A Census of 2-(9,3,3) Designs

Rudolf Mathon
Department of Computer Science
University of Toronto
Toronto, Ontario, Canada M5S1A4
Dennis Lomas
Department of Mathematics
University of Toronto
Toronto, Ontario, Canada M5S1A1

Abstract

There are 22521 nonisomorphic $2-(9,3,3)$ designs of which 9218 are decomposable and 395 resolvable. Computational methods used to find and analyse these designs are discussed. All cubic multigraphs on 8 vertices are displayed and their role in the generation process is outlined. Statistics are presented concerning neighborhood graphs, multiple blocks, parallel classes, subdesigns, group orders and fragments. It is verified that all 2-(9,3,3) designs are 2- and 3-resolvable and that 3 of them have mutually orthogonal resolutions. Two families of designs together with some of their properties are listed.

1. Introduction.

A $2-(v, k, \lambda)$ design is a pair (V, B) where V is a v-set of elements, and B is a set of k subsets of V called blocks such that every 2 -subset of V is contained in exactly λ blocks. A design is called simple if it does not contain repeated blocks. A central problem in design theory concerns the enumeration of all nonisomorphic solutions for a given set of parameters. Catalogues of designs are important for the study of various properties and for the formulation and verification of conjectures. The enumeration of 2 - $(9,3,3)$ designs is of particular interest for several reasons. To establish the fine structure of 3-fold triple systems it is essential to know the spectrum of repeated blocks for systems of small orders as ingredients for recursive constructions [2]. 2-(9,3,3) designs are also important for the study of decomposability and α-resolvability of triple systems [1,4,11]. There have been several attempts to enumerate all simple 2-(9,3,3) designs. The first search has been carried out in 1980 by Harnau [7] who found 329 nonisomorphic designs. In 1985 Ivanov [8] obtained 330 solutions using a different computer algorithm. The final count has been settled in 1987 by Harms, Colbourn and Ivanov [6] who established that there are 332 nonisomorphic designs without repeated blocks.

In this paper we are interested in a complete enumeration of 2-(9,3,3) designs when repeated blocks are permitted. The paper is organized as follows. In the next section we describe our generation procedure. As in [6] neighborhood graphs are employed for a partial rejection of isomorphic solutions. In Scction 3 we highlight computational results and display statistics concerning multiple blocks, neighborhood graphs, parallel classes, subdesigns and fragments. The last section is concerned with decomposability and α-resolvability. In addition to various statistics we exhibit some interesting designs related to generalized Room squares. In the Appendices we display all cubic multigraphs on 8 vertices and list the nomogeneous and resolvable indecomposable designs.

2. Method of generation

From now on we will assume that a $2-(9,3,3)$ design (V, B) has blocks $B=$ $\left\{\mathrm{B}_{0}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{35}\right\}$ on the 9 -element set $V=\{0,1, \ldots, 8\}$. Clearly, there are 36 blocks of size 3 , each element appears in exactly 12 blocks and each 2 -subset of V appears in exactly 3 blocks. The set of blocks containing a given element $\mathrm{x} \in V$ will be denoted by $\mathrm{B}(\mathrm{x})$. A neighborhood graph $\mathrm{G}(\mathrm{x})$ on an element x is the graph (X, E) with vertices $X=V \backslash\{\mathrm{x}\}$ and edges $E=\{(\mathrm{y}, \mathrm{z}) \mid(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{B}(\mathrm{x})\}$. In a $2-(9,3,3)$ design each $\mathrm{G}(\mathrm{x})$ is a cubic multigraph on 8 vertices. There are exactly 32 such cubic multigraphs which are
displayed in Appendix I. They have been found by a simple exhaustive backtrack search with isomorph rejection. For each graph we have determined a set of invariants, listed in Table 1, which can be used for easy identification. The column headed $|\mathrm{G}|$ contains the order of the automorphism group while columns headed $\mathrm{Mt}, \mathrm{Md}, \mathrm{T}$, and Q contain the number of triple edges, double edges, triangles and quadrangles, respectively. Neighborhood graphs serve as a powerful design invariant and will be used to help with isomorph rejection.

