
Heuristics 

for 

Sparse General Travelling Salesman Problems 

L. R. Foulds 

Department of Management Systems 

University of vVaikato 

Hamilton. New Zealand 

Derek R. O'Connor 

Department of Management Information Systems 

University College 

Dublin. Ireland 

Abstract: The well-known travelling salesman problem can be expressed in graph

theoretic terms as follows : find a minimum-weight Hamiltonian cycle in a connected 

edge-weighted graph G(N, A). vVe concentrate here on the problem where G is large and 

sparse, i.e., where INI is 500 or more and IAI is O( INI). Such graphs arise frequently in 

practice, where G represents a road network, and each node (city) is connected directly to 

3 or 4 other nodes. Sparse graphs may not have Hamiltonian cycles and hence there may 

be no solution to the problem as stated. vVhether this is the case or not, the requirement 

that the cycle is Hamiltonian is often unnecessarily restrictive. It is sufficient in many 

practical problems, such as traffic planning. to address only what is called the General 

Travelling Salesman Problem, which requires merely a minimum-weight, closed spanning 

walk, in which any node can be repeated if this lowers the total weight. Such a walk can, 

of course, be found in any connected graph. vVe report on the results of an experimental 

comparison of some heuristic methods for this problem. 

1. Introduction 

Consider a travelling salesman who, starting from his home city, must visit, exactly once, 

each city on a given list and then return home. It is assumed that a cost (usually given 

terms of distance or time) of travelling bet\veen each pair of cities is known. The problem 

is to find the least-cost tour. An early seminal paper on the problem was presented by 

Dantzig, Fulkerson, and Johnson [3] and the problem was popularized by Flood [5]. A 

comprehensive treatise on research into it has been compiled by Lawler, Lenstra, Rinnooy

Kan, and Shmoys [12], reflecting the fact that the problem has become one of the most 

famous in combinatorial mathematics, operations research. and computer science. It has 

many direct and indirect applications, some that have nothing to do with physical move

ment on a graph. Some examples of these have been given by Garfinkel [6] : vehicle 

Australasian Journal of Combinatorics ~ ( 1992), pp. 285-292 



routing, computer wiring, wallpaper cutting, job sequencing, and clustering a data array. 

Our present work is motivated by the need to find closed tours in graphs representing 

general road graphs. Typically, these graphs represent road networks of rural areas with 

up to 10,000 towns, with relatively few pairs of to\vns directly connected by a road. The 

paper reports on the results of an experimental comparison of solution methods that were 

developed for such practical problems. 

We begin in the next section by introducing the necessary notation and terminology. 

We then proceed to state the relevant combinatorial optimization problems to be studied. 

We then devise some solution methods for the problem and end with a comparison of the 

performance of these methods. 

2. Definitions 

Consider a connected, undirected, arc-weighted graph G = (N, A), with node set Nand 

with an arc set A, an element of which is denoted by (Il, v) if it directly connects nodes 

u and v. Each arc (u, v) has a non-negatiYe real-valued weight denoted by d( u, v). Let 

INI = n, and IAI m. For details on the undefined concepts arising in this paper the 

reader is referred to Harary [8], and Lawler, et al. [12]. Naturally m :::; n( n - 1)/2, with 

equality occuring when G is complete. A graph is said to be dense if m is O(n2
) and 

sparse if m is O( n). 

A Hamiltonian Cycle of G is a simple cycle in G in \\'hich every node of G appears 

exactly once. If a graph has a Hamiltonian cycle it is called a Hamiltonian graph. 

The Travelling Salesman Problem (TSP) is : find in G a Hamiltonian cycle of least 

weight. 

The weight of a cycle is the sum of the weights of the arcs of the cycle. The corre

spondence between the TSP and the problem described earlier is apparent when the cities, 

roads, and travel costs are represented by the nodes, arcs, and arc-weights, respectively, 

of a graph. vVhen G is dense it is very likely to be Hamiltonian and thus it is likely to 

have at least one feasible solution to the corresponding TSP. However, if G is sparse it is 

far less likely to be Hamiltonian and thus possess a feasible solution for the TSP. 

Many of the graphs representing practical problems are sparse. Such graphs may 

not have any Hamiltonia1l cycles, and even if tlle,v do they may be difficult to find. To 
complicate matters further, a minimum weight Hamiltonian cycle may not be optimal for 

the underlying practical problem. This is because a minimum weight Hamiltonian cycle 

is constrained to visit each node exactly once, whereas an optimal tour may visit nodes 

more than once and achieve a shorter tour. A simple example that illustrates this is the 

complete graph of 3 nodes u,v,w and arc lengths d(u.v) = d(u,w) = 1, and d(v,w) = 3. 

