The spectrum for 3 -perfect 9 -cycle systems

Peter Adams, Elizabeth J. Billington*
Department of Mathematics, The University of Queensland Queensland 4072, Australia
C.C. Lindner ${ }^{\dagger}$

Department of Algebra, Combinatorics and Analysis Auburn University, Auburn Alabama 36849, U.S.A.

ABSTRACT: A decomposition of K_{n} into 3 -perfect 9 -cycles is shown to exist if and only if $n \equiv 1$ or 9 (modulo 18), $n \neq 9$.

1 Introduction

A great deal of work in recent years has been done on decompositions of the complete graph into edge-disjoint cycles; see the survey [5] for example. Specifically, we call a decomposition of the complete graph K_{v} into disjoint cycles of length m an m-cycle system of K_{v}. In other words, an m-cycle system of K_{v} is an ordered pair (V, C) where V is the vertex set of K_{v} and C is a set of edge disjoint m-cycles which partition the edge set of K_{v}.

It is possible to require additional structure of the decomposition. For example, suppose we have an m-cycle system of K_{v} so that when, for each cycle, we take the graph formed by joining all vertices distance i apart, we again have a decomposition of K_{v}. Then this is called an i-perfect m-cycle decomposition of K_{v}, or an i-perfect m-cycle system. Previous papers ($[4,3,1]$) have considered 2 -perfect m-cycle systems. Here we completely determine the spectrum (that is, the set of all values of v) for 3 -perfect 9 -cycle systems of K_{v}. In particular, we prove:

THEOREM 1.1 The necessary and sufficient conditions for a 3-perfect 9-cycle decomposition of K_{v} are $v \equiv 1$ or $9(\bmod 18)$ and $v \neq 9$.

So that the reader does not get the erroneous idea that 3 -perfect 9 -cycle systems are contrived, we point out that the distance 3 graph inside each 9 -cycle consists of three

[^0]disjoint 3 -cycles (or triples) and that the collection of these triples is a Steiner triple system. In other words, a 9 -cycle system is 3 -perfect if and only if the collection of three disjoint triples inside each 9 -cycle is a Steiner triple system. While it is virtually trivial [5] to construct 9 -cycle systems for every $v \equiv 1$ or $9(\bmod 18)$, a bit of reflection will convince the reader that the additional requirement of being 3-perfect is far less trivial a matter. We point out that the analogous problem for 6 -cycle systems or hexagon systems is the problem of constructing 2-perfect hexagon systems. This problem has been completely settled in [3].

First we verify the necessary conditions for a 3 -perfect 9 -cycle system to exist. Certainly the number of edges of K_{v}, namely $v(v-1) / 2$, must be divisible by 9 . Moreover, the degree of each vertex, $v-1$, must be even, and so v must be odd. These requirements mean that v must be 1 or 9 modulo 18 .

The graph K_{9} cannot be decomposed into 3 -perfect 9 -cycles. The underlying triple system would be the (unique) affine plane of order three, and it is not hard to verify that there is no possible way that the triples can fit inside four 9 -cycles to form a 3 -perfect 9 -cycle system.

Subsequently we shall show that for all other $v \equiv 1$ or 9 (modulo 18), there exists a 3-perfect 9 -cycle decomposition of K_{v}.

2 The case $v \equiv 1$ modulo 18

We start with a couple of necessary examples. In what follows we shall denote the m-cycle consisting of the edges $\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{3}, x_{4}\right\}, \ldots,\left\{x_{m-1}, x_{m}\right\},\left\{x_{m}, x_{1}\right\}$ by any cyclic shift of $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ or ($x_{1}, x_{m}, x_{m-1}, \ldots, x_{2}$).

EXAMPLE 2.1 There are 3-perfect 9 -cycle decompositions of K_{v} for $v=19$ and 37.