Table 1. Invariants of cubic multigraphs on 8 vertices

No.	$\|\mathrm{G}\|$	Mt	Md	T	Q	No.	$\|\mathrm{G}\|$	Mt	Md	T	Q
0	384	4	0	0	0	16	4	0	2	2	1
1	32	2	2	0	1	17	4	0	2	2	0
2	192	2	0	4	0	18	2	0	2	1	0
3	12	1	3	0	0	19	4	0	2	0	3
4	16	1	2	2	0	20	4	0	2	0	1
5	8	1	2	0	2	21	8	0	1	3	2
6	8	1	1	2	0	22	4	0	1	2	1
7	12	1	0	2	3	23	2	0	1	2	1
8	24	1	0	0	9	24	2	0	1	1	2
9	32	0	4	0	2	25	8	0	1	0	5
10	8	0	4	0	0	26	1152	0	0	8	0
11	8	0	3	2	0	27	16	0	0	4	0
12	4	0	3	1	0	28	4	0	0	2	2
13	2	0	3	0	1	29	12	0	0	1	2
14	12	0	3	0	0	30	48	0	0	0	6
15	96	0	2	4	1	31	16	0	0	0	4

We are now in a position to describe our algorithm for generating 2-(9,3,3) designs. To facilitate the search we use two multisets S and P for the available elements and pairs, respectively. Initially, S contains 12 copies of each element and $P 3$ copies of each pair. In the first step of the algorithm we input 12 blocks corresponding to $\mathrm{B}(0)$ with a specified neighborhood graph $\mathrm{G}(0)$. Each of the 32 nonisomorphic graphs is considered in turn, starting from type 0 and ending with type 31 . The remaining 24 blocks are found recursively as follows. On the i-th level we use available elements $\mathrm{x}, \mathrm{y}, \mathrm{z} \in S, \mathrm{x}<\mathrm{y}<\mathrm{z}$, and $(\mathrm{x}, \mathrm{y}),(\mathrm{x}, \mathrm{z}),(\mathrm{y}, \mathrm{z}) \in P$ to form a candidate block. The candidates are generated in increasing lexicographical order. Whenever an element in S is completely exhausted we compare the type of its neighborhood graph to that of $G(0)$. If it is smaller than $\mathrm{G}(0)$ we turn to the next candidate otherwise set $\mathrm{B}_{\mathrm{i}}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$, update S and P and recurse to level $\mathrm{i}+1$. In case there are no candidates left on the i -th level, we backtrack
to the next candidate on level i-1, after recovering S and P. When a block B_{35} on level 35 is accepted, the set B of all blocks forms a $2-(9,3,3)$ design. At this point we carry out a partial rejection of isomorphic solutions. For this we use the vector of neighborhood graph types $g=(|G(0)|,|G(1)|, \ldots,|G(8)|)$, where $|G(x)|$ denotes the type of $\mathrm{G}(\mathrm{x})$. For every automorphism π of $\mathrm{G}(0)$ we permute the elements in B and calculate $\pi \mathrm{g}$. A new design is rejected if $\pi \mathrm{g}$ is lexicographically smaller than g , otherwise it is accepted. For a given input graph $G(0)$ the search terminates if all candidates on level 12 are exhausted.

To compute automorphism groups and canonical orderings we have employed the program nauty of Brendan McKay [10]. From the 34460 designs generated by our algorithm we obtained exactly 22521 nonisomorphic solutions. To check the correctness of our algorithm we have relabeled the types of input neighborhood graphs and repeated the search. This yielded a different set of designs but the same canonical solutions as before. In addition, we have generated the decomposable 2-(9,3,3) designs directly by concatenating the unique $2-(9,3,1)$ affine plane to each of the $362-(9,3,2)$ designs from [9,11] in all 840 possible ways. After rejecting isomorphic solutions we ended up with the same 9218 decomposable designs. As a final check we have compared the 332 simple designs extracted from our set with those listed in [6]. Again there was a perfect match.

We end this section with a few comments concerning the way our designs are presented and stored. The blocks of any $2-(9,3, \lambda)$ design are contained in the set of all 3 -subsets of our 9 -set V. By using a character to encode each of the 843 -subsets we can represent a 2 - $(9,3,3)$ design compactly as a string of 36 characters. Together with each design we store its graph vector \mathbf{g}, automorphism group order, number of distinct fragments, parallel classes and affine planes as well as information about decomposability and resolvability, requining another 15 characters. The design elements are permuted so that the corresponding graph vectors have components arranged in nondecreasing order. Finally, we sort the designs lexicographically by their vectors and blocks. A simple program can use this list to extract designs with any desired properties and calculate various statistics.