The minimum weight Hamiltonian cycle (Il, v, te, u) has length .5, and the optimum tour 

(u, v, u, w, u) has length 4. For this reason \ve study the following problem defined below: 

Definition ( The General Tral"elling Salesman Problem (GTSP) ) : Given an edge

weighted undirected graph G, find a closed spanning walk of least weight in G 



We call a closed spanning walk a tour and a solution to the GTSP an optimal tour. Our 

purpose here is to devise effective solution procedures for the GTSP where G is relatively 

large (n = 500 to 10000) and sparse. The GTSP is NP-Hard and so we concentrate on 

the development of simple heuristic algorithms that are fast and, we hope, give tours that 

are not too far above the optimum. 

3. Review of Literature 

Most, if not all work on practical algorithms for the TSP has been confined to relatively 

small (n < 500) complete graphs. Golden, et a1. ['/] devotes just one paragraph to sparsity, 

in which TSP heuristic methods are tested on one 100-node problem with the density of 

G varying from 100% down to 20%. Most of these algorithms could not find a solution 

when the density of G is less than 40%. 

Some heuristic methods have been devised for relatively large Euclidean (straight

line) TSP's. Karp's Dissection-Patching methods [9], Simulated Annealing [11], Litke 

[13], Bland & Shallcross [2], Padberg & Rinaldi [15], have given promising results. The 

testing (and design) of these methods have been on complete graphs. That is, the problem 

is given as n coordinates in the Euclidean plane and it is assumed (implicitly) that the 

salesman can move from any coordinate to any other coordinate (in a straight line). This 

means that large problems can be handled without storing the very large distance matrix 

that underlies the problem. 

Miller & Peckney [14] have reported the results of experiments on random asymmetric 

problems with up to 500,000 nodes and random symmetric problems with up to 20,000 

nodes. Both classes of problem have been solved in up to 1:3,000 sees on a Cray-2. 

Bentley [1] described data structures and algorithms for million-node problems which 

find solutions within a few percent of optimal in a few hours of midi computer time. 

As Garfinkel [6], among others, has pointed out, any numerical instance of a GTSP 

can be transformed into a TSP by replacing each arc weight d( u, v) by the length of the 

shortest path from u to v. 

4. Solution Techniques for the GTSP 

The methods mentioned above work well in certain problem contexts, e.g., minimizing 

plotter pen travel, but they are impracticable in other contexts, e.g., actual road graphs. 

The road graphs that motivated the present research are large, sparse and do not obey 

the triangle inequality. They have n (nodes) in the range [500-10,000] and m (arcs) in the 

range [1,000-30,000]. Thus their arc densities are typically less than 1%. The methods 

we propose to use are based on some standard heuristic methods, modified to handle 

large sparse graphs. Because of the large size of these graphs we consider only those 

heuristic methods that have low-order complexity. Hence we do not consider methods 
whose complexity is O(n3) or greater. 



4.1 Data Structures 

Large sparse graphs cannot be represented and stored as adjacency matrices because a 

typical graph matrix would have 1M to 2SAI elements. Hence, we use an adjacency list 

representation of the graph which requires O( n +m) storage. In this representation only 

arcs that are actually present in the graph are stored. This means that any method that 

implicitly assumes the existence of all arcs must be modified to check explicitly for the 

existence of each arc that is currently being considered by the method. 

4.2 Algorithms 

The weight of the minimum spanning tree (MST): which we denote by L(MST), is 

a lower bound on the minimum tour \veight, while 2L( J1 ST) is an upper bound. Prim's 

MST algorithm [16] for finding a minimum spanning tree is easily implemented for large 

sparse graphs and can be used to obtain crude lower and upper bounds on the optimal 

solution to the GTSP. The Assignment Problem lov,:er bound is not used because it gives 

very poor lower bounds for undirected graphs. 

We now discuss modifications of two standard heuristic algorithms for the TSP that 

run in O( n 2 ) time. These algorithms are chosen because modifications enabling them to 

solve the GTSP seem natural and are easy to implement. 

The Nearest Neighbour Heuristic is heuristic for the TSP which has the following 

form, where Tour is an ordered set of nodes representing the partly-constructed tour: 

Algorithm Nearest-Neighbour 

Pick a starting node s and marki t visited 

Tour:={s} 

u:= s 

while there exists an unvisitEd node do begin 

v:= unvisited v that minimizes d(u,v) 

Tau r : = Tau r + {v} 

Mark v visited 

u:= v 

end while 

Tour := Tour + {s}, i. e., return to start. 

This algorithm assumes that G is complete and thus it is always possible to travel 

directly between any pair of nodesu,v via aTC (u. I')' In sparse graphs the arc (u,v) may 

not exist and so we must modify the algorithm so that it proceeds from u to the nearest 

unvisited node that minimizes Dist( Il, v), \vIlere Dist( Il. c) is the shortest path distance 

from u to v. 

