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Abstract 

An overview of satellite communication scheduling and its relation to edge-coloring of multigraphs is 

given. Then a theorem about a restricted class of multigraphs is proved to obtain conditions for scheduling 

in a satellite communications network of practical interest Some limitations of the multigraph model are 

then discussed. 

1 Introduction 

In a common paradigm for a satellite communications network. one dc..<;ignated modem serves as 

network controller. Other modems then request communication services of various rates from the con

troller and the controller assigns to these modems time slots in which to burst their communications. To 

avoid scheduling conflicts time is divided into frames which are further subdivided into addressable slots of 

time. Typically. communications are buffered and then burst at a much higher rate than the requested rate 

so that the frame can be utilized as efficiently as possible. Furthermore. multiple carrier frequencies are 

used so that different modems can channel their communications through the satellite at the same time. 

The underlying problem of the controller is to figure out which time slots and flequencies to assign 

modems to maximize the throughput of the network. For example. in [FSCS 89] the controller was 

required to schedule up to 900 requests per hour of 90 second average duration with start-up delay less than 

9 seconds. This performance specification was written in 1989. Dramatic increases in demand have 

occurred since and will likely continue. To inSlL.""C that the network is reS'(X>nsive to change. efficient 

scheduling algorithms are very important ( [Acampora 78. Inukai 79]). However. results which predict the 

existence of a schedule are also very important Requests may have assigned priorities. It is useful to have 

so-called "doorman" conditions to allow just the right number of requests to be handed to the scheduler so 

that scheduling heuristics can be invoked without further regard to priority. 

For example. one obvious doorman condition is that total time slots requested not exceed the number of 

time slots in a frame times the number of available carrier frequencies. We will refer to this constraint 

below as the "area constraint". Another condition is that no modem may request to transmit or receive for 

more time slots than there are in a frame. to avoid simultaneous transmission or reception on two different 

carrier frequencies by the same modem. We refer to this below as the "modem constraint". 
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As in many other scheduling problems, chromatic graph theory provides an excellent model for solving 

satellite scheduling problems. Modems are represented by vertices. Service requests between modems are 

represented by edges connecting the vertices. Multiple edges are used. one per time slot requested. Thus, 

the underlying model is a multigroph--a graph with multiple edges (but no edge connecting a vertex to 

itself in this application). A schedule corresponds to an edge-coloring of the multigraph. Each color 

represents a time slot. Edges sharing a vertex must be colored differently so that a modem will not be 

required to simultaneously participate in two different requests. A schedule will exist if the number of 

colors used does not exceed the number of time slots in the frame and if the number of edges colored the 

same color never exceeds the number of carrier frequencies allowed. 

In general, modems may be full-duplex or half-duplex, which means they mayor may not be able to 

transmit and receive at the same time. The model described above may be applied to full-duplex modems 

if two vertices are introduced per modem, a transmit and a receive vertex, A network of full-duplex 

moderns then corresponds to a bipartite multigraph, all edges conr.ecting transm it vertices to receive 

vertices. Although the general problem of characterizing multigraphs having specified edge-colorings has 

not been solved, the case of bipartite multigraphs is well-understood. In fact, the arcJ constraint and 

modem constraint are (necessary and) sufficient doorman conditions for a schedule to exist in the bipartite 

case Various authors [Dulmage 69, Acampora 78, Inukai 79] have independently derived these conditions. 

[Acampora 78] and [lnukai 79] have also provided algorithms to schedule requests in satellite communica

tions networks with vnIy full-duplex modems. 

General doorman conditions have not been found, but there are important special cases amenable to 

solution. A modem may be significantly restricted in the number of requests it can participate in, depend

ing on the number of ports of the modem. This type of restriction has been exploited below to obtain 

doorman conditions for scheduling requests in a satellite communications network of practical significance. 

It turns out that the general modem-to-modem satellite communications scheduling problem is purely a 

problem of minimizing the number of colors used to edge-color a multi graph. As long as the area 

constraint has been mN, there is no need to worry about restricting the number of occurrences of a given 

color to the maximum number of available carrier frequencies. The reason, apparently first observed 

independently by [de Werra 71] and [McDiarmid 72], is that any edge-coloring of a multigraph using n 

colors can be transformed into an n-coloring which is as balanced as possible. If, for example, color a 

occurs at least two more times than color ~, consider the subgraph determined by the edges colored with a 

and~. This subgraph must be a disjoint collection of chains and even-length cycles of edges alternating in 

the colors a and ~, and so there must be an odd length chain in which the color a appears one more time 

than ~ does. Reversing the colors on this chain will bring the coloring more into balance, and iterating this 

process until no color appears two or more times than another yields a balanced coloring. 
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The flrst significant results on edge-coloring multigraphs were made by [Shannon 49~ and [Vizing 65]. 