3. Results and analysis

Since it is technically impossible to list all 22521 nonisomorphic designs we will compile statistics concerning designs with specific properties. We start with the spectrum of repeated blocks. Table 2 displays the number of designs with a given number of double blocks (first column) and triple blocks (first row). There are no
designs with $5,7,8,9,10$ and 11 blocks repeated three times. The (0,0)-entry is 332 and corresponds to the number of simple designs; the sum of all entries in the table is 22521. Next we study the distribution of neighborhood graphs in the set of all designs.

Table 2. Frequency of double and triple blocks

$\downarrow / 3 \rightarrow$	0	1	2	3	4	5	6	12
0	332	26	1	2	1	0	0	1
1	1319	71	5	0	0	0	0	0
2	2774	186	6	0	1	0	0	0
3	4021	263	12	0	0	0	0	0
4	4299	344	21	1	2	0	0	0
5	3649	335	18	0	0	0	0	0
6	2485	246	19	2	2	0	1	0
7	1253	143	13	1	1	0	0	0
8	440	51	8	0	1	0	0	0
9	113	20	3	2	0	0	0	0
10	19	2	1	0	0	0	0	0
11	2	1	0	0	0	0	0	0
12	2	0	0	0	0	0	0	0

Table 3. Frequency of neighborhood graphs

No.	Nd	Ng	No.	Nd	Ng
0	8	16	16	7545	9017
1	87	99	17	7433	8867
2	27	29	18	13068	20596
3	544	675	19	7445	9358
4	555	632	20	4776	5396
5	995	1304	21	5864	6452
6	1219	1795	22	10067	13199
7	784	997	23	10787	14561
8	178	205	24	16782	30615
9	327	341	25	6471	7653
10	1918	2197	26	48	48
11	2760	3076	27	4231	4584
12	5221	6526	28	12761	2504
13	8761	13014	29	6432	8081
14	2164	2393	30	1846	1990
15	220	223	31	5274	6246

In Table 3 the column headed Nd displays the number of designs which contain a graph of type No. and column Ng contains the total number of times a graph of type No. occurs in the set.of all designs. Hence, the Nd-columns sum to 22521 and the Ngcolumns sum to 8 times more. As we can see from the table, graph No. 0 occurs least and graph No. 24 most frequently.

A design is called homogeneous if all its neighborhood graphs are of the same type and heterogeneous if no two graphs are of the same type. Among the 22521 designs 14 are homogeneous and 726 heterogeneous.

Table 4. Frequencies of graph vectors, distinct parallel classes and affine planes, and group orders.

N	Nv	Np	Na	Ngp	N	Nv	Np^{*}	Na	Ngp^{*}
0	0	0	13303	0	14	2	2757	0	0
1	14859	1	8077	21534	15	0	2416	0	0
2	2049	1	759	792	16	1	1904	0	2
3	487	6	354	83	17	1	1355	0	0
4	208	25	23	39	18	0	996	0	4
5	97	57	0	0	19	0	530	0	0
6	38	187	4	41	20	0	377	0	0
7	31	344	0	0	21	0	143	0	0
8	12	671	0	4	22	1	84	0	0
9	7	1060	0	3	23	0	24	0	0
10	4	1742	0	0	24	0	19	0	5
11	2	2283	0	0	25	0	2	0	0
12	3	2792	1	7	26	0	2	0	0
13	0	2740	0	0	27	0	1	0	0

Table 5. Spectrum of distinct fragments

	0	1	2	3	4	5	6	7	8	9
10	1	0	0	0	0	0	1	0	0	0
20	0	0	0	0	1	2	1	0	1	1
30	0	2	0	1	3	0	1	1	0	3
40	5	5	4	5	5	3	5	7	13	13
50	10	19	12	11	18	30	27	38	28	47
60	38	58	74	78	74	84	75	113	157	148
70	156	147	151	197	222	212	270	261	283	314
80	317	289	366	354	367	381	428	439	426	445
90	454	418	459	461	470	479	479	435	469	439
100	471	481	450	475	435	405	393	453	426	424
110	347	323	346	313	339	377	326	312	271	207
120	229	230	235	193	182	164	197	179	162	161
130	147	97	97	77	97	92	84	51	51	43
140	63	41	57	31	37	29	24	15	11	13
150	13	11	4	2	3	0	5	1	4	2
160	0	1	0	0	0	0	0	0	0	0
170	0	0	0	0	0	1	0	0	0	0

