptyset$, let

$$
C^{*}=y C\left[v_{1}, v_{i}\right] C_{1} y .
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p=4$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p-1=7
$$

So assume that $V\left(C\left[v_{i+1}, v_{k}\right]\right) \subseteq X$. Let j be the minimal index such that $v_{j} \notin X$. Then $j \leq i$. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$. If there is a vertex $v_{r} \in A$ that has a positive neighbor v_{s} on C outside of $A \cup\left\{v_{j}\right\}$, let

$$
\tilde{C}=y C\left[v_{1}, v_{r}\right] C\left[v_{s}, v_{k}\right] C_{1} y .
$$

Then $V(D)-V(\tilde{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\tilde{C}) \cap X| \geq 2 p=4$. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p-1=7
$$

So $N^{+}(A)-A=\left\{v_{j}\right\}$ and thus, $|A| \geq 2 p-1=3$ by Lemma 3.4(b). Since $v_{k} \notin A$ and $v_{k} \in X$, it follows that $|V(C) \cap X| \geq 2 p=4$ and thus,

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p-1=7
$$

Subcase 2.2.2.1.2: Suppose that $p \geq 3$. We have to show that $|X| \geq 4 p$. Due to our assumption we conclude that $y \rightarrow\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{1}, v_{2}\right\} \subseteq X$.

Assume that $i \neq 1$. If $V\left(C\left[v_{i+1}, v_{k}\right]\right)-X \neq \emptyset$, let

$$
C^{*}=y C\left[v_{1}, v_{i}\right] C_{1} y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $V\left(C\left[v_{i+1}, v_{k}\right]\right) \subseteq X$. Let j be the minimal integer such that $v_{j} \notin X$. Then $j \leq i$. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$. If there is a vertex $v_{r} \in A$ that has a positive neighbor v_{s} on C outside of $A \cup\left\{v_{j}\right\}$, let

$$
\tilde{C}=y C\left[v_{1}, v_{r}\right] C\left[v_{s}, v_{k}\right] C_{1} y
$$

Then $V(D)-V(\tilde{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\tilde{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $N^{+}(A)-A=\left\{v_{j}\right\}$ and thus, $|A| \geq 2 p-1$ by Lemma 3.4(b). If $i \leq k-2$, we conclude that

$$
|X| \geq\left|X^{+}\right|+|A|+\left|\left\{v_{k-1}, v_{k}\right\}\right| \geq 4 p
$$

So $i=k-1$. If $V\left(C\left[v_{j}, v_{i}\right]\right) \cap X \neq \emptyset$, it follows that

$$
|X| \geq\left|X^{+}\right|+|A|+\left|\left\{v_{k}\right\}\right|+1 \geq 4 p
$$

So assume that $V\left(C\left[v_{j}, v_{i}\right]\right) \cap X=\emptyset$. Since $d^{-}\left(v_{k}\right) \geq p \geq 3$, the vertex v_{k} has a negative neighbor $v_{t} \neq v_{k-1}$ on C. Let

$$
\hat{C}=y C\left[v_{1}, v_{t}\right] v_{k} C_{1} y .
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

Assume that $i=1$. If $v_{k} \notin X$, let $v_{t} \neq v_{k}$ be a negative neighbor of v_{1} on C. Let

$$
C^{*}=y C\left[v_{2}, v_{t}\right] v_{1} C_{1} y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $v_{k} \in X$. Let j be the minimal integer such that $v_{j} \notin X$ and let $A=\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{j-1}\right\}$. If there is a vertex $v_{r} \in A$ that has a positive neighbor v_{s} on C outside of $A \cup\left\{v_{j}\right\}$, let

$$
\tilde{C}=y C\left[v_{1}, v_{r}\right] C\left[v_{s}, v_{k}\right] C_{1} y
$$

Then $V(D)-V(\tilde{C})-X \neq \emptyset$ and thus, $|V(\tilde{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $N^{+}(A)-A=\left\{v_{j}\right\}$ and thus, $|A| \geq 2 p-1$ by Lemma 3.4(b). If $V\left(C\left[v_{j}, v_{k-2}\right]\right) \cap X \neq$ \emptyset, we conclude that

$$
|X| \geq\left|X^{+}\right|+|A|+\left|\left\{v_{k}\right\}\right|+1 \geq 4 p
$$

So $V\left(C\left[v_{j}, v_{k-2}\right]\right) \cap X=\emptyset$. Since $d^{-}\left(v_{k}\right) \geq p \geq 3$, the vertex v_{k} has a negative neighbor $v_{t} \neq v_{k-1}$ on C. Let

$$
\hat{C}=y C\left[v_{1}, v_{t}\right] v_{k} C_{1} y .
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

Subcase 2.2.2.2: Suppose that $N^{-}\left(D_{1}, C\right)=\left\{v_{k}\right\}$. Let j be the smallest index such that $v_{j} \notin X$.

