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Abstract. Let C(G) be the closed-set lattice of a graph G, and let l(f) denote the 
length of a chain r in C( G). The spectrum of £( G) is defined as the set 

S(£(G)) = {/(r) I r is a maximal chain in £(G)}. 

For every nontrivial graph G,S(£(G)) is a finite set of natural numbers greater 
than one. We prove in this paper that (*) for any finite set A of natural numbers 
greater than one, there exists a graph G such that S(£( G» = A. 

A set 5 of vertices of a graph G is said to be k-independent if d( u., v) 2:: k for 
all distinct members u, v in S. A k-independent set of G is said to be maximal if it is 
not properly contained in any k-independent set of G. To prove the result (*), we first 
establish the following: Given any finite set B of natural numbers, there exists a graph 
G such that 

{I 5 II 5 is a maximal 3-independent set of G} = B. 
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Let G be a simple graph with vertex set V( G) and edge set E( G). For each 

a in V(G), let N(a) = {x E V(G) I ax E E(G)} be the set of neighbours of a. A 

subset S of V( G) is called a closed set of G if, for each pair of distinct elements 

a, b in S, N(a) n N(b) ~ S. Let £(G) be'the family of closed sets of G, inclusive 

of the empty set 0. It is evident that the family £( G) forms under set-inclusion a 

lattice with least element 0 and greatest element V( G) in which the meet A 1\ B is 

the set-intersection A n B and the join A V B is the closed set of G generated by 

AU B in G(i.e., the intersection of all closed sets containing A U B) for any pair of 

members A, B in £(G). The lattice £(G), which was first introduced by N. Sauer 

(see [13]), is called the closed-set lattice of the graph G. 

In [3,4, 6 - 11] we investigate the relation between the graph structure of G 

and the lattice structure of £( G). In [5,12] we study the lengths of maximal chains 

in the lattice £( G) when G is a tree. The length of a chain r in a finite lattice, 
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denoted by l(f), is defined by l(f) I r I -1. The spectrum of L(G), denoted by 

S(£(G», is defined as the set 

S(£(G» = {l(f) I f is a maximal chain in L(G)}. 

For every nontrivial graph G, the set S(£( G) is a finite set of natural numbers 

greater than one. A set J of natural numbers is said to be dense if, whenever 

a ::; x ::; b where x is a natural number and a, b E J, then x E J. In [5,12], we show 

that if the graph G is a tree, then the set S( £( G)) is always dense. The result is 

however no longer true if G is not a tree. It is the aim of this paper to establish 

the following result. 

Theorem A. Given any finite set A of natural numbers greater than one, there 

always exists a graph G such that 

S(£(G)) = A. 

Throughout this note every graph is assumed to be finite and connected. A set 

B is said to be of order k if I B I = k. For a subset V of V( G), we shall denote by 

< V > the closed set of C generated by V and [V] the subgraph of G induced by V. 

For each u in V(G), d(u, V) = min{d(u,v) I v E V}, where d(u,v) is the distance 
between u and v in G. The diameter of the induced subgraph [V] of C, denoted by 

diam([V]), is defined by diam([V]) = max{d[v](u,v) I u,v E V}, where d[vj(u,v) is 
the distance between u and v in [V]. For all terminology on graphs and lattices not 

explained here, we refer to [1] and [2] respectively. 

2. Extension of Graphs. 

In the remainder of this paper, let G be a graph of order n(~ 2) with V( G) = 

{Xl, X2, ... ,xn }. Let {HI, H2 , ..• ,H n} be a family of n graphs. The G-lexicographic 
extension of 

and 

E(G(H1 ,H2 , .•. ,Hn )) =U{E(Hi) Ii = 1, ... ,n} 

U { 1l V I u E V ( H j ), v E V ( H k), x j x k E E ( Gn· 

We shall denote by K:( C) the class of all G-lexicographic extensions of n nontrivial 

complete graphs. That is, 

K:( G) {G( HI, H2 , ... ,H n) I each Hi is a complete graph of order at least 2}. 

A subset S of V(C) is called an i-independent set of a graph G if d(x,y) ~ i 
for any pair of distinct elements x, y in S. An i-independent set S of G is said to 

be maximal if it is not properly contained in any i-independent set of G. In what 



follows we shall show that the order of a maximal3-independent set of G determines 

the length of a maximal chain in £(H) for each H in JC(G). 

First of all we have the following observation. 

Lemma 1. Let H be in iC(G) and X,y be in V(H). Then < {x,y} >= V(H) 
if and only if d( x, y) = 1 or 2. 