The homogeneous designs are listed in Appendix II (see end of Section 4 for an explanation of the first line of each design). Table 4 gives statistics for graph vectors,
parallel classes, affine planes and group orders. Its columns have the following meaning: Nv graph vectors occur N times, Np designs contain N distinct parallel classes, Na designs contain N distinct affine planes (i.e. 2-(9,3,1) subdesigns) and Ngp designs have an automorphism group of order N . It is obvious that the sum of the $\mathrm{Nv}-$ column entries taken with multiplicity N , and the sums of each remaining column again equal to 22521 , except for a few entries which did not fit into the table (*). These are: one design with 30 and one with 37 parallel classes and one design with each of the group orders $32,36,48,54,108,432$ and 1296.

A fragment (or a Pasch configuration) in a triple system 2-(v,3, λ) is a set of four blocks of the form $\{(\mathrm{a}, \mathrm{c}, \mathrm{d}),(\mathrm{a}, \mathrm{e}, \mathrm{f}),(\mathrm{b}, \mathrm{c}, \mathrm{e}),(\mathrm{b}, \mathrm{d}, \mathrm{f})\}$. Fragments play an important role as design invariants and can be used to transform one design into another [3]. In Table 5 we display the number of designs containing a given number of distinct fragments which is specified in the first row (units) and first column (tens). For example, there are 354 designs containing 83 fragments.

Finally, we assess the strength of some invariants considered in this section to distinguish nonisomorphic designs. The efficiency of an invariant on a set D of nonisomorphic designs is the ratio of the number of values it takes on D to the cardinality of D. Table 6 displays the efficiency of four combinations of invariants.

Table 6. Efficiency of selected invariants

V	VMGDR	VF	VMGDRF
17802	20875	21531	22190
0.790	0.927	0.956	0.985

The letters $\mathrm{V}, \mathrm{M}, \mathrm{G}, \mathrm{D}, \mathrm{R}$, and F stand for graph vector, block multiplicities, group order, decomposability, resolvability and the number of distinct fragments, respectively. The first row displays the number of designs with different invariants, the second row contains the corresponding efficiencies. As we can see from the table, graph vectors in conjunction with fragment numbers are capable of distinguishing over 95% of nonisomorphic designs.

4. Decomposability and resolvability

A $2-(\mathrm{v}, \mathrm{k}, \lambda)$ design (V, B) is said to be decomposable if there is a proper subset B^{\prime} of B for which (V, B^{\prime}) is a $2-\left(\mathrm{v}, \mathrm{k}, \lambda^{\prime}\right)$ subdesign. A design with no such subset is called indecomposable. It is easy to see that the complementary blocks $B \backslash B^{\prime}$ form a $2-(\mathrm{v}, \mathrm{k}, \lambda-$
λ^{\prime}) subdesign. Of interest are also partitions of a $2-(v, k, \lambda)$ design into n indecomposable $2-\left(v, k, \lambda_{i}\right)$ designs with $\lambda_{1}+\ldots+\lambda_{n}=\lambda$ (see [1]). The $2-(9,3, \lambda)$ family of designs begins with a unique design with $\lambda=1$ which has the structure of an affine plane (of order 3). Of the 36 designs with $\lambda=2,9$ are decomposable into 2 disjoint affine planes. For $\lambda=3$ the situation is a little more complicated. Any decomposable design D contains at least one affine plane. D can be one of 3 types depending on the structure of the 2-(9,3,2) subdesign complementary to an affine plane. D is of type 1 or 2 if the complement to every affine subplane is indecomposable or decomposable, respectively; D is of type 3 if it contains both subplanes with decomposable and indecomposable complements. In the set of 22521 designs with $\lambda=3$ there are 9218 decomposable ones. These are partitioned into 8854 designs of type 1,347 of type 2 and 17 of type 3.

A subset C of blocks in a 2 - $(\mathrm{v}, \mathrm{k}, \lambda)$ design (V, B) is called an α-class if each element of V occurs in exactly α blocks. A design is α-resolvable if its blocks can be partitioned into α-classes [4]. For $\alpha=1$ we have the usual notion of resolvability into parallel classes. Two α-resolutions of (V, B) are said to be orthogonal if any α-class of one of them has at most one block in common with any α-class of the other. A design is called m-tuply α-resolvable if it has m mutually orthogonal α-resolutions. There are 395 resolvable designs of which exactly 3 contain orthogonal resolutions. We display these 3 designs (No. 0, 1809, 22197) and their orthogonal resolutions by listing each block together with a tuple from 12 letters signifying the parallel classes it belongs to in various resolutions. The i -th coordinate of each tuple corresponds the i -th resolution.