For $v=19$, define

$$
C_{19}=\{(0,12,17,1,2,10,6,4,13)+i \mid 0 \leq i \leq 18\},
$$

where $\left(v_{0}, v_{1}, \ldots, v_{8}\right)+i=\left(v_{0}+i, v_{1}+i, \ldots, v_{8}+i\right)$, with entries reduced modulo 19. Then (\mathbb{Z}_{19}, C_{19}) is a 3 -perfect 9 -cycle system of K_{19}.

For $v=37$, define

$$
C_{37}=\{(0,16,5,6,8,1,13,7,15)+i,(0,18,23,3,36,2,15,1,28)+i \mid 0 \leq i \leq 36\} .
$$

Then $\left(\mathbb{Z}_{37}, C_{37}\right)$ is a 3 -perfect 9 -cycle system of K_{37}.
The next example is crucial to the constructions used in both cases, 1 modulo 18 and 9 modulo 18 .

EXAMPLE 2.2 There is a 3-perfect 9 -cycle decomposition of $K_{9,9,9}$.
Let the vertices of $K_{9,9,9}$ be $V_{9}=\{(i, j) \mid 0 \leq i \leq 8,1 \leq j \leq 3\}$. We fix the second components and work modulo 9 with the first component. Also for brevity, we shall write $i j$ for (i, j). Then (V_{9}, C_{9}) is a 3 -perfect 9 -cycle decomposition of $K_{9,9,9}$ where

$$
\begin{aligned}
C_{9}=\{ & (01,22,61,02,33,82,03,11,13)+i 0 \\
& (01,23,41,32,31,02,63,72,53)+i 0 \\
& (01,42,63,62,23,81,33,61,72)+i 0 \mid 0 \leq i \leq 8\}
\end{aligned}
$$

(first component reduced modulo 9).
The following result is well-known; we include it for completeness.
LEMMA 2.3 There is a group divisible design on $2 n \geq 6$ elements with block size 3 and group size 2 whenever $2 n \equiv 0$ or $2(\bmod 6)$; there is a group divisible design on $2 n \geq 10$ elements with block size 3 , one group of size 4 and the rest of size 2 , when $2 n \equiv 4(\bmod 6)$.

Proof: The cases $2 n \equiv 0$ or $2(\bmod 6)$ first appeared in Hanani [2], Lemma 6.3; such group divisible designs also arise from any Steiner triple system by deleting one point. For the case $2 n \equiv 4(\bmod 6)$, see for example [6, page 276$]$. This gives a pairwise balanced design with number of elements congruent to $5(\bmod 6)$, and with one block of size five and the rest of size three. Deletion of a point from the block of size five yields a suitable group divisible design, with one group of size four and the rest of size two.

We are now ready to give a general construction.
THEOREM 2.4 There exists a 3-perfect 9-cycle decomposition of K_{v} for all $v \equiv 1$ modulo 18.

Proof: Let $v=18 n+1$. The cases $n=1$ and $n=2$ are done in Example 2.2. So let $n \geq 3$, and let the vertex set V of K_{v} be $\{\infty\} \cup\{(i, j) \mid 1 \leq i \leq 2 n, 1 \leq j \leq 9\}$. By Lemma 2.3, there exists a group divisible design (GDD) on $\{(i, j) \mid 1 \leq i \leq 2 n\}$ with all groups of size 2, except possibly one of size 4.

Then take 9 -cycles as follows:
(i) For each block $\{(x, j),(y, j),(z, j)\}$ in the GDD, place a copy of the decomposition (V_{9}, C_{9}) of $K_{9,9,9}$ from Example 2.2 on the vertices

$$
\{(x, j) \mid 1 \leq j \leq 9\} \cup\{(y, j) \mid 1 \leq j \leq 9\} \cup\{(z, j) \mid 1 \leq j \leq 9\}
$$