Subcase 2.2.2.2.1: Suppose that $v_{k} \in X$. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$. If there is a vertex $v_{r} \in A$ that has a positive neighbor v_{s} on C outside of $A \cup\left\{v_{j}\right\}$, let

$$
C^{*}=y C\left[v_{1}, v_{r}\right] C\left[v_{s}, v_{k}\right] .
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $N^{+}(A)-A=\left\{v_{j}\right\}$ and thus, $|A| \geq 2 p-1$ by Lemma 3.4(b). If $v_{k-1} \in X$, we conclude that

$$
|X| \geq|A|+\left|X^{+}\right|+\left|\left\{v_{k-1}, v_{k}\right\}\right| \geq 4 p
$$

So $v_{k-1} \notin X$. Since $d^{-}\left(v_{k}\right) \geq p \geq 3$, there is a negative neighbor $v_{t} \neq v_{k-1}$ of v_{k} on C. Let

$$
\tilde{C}=y C\left[v_{1}, v_{t}\right] v_{k} C_{1} y
$$

Then $V(D)-V(\tilde{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\tilde{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

Subcase 2.2.2.2.2: Suppose that $v_{k} \notin X$.
If $j<k$, we consider v_{k-1}. If $v_{k-1} \notin X$, let $v_{t} \neq v_{k-1}$ be a negative neighbor of v_{k} on C. Let

$$
C^{*}=y C\left[v_{1}, v_{t}\right] v_{k} y
$$

Then $V(D)-V\left(C^{*}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{*}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $v_{k-1} \in X$ and $j \leq k-2$. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$. If there is a vertex $v_{r} \in A$ that has a positive neighbor v_{s} on C outside of $A \cup\left\{v_{j}\right\}$, let

$$
\tilde{C}=y C\left[v_{1}, v_{r}\right] C\left[v_{s}, v_{k}\right] C_{1} y
$$

Then $V(D)-V(\tilde{C})-X \neq \emptyset$ and thus, $|V(\tilde{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $N^{+}(A)-A=\left\{v_{j}\right\}$ and thus, $|A| \geq 2 p-1$ by Lemma 3.4(b). If $\left|V\left(C\left[v_{j}, v_{k}\right]\right) \cap X\right| \geq$ 2 , we conclude that

$$
|X| \geq|A|+\left|X^{+}\right|+2=4 p
$$

So assume that $V\left(C\left[v_{j}, v_{k}\right]\right) \cap X=\left\{v_{k-1}\right\}$. If v_{k-1} has a negative neighbor $v_{t} \neq v_{k-2}$ on C, let

$$
\hat{C}=y C\left[v_{1}, v_{t}\right] v_{k-1} v_{k} C_{1} y
$$

Then $V(D)-V(\hat{C})-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq|V(\hat{C}) \cap X| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|X^{+}\right| \geq 4 p
$$

So $N^{-}\left(v_{k-1}, C\right)=\left\{v_{k-2}\right\}$ and thus, $p=2$. Since

$$
|X|=\left|X^{+}\right|+|A|+1=4 p-1=7,
$$

there is nothing left to show.
If $j=k$, it follows that $|A|=|V(C) \cap X| \geq 2 p$ by Lemma 3.4(c). So if $|X|=4 p-1$ we conclude by Lemma 3.5 that D is a member of $\mathcal{T}_{i n}^{* *}$.