012aaa	012 bbb		$012 \mathrm{ccc}$$078111$		034ddd	034eee	034fff	056 ggg		- 056 hhh		$\begin{aligned} & 056 \mathrm{iii} \\ & \text { 147ihg } \end{aligned}$
078jjj	078	kkk			135jlk	135 kjl	1351kj	147gih	147 hgi			
168 dfe	168edf		168 fed		238ghi	238hig	238igh	246 jkl		246	klj	2461 jk
257 def	257efd		257 fde		367 acb	367bac	367 cba	458 abc		45		458 cab
012aaa	012 bbb		012ccc		034ddd	035eee	038fff	046 ggg		047 hhh		056iii
057jjj	068 kkk		078111		1341kj	135 klg	138 jih	146 fel		147	fi	156dhf
157 gdk	168 hjd		178ige		234ijk	235hgl	238ghi	246jle		2471	if	2561 fh
257 fkd	268edj		278 deg		367 acb	367 bac	367 cba	458 abc		45		458 cab
		013b		014 cc	023dd	024ee	034ff	056 gg		57 hh		
		068 k		07811	125 jk	126ih	1351j	137gi		45 kl		
		168		178ed	236hl	237 kg	2461i	248gj		57 cf		
		347		348jh	356 ec	358ae	368ca	456 bd		57da	46	

A probabilistic approach based on simulated annealing has been suggested by Gordon Royle to verify that every $2-(9,3,3)$ design is both 2 - and 3 -resolvable. His algorithm starts with an arbitrary partition of blocks into 6 (or 4) equal sets and swaps
blocks from different subsets to minimize the number of conflicts via simulated annealing. The final partition is in most cases a 2 -resolution (or 3-resolution). Processing all 22521 designs took less than an hour of CPU time on a SUN SPARCstation. From the 3 designs which are multiply resolvable only 2 (No. 1809, 22197) are doubly 2 -resolvable. We display them as squares in which the rows correspond to one 2 -resolution and columns to another.

012	458	367	246	138	057							
367	012	458	035	247	168		012	467	248	137	358	056
458	367	012	178	056	234		36	013	278	456	057	148
034	156	278	068	235	147		347	014	058	126	257	
157	238	046	134	078	256		157	125	067	023	348	168
268	047	135	257	146	038		145	068	356	178	024	237
078	258	135	246	167	034							

It would be interesting to know whether there exist 3 mutually orthogonal 2 -resolutions. This would be a maximal set since there are no mutually orthogonal Latin squares of order 6 . We note that for obvious reasons there are no orthogonal 3 -resolutions of a 2 $(9,3,3)$ design.

Finally, a summary is given in Table 7 of results concerning 2-(9,3, $\lambda)$ designs for $\lambda=1,2,3$. The columns headed $\mathrm{M}, \mathrm{N}, \mathrm{S}, \mathrm{D}$ and R contain the numbers of distinct, nonisomorphic, simple, decomposable and resolvable designs, respectively.

Table 7. The family of 2-(9,3, λ) designs

λ	M	N	S	D	R
1	840	1	1	0	1
2	4409916	36	13	9	9
3	7974771700	22521	332	9218	395

In Appendix III we present a list of all resolvable indecomposable 2-(9,3,3) designs. The first line gives the design No., vector of graph types, group order, number of distinct fragments, triple blocks, double blocks, number of distinct affine planes with decomposable complements, with indecomposable complements, number of distinct parallel classes and an indicator of resolvability.

Acknowledgements

Research of the first author is supported by NSERC Canada under grant number A8651. Research of the second author is supported by NSERC Canada and the Department of Computer Science, University of Toronto. We would like to thank Gordon Royle for making available to us his program to find α-resolutions.