(ii) For each group $\left\{\left(a_{1}, j\right),\left(a_{2}, j\right)\right\}$ of size 2 of the GDD, place a copy of $\left(\mathbb{Z}_{19}, C_{19}\right)$ on the vertices $\{\infty\} \cup\left\{\left(a_{1}, j\right),\left(a_{2}, j\right) \mid 1 \leq j \leq 9\right\}$. (See Example 2.1.)
(iii) When $2 n \equiv 4(\bmod 6)$, one group is of size 4 ; say it is $\left\{\left(a_{i}, j\right) \mid 1 \leq i \leq 4\right\}$. Then place a copy of $\left(\mathbb{Z}_{37}, C_{37}\right)$ on the vertices $\{\infty\} \cup\left\{\left(a_{i}, j\right) \mid 1 \leq i \leq 4,1 \leq j \leq 9\right\}$. (See Example 2.1.)

It is clear that this is now a 3 -perfect 9 -cycle decomposition of K_{v}.

3 The case $v \equiv 9$ modulo 18

Here we let $v=18 n+9$. We have already pointed out the impossibility of the case $n=0$. The cases $n=1$ and 2 follow.

EXAMPLE 3.1 There is a 3-perfect 9-cycle decomposition of K_{27}.
Let the 27 elements be $\{\infty\} \cup\{(i, j) \mid 0 \leq i \leq 12,1 \leq j \leq 2\}$. Then the following 9 -cycles give a suitable decomposition:

$$
\begin{aligned}
& ((0,2), \infty,(0,1),(1,2),(12,2),(1,1),(4,2),(12,1),(4,1))+(i, 0) ; \\
& ((0,1),(1,1),(11,1),(2,1),(6,2),(0,2),(3,2),(8,1),(6,1))+(i, 0) ; \\
& ((5,2),(8,1),(2,2),(10,2),(1,2),(0,2),(1,1),(7,2),(5,1))+(i, 0) ;
\end{aligned}
$$

here $0 \leq i \leq 12$. (So the second component is fixed, ∞ is of course fixed, and the first component is cycled modulo 13.)

EXAMPLE 3.2 There is a 3-perfect 9-cycle decomposition of K_{45}.
This time the 45 elements are $\{\infty\} \cup\{(i, j) \mid 0 \leq i \leq 10,1 \leq j \leq 4\}$. There are ten "starter" 9 -cycles, modulo 11 on the first component of each element. The element ∞ is fixed, and the second component of each element is also fixed. The starters are:

$$
\begin{aligned}
& (\infty,(1,2),(8,2),(0,1),(7,3),(10,1),(0,2),(5,4),(8,4)) \text {, } \\
& (\infty,(8,1),(3,2),(0,3),(10,2),(6,4),(0,4),(4,1),(5,3)) \text {, } \\
& ((0,1),(1,1),(1,2),(2,1),(2,4),(0,4),(5,1),(8,3),(5,3)) \text {, } \\
& ((0,1),(4,1),(2,4),(1,1),(3,2),(5,2),(5,4),(1,4),(10,3)) \text {, } \\
& ((0,2),(7,1),(10,1),(6,2),(1,3),(8,3),(7,4),(10,3),(10,4)) \text {, } \\
& ((0,3),(10,3),(10,1),(1,3),(1,2),(6,2),(4,3),(9,1),(1,4)) \text {, } \\
& ((0,4),(4,3),(0,1),(2,4),(10,3),(8,2),(6,4),(2,1),(10,4)) \text {, } \\
& ((0,4),(7,3),(4,2),(1,4),(8,2),(10,1),(5,1),(7,1),(5,3)) \text {, } \\
& ((0,2),(6,4),(8,3),(1,2),(3,4),(9,1),(3,2),(7,3),(1,4)) \text {, } \\
& ((0,2),(8,1),(7,4),(4,2),(1,2),(2,2),(7,3),(1,3),(10,3)) \text {. }
\end{aligned}
$$

For the main construction in the case $v \equiv 9(\bmod 18)$ we also use a 3 -perfect 9 -cycle decomposition of $K_{27} \backslash K_{9}$; this is a decomposition into 3-perfect 9 -cycles of the graph on 27 vertices in which all pairs of vertices are adjacent except for pairs occurring in a distinguished set of nine vertices. We shall refer to the 9 distinguished vertices as the "hole".