Proof. It is clear that < {x,y} >= V(H) if d(x,y) = 1 or 2. If d(x,y) 2:: 3, 

then < {x, y} >= {x, y} =I- V(H). 0 

Let H E JC( G) and let A be a proper closed set of the graph H = 
G(H1,Hz, ... ,Hn ). By Lemma 1, d(a, b) 2:: 3 for every pair of distinct elements 

a,b in A. Thus I AnHi I~ 1 for each i = 1,2, ... ,n. Let J = {i I AnHi =I- 0}. 
Then {Xi liE J} is a 3-independent set of G. Conversely, if {Xa(l), Xa(Z)"'" Xa(k)} 

is a 3-independent set of G, let aj be an element in Ha(j) for each j = 1,2, ... ,k. 

Then A {aI, az, ... , ak} is a proper closed set of H. The following result thus 

follows. 

Lemma 2. Let H be in iC(G). Then H has a proper (resp., maximal proper) 

closed set of order k if and only if G has a 3-independent (resp., maximal 3-

independent) set of order k. 0 

Lemma 3. Let H be in iC(G). Then the lattice £(H) has a maximal chain of 

length k + 1 if and only if G has a maximal 3-independent set of order k. 

Proof. Let {x a(1), xa(Z), ... , Xa(k)} be a maximal3-independent set of G. For 

each j 1,2, ... , k, let aj be an element in Ha(j) and Aj = {at I t ~ j}. By 

Lemma 2,0 A o-< A 1 -< ... -< Ak-< V(H) is a maximal chain of length k + 1 

in £(H). 

Conversely, if 0 = Ao - < Al - < ... - < Ak - < V (H) is a maximal chain in 

£(H), then by Lemma 1, Ak is of order k. By Lemma 2, G has a corresponding 

maximal 3-indep~ndent set of order k. 0 

As an immediate consequence of Lemma 3 we have : 

Corollary. Let H be in iC( G). Then 

S(£(H)) = {k + 1 I G has a maximal 3-independent set of order k}. 0 

3. Two Fundamental Constructions. 

The corollary to Lemma 3 suggests a way to prove Theorem A. Given a finite 

set A of natural numbers greater than one, let A' {k 1 IkE A}. If a graph G 

can be constructed in such a way that the set of orders of its maximal3-independent 

sets is equal to A', then S(£(H)) = A for any H in JC(G). In this section we shall 
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introduce two methods of construction which enable us to construct graphs whose 

sets of orders of all maximal 3-independent sets are equal to two special sets of 

natural numbers. These will then be applied to prove our main result in the final 
section. 

Lemma 4. For each natural number r, there exists a graph P such that every 
maximal 3-independent set of P is of order r. 

Proof. Construct a graph P with 

V(P) = U{V; 1 i = 1,2, ... ,r} 

such that the following conditions hold: 

(i) Vi n Vi = 0 if i =I- j , 

(ii) diam([Vi]) = 2 for each i = 1,2, ... , r, and 

(iii) for each i = 1, 2, ... , r, there exis ts a vertex U i in V; such that 

d(Ui, Vj) 2: 3 for each j = 1,2, ... ,r with j =I- i. 

Such a graph P can easily be constructed (see the example in Figure 1). We claim 

that every maximal 3-independent set of P is of order r. 

Let S be a maximal 3-independent set of P. By (ii), I s n Vi I:::; 1 for each 

i = 1,2, ... ,r. If 1 snvj 1= 0 for somej = 1,2, ... ,r, then by (iii), SU{Uj} 

is a 3-independent set ofP, which however contradicts the maximality of S. Thus 

1 S n Vi 1= 1 for each i = 1,2, ... , r. Hence by (i), IS 1= r, as required. 0 

p 

Figure 1. A graph in which every maximal 3-independent set is of order r 

Lemma 5. Let {nl, n2, ... , n q} be a set of natural numbers where q 2: l. 

There exists a graph Q such that the set of orders of all maximal 3-independent 

sets of Q is {I, nl + 1, n2 + 1, ... , nq + I}. 

Remark. Lemma 5 simply says that every finite set of natural numbers in­

cluding one is the set of orders of all maximal 3-independent sets of a graph. 

Proof. We may assume nl < n2 < ... < n q . Let Kp be the complete graph 

of order p = 1 +q+nq with V(J(p) = {a},a2, ... ,aq,bl,b2, ... ,bnqlW} andIet 
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{C1, C2, .•• , cnq } be a set of vertices disjoint from V( Kp). Define a graph Q with 

and 

We claim that the set of orders of all maximal 3-independent sets of Q IS 

{1,n1 + 1, ... ,nq + I}. 

Let S be a maximal 3-independent set of Q. There are four cases to be consid­

ered. 