Case 3: Recall that $N^{+}(C, \hat{X})=\emptyset$ by Claim 1. Since D is strong, it follows that $\hat{Y} \neq \emptyset$ and $N^{+}(C, \hat{Y}) \neq \emptyset$. By Claim 2 we conclude that $|\hat{Y}|=1$ and $Y^{-}=\emptyset$. The latter implies that $X^{-} \neq \emptyset$. Let $\hat{Y}=\{y\}$. Then $N^{+}(y, C) \neq \emptyset$ and $N^{-}(y, C) \neq \emptyset$. Since D is an in-tournament, the vertex y is adjacent to every vertex of X^{-}. Let $D_{1}, D_{2}, \ldots, D_{q}$ be an acyclic ordering of the strong components of $D\left[X^{-} \cup \hat{X}\right]$, where $q \geq 1$. Then $N^{-}\left(D_{1}\right)-V\left(D_{1}\right) \subseteq\{y\}$ and thus, $\left|V\left(D_{1}\right)\right| \geq 2 p-1$ by Lemma 3.4(b) and $\left|V\left(D_{1}\right)\right| \geq 2 p$ if $y \nrightarrow D_{1}$ by Lemma 3.4(c). Let C_{1} be a Hamiltonian cycle of D_{1}. Since $V(D)-V\left(C_{1}\right)-X \neq \emptyset$, it follows that $|V(C) \cap X| \geq\left|V\left(C_{1}\right) \cap X\right|=\left|V\left(D_{1}\right)\right|$ by choice of C. If $\left|V\left(D_{1}\right)\right| \geq 2 p$ or if $q \geq 3$ or if $q=2$ and $\left|V\left(D_{2}\right)\right| \geq 3$, we conclude that $|X| \geq 4 p$. It remains to check the case $q=2,\left|V\left(D_{1}\right)\right|=2 p-1$ and $\left|V\left(D_{2}\right)\right|=1$ (Subcase 3.1) and the case $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$ (Subcase 3.2). Note that in both cases $y \rightarrow D_{1}$, since $\left|V\left(D_{1}\right)\right|=2 p-1$.

Subcase 3.1. Suppose that $q=2,\left|V\left(D_{1}\right)\right|=2 p-1$ and $\left|V\left(D_{2}\right)\right|=1$. Let $V\left(D_{2}\right)=\left\{x_{2}\right\}$. Since $x_{2} \in X^{-} \cup \hat{X}$, it follows that $N^{-}\left(x_{2}, C\right)=\emptyset$. The latter together with $d^{-}\left(x_{2}\right) \geq p \geq 2$ yields that there is a vertex $x_{1} \in V\left(D_{1}\right)$ that dominates x_{2}.

Subcase 3.1.1. Suppose that $x_{2} \rightarrow y$. Let

$$
C^{\prime}=y C_{1}\left[x_{1}^{+}, x_{1}\right] x_{2} y .
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right|=2 p$ by choice of C. Hence

$$
|X| \geq|V(C) \cap X|+\left|V\left(D_{1}\right)\right|+1 \geq 4 p
$$

Subcase 3.1.2. Suppose that $x_{2} \nrightarrow y$. Then $\left|N^{-}(y, C)\right| \geq 2$. In addition, note that $N^{+}\left(x_{2}, C\right) \neq \emptyset$ and thus, $x_{2} \rightarrow C$. Let, without loss of generality, $\left\{v_{i}, v_{k}\right\} \rightarrow y$, where $i \leq k-1$. We may assume, without loss of generality, that $V\left(C\left[v_{1}, v_{i}\right]\right)-X \neq \emptyset$ and $V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X \neq \emptyset$. Let

$$
C^{\prime}=y C_{1}\left[x_{1}^{+}, x_{1}\right] x_{2} C\left[v_{i+1}, v_{k}\right] y .
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(D_{1}\right)\right|+1 \geq 4 p+1
$$

Subcase 3.2: Suppose that $q=1$ and $\left|V\left(D_{1}\right)\right|=2 p-1$. Then $D_{1} \rightarrow C$ and $\left|N^{-}(y, C)\right| \geq p$.

Subcase 3.2.1: Suppose that $\left|N^{-}(y, C)\right| \geq 3$. Let $\left\{v_{i}, v_{j}, v_{k}\right\} \rightarrow y$, where $1 \leq i<$ $j \leq k-1$. We may assume, without loss of generality, that $V\left(C\left[v_{1}, v_{i}\right]\right)-X \neq \emptyset$ and $\left|V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X\right| \geq 2$. Let

$$
C^{\prime}=y C_{1} C\left[v_{i+1}, v_{k}\right] y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p+1$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p
$$

Subcase 3.2.2: Suppose that $\left|N^{-}(y, C)\right|=p=2$. We have to show that $|X| \geq$ $4 p-1=7$. Let, without loss of generality, $\left\{v_{i}, v_{k}\right\} \rightarrow y$, where $i \leq k-1$. We may assume, without loss of generality, that $V\left(C\left[v_{1}, v_{i}\right]\right)-X \neq \emptyset$ and $V\left(C\left[v_{i+1}, v_{k}\right]\right) \cap X \neq$ \emptyset. Let

$$
C^{\prime}=y C_{1} C\left[v_{i+1}, v_{k}\right] y
$$

Then $V(D)-V\left(C^{\prime}\right)-X \neq \emptyset$ and thus, $|V(C) \cap X| \geq\left|V\left(C^{\prime}\right) \cap X\right| \geq 2 p=4$ by choice of C. Hence

$$
|X|=|V(C) \cap X|+\left|V\left(D_{1}\right)\right| \geq 4 p-1
$$

which completes the proof of this lemma.