LEMMA 3.3 There is a 3-perfect 9 -cycle decomposition of $K_{27} \backslash K_{9}$.
Proof: Our elements are

$$
\{(i, j) \mid i=0,1,2 ; 1 \leq j \leq 6\} \cup\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}, \mathrm{I}\} .
$$

A simple count shows that thirty-five 9 -cycles are required. We take two fixed 9 cycles, and a further 11 starters, where we fix the second component of each element, and cycle modulo 3 on the first component of the elements; the elements in the hole are fixed and not cycled at all. The two fixed cycles are:

$$
\begin{aligned}
& ((0,1),(0,3),(0,5),(1,1),(1,3),(1,5),(2,1),(2,3),(2,5)), \\
& ((0,2),(1,4),(0,6),(1,2),(2,4),(1,6),(2,2),(0,4),(2,6)) .
\end{aligned}
$$

Then the remaining 11 cycles which are starter cycles modulo (3,-) (and with hole elements fixed) are:

$$
\begin{aligned}
& ((0,1),(1,3),(2,3),(0,2),(1,5),(0,6),(0,3),(1,4),(0,4)), \\
& ((0,1),(1,1),(1,5),(0,5),(2,4),(2,6),(0,6),(2,2),(1,2)), \\
& ((0,1),(1,6),(1,5),(2,2), \mathrm{D},(2,4), \mathrm{A},(1,3), \mathrm{F}), \\
& ((0,5),(2,3),(1,4),(2,6), \mathrm{F},(2,2), \mathrm{A},(0,1), \mathrm{D}), \\
& ((0,3),(0,2),(1,1),(2,4), \mathrm{F},(2,5), \mathrm{A},(0,6), \mathrm{D}), \\
& ((2,1),(1,3),(0,2),(2,4), \mathrm{G},(2,5), \mathrm{C},(0,6), \mathrm{B}), \\
& ((0,1),(2,6),(2,2),(2,5), \mathrm{B},(1,3), \mathrm{H},(0,4), \mathrm{E}), \\
& ((1,1),(0,4),(0,3),(2,6), \mathrm{I},(1,5), \mathrm{E},(2,2), \mathrm{C}), \\
& ((2,6),(1,3),(0,5),(1,4), \mathrm{B},(2,2), \mathrm{H},(0,1), \mathrm{G}), \\
& ((2,1),(2,6),(1,5),(1,4), \mathrm{C},(2,3), \mathrm{G},(0,2), \mathrm{I}), \\
& ((0,4),(0,2),(0,1),(1,5), \mathrm{H},(2,6), \mathrm{E},(1,3), \mathrm{I}) .
\end{aligned}
$$

We are now ready to give the main construction when $v \equiv 9(\bmod 18)$.
THEOREM 3.4 There exists a 3-perfect 9 -cycle decomposition of K_{v} for all $v \equiv 9$ modulo $18, v>9$.

Proof: Let $v=18 n+9$. The case $n=1$ is dealt with in Example 3.1 and the case $n=2$ in Example 3.2. So now assume that $n \geq 3$. Let the vertex set V of K_{v} be

$$
\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}, \mathrm{I}\} \cup\{(i, j) \mid 1 \leq i \leq 2 n, \quad 1 \leq j \leq 9\} .
$$

By Lemma 2.3, there exists a group divisible design on $\{(i, j) \mid 1 \leq i \leq 2 n\}$ with all groups of size 2 , except one of size 4 when $2 n \equiv 4(\bmod 6)$.