To find the shortest path distance Dist( u, 1}), we use a slight modification of Dijkstra's 

algorithm [4J for finding the shortest path bet\veen nodes u and v in G. Dijkstra's algorithm 

requires a start node s and, optionally, a target node t. Once the target nede has been 

labelled permanent the algorithm can be terminated because the shortest path from .s to 



t, and Di5t( 5, t), have been calculated. In our modification we start Dijkstra's algorithm 

at u without a target node t and terminate it after the first unvisited node v has been 

labelled permanent. Thus we get a path which v·,;e denote by P(u, v) from u to the nearest 

unvisited node v. The heuristic is as follows: 

Algorithm Nearest-Neighbour-Shortest-Path 

Pick a starting node s and mark it visited 

Tour := {s} 
u:= 5 

while there exists an unvisita/ node do begin 

P(u,v):= Path from u to unvisited r 

that minimizes Di.st( u, v) 

Tour := Tour + P( 1l, v) 
Marl. v visited 

u:= v 

end while 

Tour := Tour + P(u,s), i.e., return to start by shortest path. 

The Minimum Spannning Tree Heuristic is a TSP heuristic that starts by constructing 

an !v! ST of G. Then, starting at some node s, it, traverses the tree in a Depth-First manner. 

When it reaches a leaf node u, instead of backing up the tree it moves directly to the next 

node v in depth-first order that has not been \·isited. \rhen the la.st node of the tree has 

been visited the tour is completed by returning directly to the sta.rt node 8. This algorithm 

assumes that the graph is complete, that the triangle inequality holds, and hence the direct 

moves are possible and shortest. 

In sparse graphs direct moves are not always possible and so we must modify this 

heuristic as follows: when a leaf node u is reached move on the shortest path to the next 

node v in depth-first order that has not yet been visited. The heuristic is as follows: 

Algorithm Minimum-S panning-Tree-Shortest-Path 

Construct a Minimum Spanning Tree MST. 
Construct a Depth-First Ordering of the nodes of AI ST 
starting at node s. Call this ordered set DFO. 

TOUT {s}; DFO:=DFO-{s} 

u:= s 

while DFO is not empty do begin 

v:= next node on DFO 

DFO:= DFO - {v} 
if arc (u, v) EM ST then 

Tour := Tour + {-v} 
else 

P(u, v):= Path from u to v that minimizes Dist( u. v) 

Tour := TOUT + P( 1L. r) 

u:= v 

end while 

Tour := Tour + P(u,.5), i. e., return to start by shortest path. 



In general, the tours generated by the heuristics above depend on the start node. To 

guarantee the best tour for each heuristic, all nodes of the graph must be used as start 

nodes. This can be very expensive for large graphs. Alternatively a small, randomly

chosen, subset of the nodes can be used as start nodes, and the best of these tours chosen. 

Examples 

The following graph of 5 nodes and 6 arcs is taken from Kelly [10]. The arc list 
{(u,v,d(uv)} is 

{( 1,4,1.5), (1, .5, 90), (2,3,100), (2, 4, 2.5). (2.,),60), (:3,4,100), (3, .5, 50), (4,5,80)}. 

The only Hamiltonian tours of this graph are {1..5.2.3.4.1} and {L5,3,2,4,1}, which 

have lengths 36.5 and 280, respectively. The non-Hamiltonian tour {1,4,:3,.5,2,4, I} has 

length 265, and this is the optimum tour. Both the .Yeorest Neighbour Sho'rtest Path and 

the Minimum Spanning Tree Shortest Path algorithms generate the following tours, using 

the start nodes 2 and 5 : {2, 4,1, .5, 3, 2} with length 280, and {-5, 2,4,1, .5, 3, .5} with length 
265. 

4.3 Analysis of the Heuristics 

The while-loop of each heuristic is performed n times. The main work performed in each 

loop is the application of Dijkstra's algori t11m to find the shortest path between two nodes 

u and v. Dijkstra's algorithm takes O( 7)1 + n log n) time, if properly implemented [17]. For 

sparse graphs with m = O(n) this reduces to O(nlogn) time. Constructing a minimum 

spanning tree requires O(nlogn) time, and Depth-First Search requires O(n) time. Hence 
the complexity of each algorithm is O(nllog n). 

5. Testing and Results 

We tested the heuristics OIl two sets of sparse road networks: 

Type Name nlm 

Small Ireland 1 67/116 

Irelandl 100/179 

Large Sri-Lanka 981/1:327 

Ireland3 1797/2809 

Urban 1 1830;:3139 

Rural 1 492:3/5679 

290 



In all cases we constructed a minimum spanning tree to get crude lower and upper 

bounds, viz., LUvIST) and 2L(1VfST). 

