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Abstract 

We consider cycles and paths in multigraphic realizations of a degree sequence Q. in 

particular we show that there exists a realization of d in which no cycle has order 

greater than three and no path has length greater than four. 

In addition we show which orders of cycles and which lengths of paths exist in some 

realization of d. 

1. Introduction 

Throughout we consider Q = (dl, d2, ... , do) to be a sequence of n non-negative 

integers. The sequence Q will be called a degree sequence if there is a multigraph G 

(without loops) with vertex set {Vi:i = 1, 2, ... , n} such that deg Vi = dj for 

i = 1, 2, ... , n. We say that d is an ordered sequence if dj ;:::: dj whenever i :s; j. It is 

well known (see [2]) that any ordered sequence d is a degree sequence if and only if 

(i) 
n 
L di=O 

i=1 
n 

(ii) dl:S; L dj. 
i=2 

(mod 2), and 

Furthermore Q is a positive degree sequence if dj > 0 for all i. 
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n 
For convenience we will use Id for I di and we abbreviate such sequences as 

i=l 

(2, 2, ... , 2) (a twos) and (2, 2, ... , 2, 1, ... , 1) (a twos and b ones) as (2a) and 

(2a, 1 b), respectively. By max d we mean,the largest term in the sequence d. Thus if 

d is ordered, max d = dl. 

The skeleton, skel (G), of a multigraph G is the simple graph with vertex set VG 

such that two vertices are adjacent if and only if they are adjacent in G. We say that 

the multigraph G is acyclic if and only if skel(G) is a forest, even if G contains a cycle 

isomorphic to C2. 

In [1 J Erd5s and Gallai showed that if Id ;::: k(n - 1), then there is some simple 

realization of d which contains a cycle of order at least k. Here we consider the same 

problem for multigraphs and also determine what paths can be found in multigraphic 

realizations of d. 

2. Cycles and Paths which are Forced. 

In this section we show that given any multigraphic sequence d, there exists a 

realization which contains at most one triangle and no longer cycle and there exists a 

Ps but no longer path. 

Theorem 2.1: 

The sequence d has an acyclic realization if and only if it has a bipartite realization. 

Proof: 

Clearly an acyclic realization is bipartite. 

If G is a bipartite realization of d, then it is already acyclic, or it contains a cycle e2m 

for some m 2:: 2. Let a be the smallest multiplicity of any edge on this cycle. Let 

va, VI, ... , V2m-1 be the vertices of e2m, where Vi is joined to Vj if and only if i == j ± 1 

(mod 2m). Suppose the multiplicity of VaVI is a. If we decrease the multiplicities of 

vaVI, V2V3, ... , V2m-2V2m-1 by a and increase the multiplicities of the remaining edges 

by the same amount then the cycle e2m is destroyed while the degree sequence of the 

original multigraph is preserved. Every even cycle can be destroyed in this way to 

give an acyclic realization of d. 
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Having destroyed the even cycles, we may then operate on odd cycles in multigraphs 

by similar methods and reduce them to triangles. These techniques can therefore be 

used to show that there is some multi graphic realization of d which contains no cycle 

of order greater than three. However the following theorem proves a stronger result. 

Theorem 2.2: 

Let d be a multigraphic sequence. Then there is some realization of d which does not 

contain Pm for any m ~ 6 and which contains no cycle of order greater than three. 

Proof: 

Without loss of generality we assume that d is positive. Clearly if n :::; 2, then the 

theorem is true, and so we may assume that n ~ 3. 

n 
Let mj =:L (_I)k-i dk for all i E {I, 2, ... , n}. Let jo be the smallest value of j for 

k=i 
j 

which 2 :L mi ~ mI. Such a value of j exists since 
i=3 

n [(n-3)/2] n 
2:L mi - ml 

i=3 
2 :L d2k+3 - :L (_I)k-l dk 

k=O k=1 

jo 
and this expression is non-negative since dis multigraphic. Define ° = 2:L mj - mI. 

Note that ° is even since fil is even. i=3 

Case 1: jo = 3. Then we may realize d as follows: 

1 
join VI to V2 with d2-"20 edges; 

1 
join VI to V3 with fi3-"20 edges; 

join V2 to V3 with 1o 2 edges; 

join V3 to V2k+2 with d2k+2 - d2k+3 [n-3J edges for k = 1,2, ... , 2 ; 

join V3 to Vn with dn edges if n is even; 

join V2k+2 to V2k+3 with d2k+3 [n-3J edges for k = 1,2, ... , 2' 
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The skeleton of this realization is a subgraph of the graph shown in Figure 2.1, when 

n is even. Clearly this realization contains no path longer than P5. 