References

[1] C.J. Colbourn, J.J. Harms, Partitions into indecomposable triple systems, Ann. Discrete Math. 34 (1987), 107-118.
[2] C.J. Colbourn, R. Mathon, A. Rosa, N. Shalaby, The fine structure of threefold triple systems: $\mathrm{v} \equiv 1,3(\bmod 6)$, Discrete Math. (to appear)
[3] P.B. Gibbons, Computing techniques for the construction and analysis of block designs, Dept. of Computer Science, Univ. of Toronto, Technical Report 92/76.
[4] K. Gray, On the resolvability of B[3,3;9] block designs containing no repeated blocks, J. Combin. Math. Combin. Comput. 3 (1988)
[5] H-D.O.F. Gronau, A survey of results on the number of $\mathrm{t}-(\mathrm{v}, \mathrm{k}, \lambda)$ designs, $A n n$. Discrete Math. 26 (1985), 209-220.
[6] J.J.Harms, C.J. Colbourn, A.V. Ivanov, A census of $(9,3,3)$ block designs without repeated blocks, Congressus Numerantium 57 (1987), 147-170.
[7] W. Harnau, Die Anzahl paarwise nichtisomorpher, elementarer, wiederholungsfreier 2-(9,3,入)-Blockpläne, Tail II, Rostock. Math. Kolloq. 13 (1980), 43-47.
[8] A.V. Ivanov, Constructive enumeration of incidence systems, Ann. Discrete Math. 26 (1985), 227-246.
[9] R. Mathon, A. Rosa, A census of Mendelsohn triple systems of order nine, Ars. Combin. 4 (1977), 309-315.
[10] B.D. McKay, nauty User's Guide (Version 1.5), Dept. of Computer Science, The Australian National University, Technical Report TR-CS-90-02.
[11] E. J. Morgan, Some small quasi-multiple designs, Ars Combin. 3 (1977), 233250.

Appendices

I. Cubic multigraphs of order 8

5

10

15

16

21

26

31

17

18

23

24

29

II. Homogeneous $(9,3,3)$ designs (14)

012012012034034034056056056078078078135135135147147147 168168168238238238246246246257257257367367367458458458
$\begin{array}{llllllllllllll}120 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 108 & 18 & 3 & 9\end{array} 20071$ 012012012034034035046057057068068078134138138147147156 156157168235235238246246247256278278367367367458458458
1809888888888129654.30120371 012012012034035038046047056057068078134135138146147156 157168178234235238246247256257268278367367367458458458
$2130 \quad 101010101010101010 \quad 18 \quad 33 \quad 012 \quad 20081$ 012012013024035035046046057068078078125134134146158158 167167178237237238248248256256267347356368368457457458
$\begin{array}{lllllllll}5866 & 121212121212121212 & 9 & 63 & 0 & 9 & 0 & 0 & 3\end{array} 0$ 012013014027027035036048048056056078123123145148157157 167168168238245246246256258278346347347358358367457678
$9185131313131313131313 \quad 9 \quad 36$
012013013024024035046056057068078078127128134146146157 157158168235238238247256256267345347367367368458458478
$\begin{array}{lllllllll}17653 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18 \\ 18 & 18 & 63 & 0 & 6 & 3 & 0 & 10 & 1\end{array}$ 012013017023024035046046058058067078126126138138145147 148156157234235248257257268278347347356367368456458678
$21991242424242424242424 \quad 6 \quad 99 \quad 0301200$ 012012013024035037045048056067068078126135138145147148 157167168235237238247248256258267346346347368456578578
$\begin{array}{lllllllll}21992 & 242424242424242424 & 18 & 99 & 0 & 3 & 3 & 0 & 20\end{array}$
012012013024035037045048056067068078126137138145147148 156157168235237238247248256258267345346346368467578578
$22437282828282828282828 \quad 6 \quad 132 \quad 0 \quad 0 \quad 0 \quad 1 \quad 12 \quad 0$
012013018024026035037045046057068078123124137145147156 158167168236238247256257258278345346348358367468478567
$22438282828282828282828 \quad 18126$
012013018024026035037045046057068078124127135136147148
156158167236237238245257258268345346348378467478567568
$22439282828282828282828 \quad 9 \quad 135 \quad 0 \quad 0 \quad 0 \quad 3 \quad 12 \quad 0$
012013018024026035037045046057068078124125134138147156 157167168236237238247256258278345348356367458467468578
$22440 \quad 282828282828282828 \quad 6 \quad 165$ 0 08
012013018024026035037045046057068078123125136145146147
158167178234238248256257267278347348356357368458467568
$22520 \quad 292929292929292929 \quad 54 \quad 99 \quad 0 \quad 0 \quad 300301$
012013018024025034035046057067068078123126137146147148 156157158234235247258267268278348356367368378456457458