To obtain the best possible tour from ea.ch heuristic it is necessary to start the tour 

at each of the n nodes of G. This was done for the small graphs. For the large graphs 
20 nodes chosen at random were used as the starting point and the best of the 20 tours 
generated was chosen. This limitation was necessary because of the size of the graphs and 

the computer used. The compiler-machine details are as follo\vs: 12MHz AT using Turbo 

Pascal 5.0 with range-checking turned OFF. 

Tour Lengths and Computation Times (12MHz AT secs) 

Ireland 1 Ireland2 SriLanka Ireland3 Urban1 Rurall 

67/116 100/170 981/1:327 1797/2809 1830/3139 4923/5679 

MST 1338 1572 70939 55460 5760 14805 

SP N-N 1912 2197 11.5721 910.50 9.589 295.57 

(0.2) (0.2) (3.5) (8..5) (10.0) ( 47.0) 

MST-SP 2135 2477 12:3970 98:320 10286 28940 

(0.2) (0.3) (.5 .. 5) ( 14.0) (16.0) (102.0) 

2 MST 2676 3144 141878 .110920 11520 29610 

[Note: The times shown in parentheses are for the generation of 1 tour] 

It can be seen in all cases except Rural1 (which has an underlying graph that is 
extremely sparse), that the Nearest Neighbour heuristic gives better results than the MST 
heuristic. 

6. Summary 

We have posed heuristics for the general travelling salesman problem, where its underlying 
graph is relatively large and sparse. Such graphs require carefully-designed data structures 
and heuristics to support the implementation of solution techniques if they are to solve 
realistically-sized problems in reasonable computational time. Further, the sparsity may 
require repeated visits to certain cities to obtain an optimum tour. 'tVe have devised 

methods for actual road networks which gave rise to this research. They are modifications 
of existing methods for the TSP which assume that the underlying graph is complete. It 

has been shown that the methods are capable of solving. in a reasonable amount of time, 
large-scale practical instances of problems for which they were designed. 

291 



References 

[1] Bentley, J.L : 'Experiments on Geometric Travelling Salesman Heuristics', AT&T 

Computing Science Technical Report, No. 1.51, 1990. 

[2] Bland, R.G., and Shallcross, P.F. : 'Large TSP's Arising from Experiments in X
Ray Crystallography: A Preliminary Report on Computation', OR Letters, Vol 8, 

125-128, 1989 

;"> [3] Dantzig, G.B., Fulkerson, D.R., and .Johnson S.~L: 'Solution of a Large-Scale 

Traveling-Salesman Problem'. Opera.tions Researcll~ Vol 2, 393-410, 1954. 

[4] Dijkstra, E.J. : 'A Note on Two Problems in Connexion with Graphs', Numerische 

Mathematik, Vol 1, 269-271, 1959. 

[5] Flood, M.M. : 'The Traveling Salesman Problem'. Operations Researcll, Vol 4, 61-7.5, 

1956. 

[6J Garfinkel, R.S. : 'Motivation and 1Jodeling·. in [La\'.:ler, et al.]. 

[7] Golden, B., Bodin, 1., Doyle, T., and Stewa.rt, \V.: 'Approximate Traveling Salesman 

Algorithms', Operations Researcll, Vol 28. No.:3. Part II, 694-711, 1980. 

[8] Harary, F. : Graph Tlleory, Addisoll-Wesley. 1969. 

[9] Karp, R.M., and Steele, J.M. : 'Probabilistic Analysis of Heuristics', in [Lawler, et 

al.J. 

[10] Kelly, C. : 'Monte Carlo Methods for the Sparse Travelling Salesman Problem', Un
published M.Mangt.Sc. Dissertation, MIS Dept., university College, Dublin, Ireland, 
1988. 

[11] Laarhoven, P.J.M., and Aarts, E.H.1. : SimulatedAll11ea.J;ng: Theory and Applica
tions, Reidel, 1987. 

[12] Lawler, E.L., Lenstra. J.K., Rinnony 1\:a.n. A.H.G .. Shmoys, D.S. : The Traveling 
Salesman Problem, 'Wiley, 198.5. 

[13] Litke, J.D.: 'An Improved Solution to the TSP with Thousands of Nodes', Computing 

Practices, Vol 27, No 12, 1227-1236, 1984. 

[14] Miller, D., and Pekr,ey, J. : 'Th( TravE'lling Salesman Problem', Science, Vol 251, 
754-761, 1991. 

~'[15] Padberg, M., and Rinaldi, G. : 'Facet Identification for the Symmetric TSP', Math

ematical Programming, Vol 47, 219-257,1990. 

[16] Prim, R.C. : ~Shortest Connection Networks and Some Generalizations', Bell System 
Technical Journal, Vol 36, 1389-1401. 19.)7. 

[17] Tarjan, R.E. : Data Structures and Net~l'OI'k A.lgoritiIms, CRMS 44, SIAlv!, 1983. 

292 