Take 9 -cycles as follows:
(i) For each block $\{(x, j),(y, j),(z, j)\}$ in the group divisible design, place a copy of the decomposition (V_{9}, C_{9}) of $K_{9,9,9}$ from Example 2.2 on the vertices

$$
\{(x, j) \mid 1 \leq j \leq 9\} \cup\{(y, j) \mid 1 \leq j \leq 9\} \cup\{(z, j) \mid 1 \leq j \leq 9\} .
$$

(ii) If $2 n \equiv 0$ or $2(\bmod 6)$, for each group of the GDD, $\left\{\left(a_{1}, j\right),\left(a_{2}, j\right)\right\}$ of size two, except one, place a copy of the decomposition of $K_{27} \backslash K_{9}$ (given in Lemma 3.3) on the vertices

$$
\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}, \mathrm{I}\} \cup\left\{\left(a_{1}, j\right),\left(a_{2}, j\right) \mid 1 \leq j \leq 9\right\} .
$$

For the remaining group of size two, on its 18 vertices (as j varies from 1 to 9) together with the vertices $\{\mathrm{A}, \mathrm{B}, \ldots, \mathrm{I}\}$, place a decomposition of K_{27} (see Example 3.1).
(iii) If $2 n \equiv 4(\bmod 6)$, then one group of the GDD has size four; suppose that group is $\left\{\left(b_{1}, j\right),\left(b_{2}, j\right),\left(b_{3}, j\right),\left(b_{4}, j\right)\right\}$. Then on

$$
\{\mathrm{A}, \mathrm{~B}, \ldots, \mathrm{I}\} \cup\left\{\left(b_{i}, j\right) \mid 1 \leq i \leq 4, \quad 1 \leq j \leq 9\right\}
$$

place a decomposition of K_{45}, given in Example 3.2. Finally, for the remaining groups $\left\{\left(a_{1}, j\right),\left(a_{2}, j\right)\right\}$ of the GDD of size two, on the vertex set

$$
\{\mathrm{A}, \mathrm{~B}, \ldots, \mathrm{I}\} \cup\left\{\left(a_{1}, j\right),\left(a_{2}, j\right) \mid 1 \leq j \leq 9\right\}
$$

place a decomposition of $K_{27} \backslash K_{9}$, given in Lemma 3.3.
The result is a 3 -perfect 9 -cycle decomposition of K_{v}.
Theorems 2.4 and 3.4 complete the proof of the main Theorem 1.1.

4 Concluding remarks.

There is a never-ending list of problems involving the existence of m-cycle systems with additional properties, such as being i-perfect. In view of the results in [3] and this paper, one avenue of research is certainly the determination of the spectrum of k-perfect $3 k$-cycle systems for $k \geq 4$. A good place to start is with the spectrum of 4 -perfect 12 -cycle systems. Good luck!

References

[1] Elizabeth J. Billington and C.C. Lindner, The spectrum for lambda-fold 2-perfect 6 -cycle systems, European J. Combinatorics (to appear).
[2] Haim Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
[3] C.C. Lindner, K.T. Phelps and C.A. Rodger, The spectrum for 2-perfect 6-cycle systems, J. Combin. Theory A 57 (1991), 76-85.
[4] C.C. Lindner and C.A. Rodger, 2-perfect m-cycle systems, Discrete Math. (to appear).
[5] C.C. Lindner and C.A. Rodger, Decomposition into cycles II: Cycle systems in Contemporary design theory: a collection of surveys (J.H. Dinitz and D.R.Stinson, eds.), John Wiley and Sons (to appear).
[6] Richard M. Wilson, Some partitions of all triples into Steiner triple systems in Hypergraph Seminar (Ohio State University 1972), Lecture Notes in Math. 411, 267-277 (Springer-Verlag, Berlin, Heidelberg, New York 1974).

[^0]: *Research supported by the Australian Research Council
 ${ }^{\dagger}$ Research supported by NSF grant DMS-8913576 and NSA grant MDA-904-89-H-2016.