III. Indecomposable resolvable $(\mathbf{9 , 3 , 3})$ designs (22)

$614 \quad 3 \quad 77242424242424 \quad 6 \quad 75 \quad 1 \quad 3 \quad 0 \quad 0 \quad 181$ 012356478012358467012378456034158267034167258035168247 046157238057136248057148236068137245068145237078134256
$1397 \quad 5 \quad 6 \quad 7182024242829 \quad 1 \quad 69 \quad 1 \quad 3 \quad 0 \quad 0 \quad 181$
012348567012356478012368457035167248035178246037168245 046137258046158237047156238058134267068134257078145236
$1421 \quad 5 \quad 67202024242828 \quad 2 \quad 71 \quad 1 \quad 3 \quad 0 \quad 0 \quad 181$
012356478012368457012378456035147268035167248037168245 046138257046158237048157236058134267067134258078156234
$1545 \quad 6 \quad 6 \quad 6142424242930 \quad 3 \quad 65 \quad 130000181$
012348567012358467012368457036145278036158247037156248 045168237046178235048167235057134268058137246078134256
$1755 \quad 677242428283131 \quad 2 \quad 92 \quad 1 \quad 1 \quad 0 \quad 0 \quad 201$
012356478012357468012378456034158267034167258035168247 046157238057136248058147236067138245068145237078134256

012346578012356478012378456034158267035168247037156248 046138257048167235057134268058147236067145238068137245
$2126 \quad 92222232424242425 \quad 1 \quad 80 \quad 04000161$
013258467014237568014238567026148357026158347027138456 035126478035167248045127368068157234078125346078136245

014256378014267358018247356025138467025168347028167345 036127458036157248037145268046123578057123468078156234
$13288132324242424242829 \quad 1 \quad 93 \quad 0 \quad 3 \quad 000191$
014236578014237568015234678025137468025167348028146357 036128457036158247038127456047138256067135248078126345
$13588 \quad 141719202224252828 \quad 1 \quad 80$
014256378014268357017238456025167348025178346027168345 036124578035158247037156248048135267058123467068123457
$16578171818242424282931 \quad 1 \quad 90 \quad 0 \quad 3 \quad 000191$
015246378015268347017236458023148567023168457025138467 034156278046137258048136257067124358068127345078124356
$19515182324242528282929 \quad 1 \quad 106$ 0 24000201
012356478012357468015246378027136458034128567034167258 035168247046157238058147236067138245068145237078134256
$19550 \quad 182424242428282831 \quad 1104 \quad 0 \quad 2 \quad 0 \quad 0 \quad 20 \quad 1$
014257368014268357016278345023158467023167458025136478 037128456047138256056127348058124367068157234078135246
$19555182424242428282931 \quad 2100 \quad 0 \quad 2 \quad 0 \quad 0 \quad 22 \quad 1$
014258367014267358015278346023157468023168457026178345 037156248047138256056127348058123467068124357078136245
$19575182424242528282829 \quad 1 \quad 98 \quad 0 \quad 2 \quad 0 \quad 0 \quad 20 \quad 1$ 012356478012357468017236458025146378034128567034158267 038157246047168235056134278058136247067145238068137245
$21184222224282828292931 \quad 1 \quad 114$ 0 12000191
012345678012358467015248367027138456034126578036147258
038146257047135268048156237056178234057148236068137245
$21348222324272828303131 \quad 1 \quad 115$ 0 11000191
012358467012378456013256478024168357034157268036147258
045138267057136248058127346067148235068145237078156234
$21517222424272828293031 \quad 1 \quad 115$ 0 12000191
012345678012356478013267458028157346035147268038146257
046137258047158236048156237056124378057168234067138245
$21897232424282828292931 \quad 1 \quad 113 \quad 0 \quad 1 \quad 0 \quad 0 \quad 21 \quad 1$
012347568012367458013258467026178345035146278037148256 045167238046138257048157236057124368068135247078156234
$22494282828282828293131 \quad 1 \quad 125 \quad 0 \quad 0 \quad 000221$
012346578015267348016248357023168457028145367035178246 038156247045127368046137258047123568067148235078134256
$22511282828282829293131 \quad 2120 \quad 0 \quad 0 \quad 0 \quad 0 \quad 241$
012368457013258467014237568026135478027156348034168257 038157246045178236056137248058124367067128345078146235
$22513282828282829293131 \quad 2126$ 0 02000241 013257468014267358015238467024168357025136478028147356 034126578037128456056127348067158234068137245078145236