6 Generalizations of Kotani's Theorems

In this section we use the results of Section 5 to generalize Theorems 1.8, 1.9 and 1.10 to in-tournaments. The following three results summarize our present achievements.

Theorem 6.1. Let $p \geq 2$ be an integer and let D be a strong in-tournament with $\delta(D) \geq p$. If $X \subseteq V(D)$ with $|X| \leq 4 p-3$ and $X \neq V(D)$, then there exists a cycle C in D such that $X \subseteq V(C)$ and $|V(C)|=|V(D)|-1$.

Proof. Let X be a subset of $V(D)$ such that $|X| \leq 4 p-3$ and $X \neq V(D)$. Let C, $X^{+}, X^{-}, \hat{X}, X, Y^{+}, Y^{-}, \hat{Y}$ and Y be defined as above.

Assume that $X-V(C) \neq \emptyset$. If $|X|=|V(D)|-1$, then we get a contradiction by Lemma 5.1. If $|X| \leq|V(D)|-2$, then we get a contradiction by Lemma 5.2.

Hence, we obtain $X \subseteq V(C)$ and $|V(C)|=|V(D)|-1$ by Claim 10.
Theorem 6.2. Let $p \geq 2$ be an integer and let D be a strong in-tournament with $|V(D)| \geq 4 p$ and $\delta(D) \geq p$. If $X \subseteq V(D)$ with $|X| \leq 4 p-2$, then either
(a) there exists a cycle C in D such that $X \subseteq V(C)$ and $|V(C)|=|V(D)|-1$ or
(b) $D \in \mathcal{T}_{l o c}^{*}$.

Proof. Let X be a subset of $V(D)$ such that $|X| \leq 4 p-2$ and let C, X^{+}, X^{-}, \hat{X}, X, Y^{+}, Y^{-}, \hat{Y} and Y be defined as above. In addition, let $D \notin \mathcal{T}_{\text {loc }}^{*}$.

Assume that $X-V(C) \neq \emptyset$. Since $D \notin \mathcal{T}_{\text {loc }}^{*}$, Lemma 5.2(a) implies that $|X| \geq$ $4 p-1$, a contradiction to our assumption. Hence, by Claim 10, it follows that $X \subseteq V(C)$ and $|V(C)|=|V(D)|-1$.

Theorem 6.3. Let $p \geq 3$ be an integer. Let D be a strong in-tournament with $|V(D)| \geq 4 p+1$ and $\delta(D) \geq p$. If $X \subseteq V(D)$ with $|X| \leq 4 p-1$, then either
(a) there exists a cycle C in D such that $X \subseteq V(C)$ and $|V(C)|=|V(D)|-1$ or
(b) $D \in \mathcal{T}_{\text {in }}^{*} \cup \mathcal{T}_{\text {in }}^{* *} \cup \mathcal{T}_{\text {loc }}^{* *}$.

Proof. Let X be a subset of $V(D)$ such that $|X| \leq 4 p-1$ and let C, X^{+}, X^{-}, \hat{X}, X, Y^{+}, Y^{-}, \hat{Y} and Y be defined as above. In addition, let $D \notin \mathcal{T}_{\text {in }}^{*} \cup \mathcal{T}_{\text {in }}^{* *} \cup \mathcal{T}_{\text {loc }}^{* *}$.

Assume that $X-V(C) \neq \emptyset$. Note that $D \notin \mathcal{T}_{\text {loc }}^{*}$, since $|V(D)| \geq 4 p+1$. Additionally $D \notin \mathcal{T}_{i n}^{*} \cup \mathcal{T}_{i n}^{* *} \cup \mathcal{T}_{\text {loc }}^{* *}$ and thus, Lemma 5.2(b) implies that $|X| \geq 4 p$, a contradiction to our assumption. Hence, by Claim 10, it follows that $X \subseteq V(C)$ and $|V(C)|=|V(D)|-1$.

The combination of Lemma 3.3 and the theorems above yields the following results.