Figure 2.1 

Case 2: jo > 3. Then we may realize d as follows: 

join VI to vi with di edges for i = 3, ... , jo - 2; 

join 
1 

VI to VjO-l with djO-I - 28 edges; 

join VI to V2 with d2 - djO+l edges; 

join VI to VjO+2k with djO+2k - djO+1k+l edges for k = 1,2, ... , [~(n-jo) J 
join VI to Vn with dn edges if n=jo (mod 2); 

join 
1 

VI to Vjo with djo - 2"8 edges; 

join V2 to VjO+l with djO+l edges if jo < n; 

join VjO+2k to VjO+2k+ 1 with djO+2k+l edges for k = 1, 2, ... , [~ (n-jo-l) J 
join VjO-I to Vjo with 18 

2 edges. 

It is clear that this realization of d contains no path longer than P5. 

On the other hand we now show that every path from P2 to P5 must occur in every 

realization of some degree sequence. 

Clearly P2 must occur in every realization of every degree sequence where Id> O. 

The sequence d = (23) is uniquely realizable and contains a P3 in this realization. 
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The sequence Q = (18, 15, 13, 12) is such that every realization is connected. This 

follows since no two terms in the sequence are equal. Inspection of the residue 

classes modulo 3 of the terms in the sequence reveals that no twO distinct 

subsequences of Q. have equal sum and so Q. does not have a bipartite realization. 

Hence every realization of .d contains a triangle. The remaining vertex in any 

realization of Q must be adjacent to one of the vertices of the triangle since the 

realization is connected. Thus every realization of Q. contains a P 4. 

Consider the sequence Q = (24, 18, 15, 13, 12). By previous arguments we see that 

every realization of Q is connected but none is bipartite. If every realization of .d 

contains C5, then they all contain P5. Hence we may suppose that some realization 

contains a triangle. The only way such a realization does not contain Ps is for the two 

vertices v, w, remaining to be adjacent to the same vertex u of the triangle. But then 

deg u > deg v + deg w. However the smallest possible value of deg v + deg w is 25 

which exceeds any degree of the sequence. Hence every realization of Q contains a Ps. 

But the longest cyck that can be found in every realization of Q is a triangle <lnd if Q 

contains a bip2.rtite realization then it will have an acyclic realization as we have 

already noted in Theorem 2.1. 

3. Possible Orders of Cycles and Paths 

In this section we find the range of possible cycle orders and path lengths which OCCllI 

in realizations of the degree sequence d. 

Theorem 3.1 

Let Q be a positive degree seq!.lence. If d ::j: (2S) for any s ~ 3, then Q has a realization 

with a cycle isomorphic to Cl if and only if 2:S; l:S; min { ~ (IQ - 2dl + 4), m}. where m 

is the number of terms of.d which are greater than one. If.d = (2S) for some s ~ 3, then 

.d contains a realization with a cycle isomorphic to Cl whenever 2 ~ l ~ s-2 or l = s. 
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Proof 

We may assume that Q is ordered. Suppose £I contains a realization G with a cycle 
isomorphic to C i' Then 2~l~m and the degree sequence d' = Q - (21), of the graph 

ohtained from G by removing C[ , is graphic. 

n 
If max £I' = dl. then dl ~.2: di - 21 implies l $;? (2:£1 - 2dl) < ~ (2:Q - 2dl + 4). 

1=2 

n 
Ifmax Q' = dl - 2, then dl - 2 ~ 2: di - 2(£-1) implies l ~ ~ (2:Q - 2dl + 4). 

i=2 

Finally, if max g' = dj = dl - 1, then dj $; .2:. di - 21 implies l ~ ~ (2:Q - 2dj) 
l¢J 

= ~ (2:£1 - 2dl + 2) < ~ (2:£1 - 2dl + 4), Thus we have the stated restriction on i. 

Suppose now that 2 ~ l .::; min [t (2:£1 - 2dl + 4), m J. Let Q' 

where 

d .' _{ di - 2 
1 - di 

Since 2:d == 0 (mod 2), clearly 2:d' == 0 (mod 2). 

1 ~ i ~.e 
i > l 

(dl' ..... dn '), 

If Q' is multigraphic, then d has a realization with a cycle isomorphic to Ct. Hence we 

may assume that Q' is not multigraphic. 