Case (i). ai E S for some i = 1,2, ... , q. 

In this case, S = {ai, C1, C2, ... , cnj } and hence 1 S 1= ni + l. 
Case (ii). bi E S for some i = 1,2, ... ,nq. 

We have S {bd and hence I 5 1= 1. 

Case (iii). Ci E 5 for some i = 1,2, ... ,nq' 

If 5 n {al, a2,"" a q } = 0, then 5 C {a q , Cl, C2, . .. , cnJ, which contradicts the 
maximality of 5 since the latter is a 3-independent set of Q. Thus ai E S for some 

i = 1,2, ... ,q, which has already been dealt with in case (i). 

Case (iv). w E S. 

We then have 5 = {w} and hence 1 S 1. 

The proof of Lemma 5 is thus complete. D 

4. The Main Result. 

We are now in a position to prove Theorem A. By the corollary to Lemma 3, 

this is equivalent to proving the following result. 

Theorem B. Let {80, 81, ... ,8 q } b~ a set of natural numbers where q 2: O. 

There exists a graph R such that the set of orders of all maximal 3-independent 

set s of R is {8 a , 81, ... , 8 q } . 

Proof. By Lemma 3, the result is clearly true if q O. Hence we may assume 

q 2: 1 and 80 < 81 < ... < 8 q • 

If 80 1, then by letting ni = 8i - 1 for each i 1,2, ... ,q, we obtain a 

sequence of natural numbers nl < n2 < ... < n q . By Lemma 5, there exists a 

graph Q such that the set of orders of its maximal 3-independent sets is {I, n1 + 
1, n2 + 1, ... , n q + I}, i. e., {8 a , 8 1 , ... , 8 q } • 
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Assume now So ~ 2 and let ni = Sj-SO for each i = 1,2, ... , q. Then a graph Q, 
whose set of orders of all maximal3-independent sets is {I, nl +1, n2+1, ... , nq +1}, 

can be constructed as given in the proof of Lemma 5. Further, let r = So - 1 ~ 1. 

Then there exists by Lemma 4, a graph P in which every maximal 3-independent 

set is of order r. We now refer to the construction of P as given in the proof of 

Lemma 4. For each i = 1,2, ... ,r, let Fi = {v 1 v E Vi,d(v,Ui) = 2} and let 

F = U{Fi 1 i = 1,2, ... , r}. Define a graph R such that 

V(R) V(P) U V(Q) U{z} and E(R) = E(P) U E(Q)U{wz} U Z, 

where w is the vertex of Q defined in the proof of Lemma 5, z is a new vertex and 

Z is any nonempty subset of the set {az 1 a E F}. 

We claim that the set of orders of all maximal3-independent sets of R is {so, SI, 

... , Sq}. 

Let 5 be a maximal 3-independent set of R. By applying a similar argument 

as developed in the proof of Lemma 4, we have 1 5 n Vi 1 for each i = 1,2, ... , r 

and thus / SnV(p) r. Let 5' = Sn(V(Q)u{z}). There are five cases to be 

considered. 

Case (i). ai E 5' for some i = 1,2, ... , q. 

In this case, 5' = {ai, Cl, C2, ••. , cni } and hence I 5' 1= ni + l. 
C ( .. ) b· 5' £ . - ') ase zz. z E or some z -l,~, ... ,nq. 

vVe have 5' = {bd and hence I 5' 1. 

Case (iii). Z E 5'. 

In this case, 5' = {z, Cl , C2, .•. , cnq } and hence / 5' 

C ( .) . 5' £ . - 1 0) ase ~v. Cz E or some z - ,~, ... , n q. 

If Sf n {Z, aI, a2, ... , a q } = 0, then 5' c {a q , Cl , C2, ... cnq } and hence 5 c 
(5n V(P)) U {a q ,cl,c2,'" ,cnq }, which contradicts the maximality of 5 since the 

latter is a 3-independent set of R. Thus 5' n {z, aI, a2,"" a q } =1= 0, which has 

already been dealt with in either case (i) or case (iii). 

Case (v). w E 5'. 

We then have 5' = {w} and hence 1 Sf l. 

Now, we have 

IS SnV(p)I+/sn(V(Q)u{z})1 

and thus either / 5 1= r + 1 = So 

or I 5 1= r + (nj + 1) = 5 i, where i = 1,2, ... ,q. 

The proof of Theorem B is thus complete. 0 

Remark. Combining Theorem B with the corollary to Lemma 3, we actually 

arrive at the following result which is somewhat stronger than Theorem A : Given 
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a finite set A of natural numbers greater than one] there always exists a graph G 

such that S(£(H)) = A for every H E K( G). 
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