Theorem 6.4. Let D be a strong in-tournament and let $p \geq 2$ be an integer. If $\delta(D) \geq p$, then D has at least $k=\min \{|V(D)|, 4 p-2\}$ vertices $x_{1}, x_{2}, \ldots, x_{k}$ such that $D-x_{i}$ is strong for $i=1,2, \ldots, k$.

Theorem 6.5. Let D be a strong in-tournament such that $D \notin \mathcal{I}_{\text {loc }}^{*}$ and let $p \geq 2$ be an integer. If $\delta(D) \geq p$ and $|V(D)| \geq 4 p$, then D has at least $k=4 p-1$ vertices $x_{1}, x_{2}, \ldots, x_{k}$ such that $D-x_{i}$ is strong for $i=1,2, \ldots, k$.

Theorem 6.6. Let D be a strong in-tournament such that $D \notin \mathcal{T}_{i n}^{*} \cup \mathcal{T}_{\text {in }}^{* *} \cup \mathcal{T}_{\text {loc }}^{* *}$ and let $p \geq 3$ be an integer. If $\delta(D) \geq p$ and $|V(D)| \geq 4 p+1$, then D has at least $k=4 p$ vertices $x_{1}, x_{2}, \ldots, x_{k}$ such that $D-x_{i}$ is strong for $i=1,2, \ldots, k$.

The corresponding results for the class of local tournaments can be formulated as follows.

Corollary 6.7 (Meierling \& Volkmann [8] 2007). Let D be a strong local tournament and let $p \geq 2$ be an integer. If $\delta(D) \geq p$, then D has at least $k=$ $\min \{|V(D)|, 4 p-2\}$ vertices $x_{1}, x_{2}, \ldots, x_{k}$ such that $D-x_{i}$ is strong for $i=1,2$, \ldots, k.

Corollary 6.8 (Meierling \& Volkmann [8] 2007). Let D be a strong local tournament such that $D \notin \mathcal{T}_{l o c}^{*}$ and let $p \geq 2$ be an integer. If $\delta(D) \geq p$ and $|V(D)| \geq 4 p$, then D has at least $k=4 p-1$ vertices $x_{1}, x_{2}, \ldots, x_{k}$ such that $D-x_{i}$ is strong for $i=1,2, \ldots, k$.

Corollary 6.9 (Meierling \& Volkmann [8] 2007). Let D be a strong local tournament such that $D \notin \mathcal{T}_{\text {loc }}^{* *}$ and let $p \geq 3$ be an integer. If $\delta(D) \geq p$ and $|V(D)| \geq 4 p+1$, then D has at least $k=4 p$ vertices $x_{1}, x_{2}, \ldots, x_{k}$ such that $D-x_{i}$ is strong for $i=1,2, \ldots, k$.

Since the exceptional classes of in-tournaments and local tournaments do not contain any tournaments, Theorems 1.8, 1.9 and 1.10 by Kotani [5] are direct consequences of our results.

References

[1] J. Bang-Jensen, Locally semicomplete digraphs: a generalization of tournaments, J. Graph Theory 14 (1990), no. 3, 371-390.
[2] J. Bang-Jensen, J. Huang and E. Prisner, In-tournament digraphs, J. Combin. Theory Ser. B 59 (1993), no. 2, 267-287.
[3] Y. Guo and L. Volkmann, Connectivity properties of locally semicomplete digraphs, J. Graph Theory 18 (1994), no. 3, 269-280.
[4] G. Korvin, Some combinatorial problems on complete directed graphs, Theory of Graphs (Internat. Sympos., Rome, 1966), Gordon and Breach, New York, 1967, pp. 197-213.
[5] K. Kotani, Nonseparating vertices in tournaments with large minimum degree, Australas. J. Combin. 36 (2006), 27-38.
[6] M. Las Vergnas, Sur le nombre de circuits dans un tournoi fortement connexe, Cahiers Centre Études Recherche Opér. 17 (1975), no. 2-3-4, 261-265, Colloque sur la Théorie des Graphes (Paris, 1974).
[7] D. Meierling and L. Volkmann, On the number of cycles in local tournaments, Discrete Math. 309 (2009), 2042-2052. doi:10.1016/j.disc.2008.04.015.
[8] D. Meierling and L. Volkmann, On the number on nonseparating vertices in strongly connected local tournaments, Australas. J. Combin. 39 (2007), 301315.
[9] J. W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966), 297-301.
[10] M. Tewes, In-Tournaments and Semicomplete Multipartite Digraphs, Ph.D. thesis, RWTH Aachen University, 1999, 114 pp.