Now max g' is either dl - 2 or d1+l. If max £I' = dl - 2 we must have 
n 

i.e. 

i.e. 

dl - 2 > 2: dj - 2(l- 1) 
i=2 
n 

d 1 > 2: di - 21 + 4 
i=2 

1 
l >:2 (Id - 2dl + 4). 

This contradicts our choice of i. 
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If max.d' = d1+ 1 we must have 

Hence 

i n 
d l ~ dl+l > L di + L di - 2i 

i=I i=l+2 

i-I 
L di < 2l. 

i=I 

i 
~ L di -21. 

i=I 

Now di ~ 2 for 1 ~ i ~ l, since l ~ m. Therefore either di = 2 for 1 ~ i ~ i-I (and 

d1 = 2 since t ~ m) or dl = 3 and di = 2 for 2 ~ i ~ i. So either d. = (2n) for n ~ t, 

g = (20:, I~) for ex ~ l, ~ > 0 and ~ even, or d = (3, 20:, I~) for ex ~ l - 1 and ~ odd. 

Since g' is not multigraphic, g = (21+ 1), the one degree sequence not covered by the 

theorem. 

Corollary 3.2 

The positive degree sequence g has no realiza,tion with a cycle o~' order greater than 
n 

two if and only if dl = L di or d has at most two terms greater than one. 
i=2 

Proof 
n 

If dl = L dio then g has a unique realization whose skeleton is a star. Thus no cycle 
i=2 

has order greater than two. If g has at most two terms greater than one, then no 

realization can contain a cycle larger than C2. 

Suppose g has no realization with a cycle longer than C2. Then.Q"# (2S) for any s ~ 3 
1 

and so by the theorem we must have m ~ 2 or 2" (L.Q - 2d 1 + 4) ~ 2. The latter 

n n 
condition gives dl ~ I, di, but since g is multigraphic we must have dl = I, di. The 

i=2 i=2 

corollary then follows. 

9 



Corollary 3.3 

The positive degree sequence d contains a realization with a Hamiltonian cycle if and 
only if 2d1 ::;; Id - 2n + 4 and m = n. 

Theorem 3.4 
The positive degree sequence d has a realization with a path isomorphic to P l if and 

only if 1 ::;; i :s; mi1i (Id - 2d1 + 6), n, m+2}. 

Pl'oof 

The argument is analogous to that of Theorem 3.1 and we only sketch it here. 

If d contains a path isomorphic to P l' then clearly 1 :s; i :s; min(n, m+2). Further 
d - (2.e-2, 12) is graphic and similar inequalities to those of the proof of Theorem 3.1 

1 
showthat i :s; 2'(Id -2d1 + 6). We note however that there are four cases to consider 
since we may subtract 1 from dl in forming d - (2d- 2, 12) from d. 

Suppose then that 1 ::;; i ::;; min H (Id -:- 2dl + 6), n, m+2j. Here we need 

{ 

di-2 
d' = (d1', ... , dn') defined by di' = di i-I::;; i::;; n-2 

di- I 

1::;; i ::;;i-2 

n-I ::;; i::;; n 

If d' is multigraphic the theorem follows. Suppose therefore that d' is not multigraphic. 
Arguing as in the proof of Theorem 3.1 we obtain a contradiction unless max d' = d.e-l 
where i < n, or max d' = dn-1 - 1. 

Note that any realization of d contains a P l if i :s; 2, since 4 is positive. Suppose max 
d' =d.e-l and 2 < i < n. Since d' is not multigraphic, we then have 

Thus 

i-2 n 
d.e-2 ~ d.e-l > I di + L di - 2i + 2. 

i=I i=i 

i-2 
dl -2> I di - 2i + 4, 

i=I 
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since 
n 

I di ~ dn-l + dn ~ 2. 
i=£ 

On the other hand, if max d' = dn-l - 1 then l=n and (1) is replaced by 

£-2 
dl -2 > dl-l 1 > I di + dn 2£ + 3 

i=1 

and (2) again follows. Thus in either case 

£-3 
I di < 2l-4. 
i=1 

Now, arguing as in the proof of Theorem 3.1, we find that either d = (2a , 1~) for some 

a ~ £-2 and some even ~ ~ 0 or d = (3, 2a , 1~) for some a 1'.-3 and some odd~. As 

d' is not multigraphic, these sequences force d'l-l = 2 and di' = 0 for all i :;{: £-1. Hence 

d = (2i-l, 12) and d has a realization with a path isomorphic to Pl+l. 

Corollary 3.5 

The positive degree sequence d contains a realization with a Hamiltonian path if and 

only if 2dl ~ Id - 2n + 6 and m ~ n-2. 
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