Shannon's result is particularly easy to implement as a doorman condition. Let the degree p(v) of a vertex 

v in a multigraph be the number of edges containing v. Let LxJ denote the greatest integer not greater than 

x and r x 1 denote the least integer not less than x. Shannon's result states that if the maximum degree of 

any vertex is p then the multigraph can be edge-colored using at most L3p!2J colors. Thus, sufficient 

doorman conditions to schedule any modem-to-modem network requests in a frame with n time slots and c 

carrier frequencies are as follows: 

• area constraint the total time slots requested does not exceed cn 

• Shannon's constraint: no full-duplex transmitter, full-duplex receiver or half-duplex modem is 
allowed more than L(2n+ l)/3J time slots 

The example of three half-dLA:Jlex modems, each communicating with the other two for one-third of the 

frame, shows that Shannon's condition is sharp. On the other hand, this restriction would rule out the quite 

feasible case of a pair of modems just communicating with each other for the whole frame. 

Necessary and sufficient doorman conditions in the general case would require a characterization of 

multigraphs admitting n-colorings of edges, which does not presently exist. [Goldberg 841 made an inter

esting conjecture which, if true. would provide this characterization for all practical purposes. Let e(H) 

denote the number of edges in a subgraph H of multi graph G. and let v(H) denote the number of vertices. 

Since at most L v(H)!2J disjoint edges can be chosen from H. at least r e(H) / L v(H)!2Jl colors are required. 

Denote by w(G) the maximum value of this expression for any subgraph H of G and let p be the maximum 

vertex degree. Goldberg conjectured that if the actual number of colors, n, required to edge-color G 

exceeds w(G) + 1 then n = p and if n exceeds p + 1 then n = w(G). 

be 

Thus (practically) necessary and sufficient conditions to schedule in n time slots using c carriers would 

• area constraint total times slots ::;; cn 

• modem constraint: total time slots requests for full-duplex transmitter or receiver or half
duplex modem ::;; n 

• Goldberg's constraint: For an) group of k modems in the network, if t is the total number of 
time slots of inter-requests among the k members, then r t / Lk/2Jl < n - 1 

provided that Goldberg's conjecture is true. 

Of course, computing w(G) might take too long to be utilized by a rysponsive doorman. 

A particular satellite communications network of practical interest is the stllr network. The controller in 

such a network is a sophisticated full-duplex modem with a very large number of ports. The other 

members of the network are half-duplex modems, which, apart from their communications with the con

troller, have only one port for access to other members of the network. The star topology arises when 
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W"'l~lI~ PUW~" ClIIU ~UM wnSU"alntS llmIt me capabilIty Of netwot1c members to supporting only one service 

at a time using a radio that is only capable of half-duplex operation. Manpack users who must carry their 

own batteries, antenna, and radio will choose to limit functionality in exchange for reduced weight and size. 

Manufactmers of mobile radio equipment will select reduced functionality in order to minimize costs to 

ensme there is a large marlcet for their product ( [Mobile 89]). 

We will use the term star network also to refer to the associated multigraph. In the following section 

we characterize n-colorings of a star network, thus obtaining necessary and sufficient doorman conditions 

for scheduling a star network. 

2 Star Network Theorem 

Two vertices are neighbors if there is at least one edge connecting them. A subgroph of a given 

multigraph consists of a subset of the vertex set together with all edges of the original multigraph connect

ing pairs of vertices in the subset The underlying graph of a given multigraph is obtained by replacing 

each non-empty set of multiple edges by a single edge. The diagrams of multigraphs shown below will 

actually show just the corresponding underlying graphs. A star network is a multi graph having two 

designated non-neighboring vertices a and 11. Every other vertex is restricted to have at most three 

neighbors, and at most one neighbor other than a and 11, referred to as its mau. (a corresponds to the 

network controller transmitter and 11 corresponds to its receiver.) A vertex without a mate will be referred 

to as fTUlteiess. Figure 1 shows (the underlying graph of) an example of a star network. 

a 

b 

Figure 1. Star Network Example (Underlying Graph) 

RefTUlrk: An important special case of a star network in which modems only communicate via the 

network controller is easy to analyze since the corresponding multigraph is bipartite: all edges join a and b 

to the other vertices of the multi graph. 

Let G be a star network. A tritlngle is a subgraph of G with vertices a, '1 and c2 or b, c1 and c2, where 

each of the three vertices is a neighbor of the other two. See figure 2. A dimnond is a subgraph of G with 

vertices a and b and two other vertices c1 and c2 which are mates, such that at least edges {a,c}} and {b,cl } 
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or {a,c2} and (b,el) are also present. See figure 3. A specilll subgraph of 0 consist.o; of Ie diamonds, for 

some 100, an additional vertex (referred to as the odd verter) which is a neighbor of a and b, and the edges 

connecting a and b to the odd vertex. See figure 4. 

a 

b 

Figure 2. Triangles 

Figure 3. Diamonds 

a 

odd vertex 

b 

Figure 4. Special Subgraph with Ie Diamonds 

Theorem. A star network 0 can be edge-colored with n colors iff p(v) ~ n for every vertex v of 0, 

e(T) ~ n for every triangle T of 0 and e(S) ~ (k+ 1)n for every special subgraph S of 0 with Ie diamonds. 

Proof: The vertex and triangle conditions are obviously necessary. The conditions on a special graph 

with k diamonds are necessary since it contains exactly 2k+3 vertices, so at most k+l edges can be colored 

with the same color. 
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A vertex v is unavoidable if p(v) = n. A triangle T is unavoidable if e(T)=n. A special subgraph S 

wit!: k diamonds is unavoidable if e(S) = (k:+ 1 )n. 

To establish sufficiency we will sho",.:: 

(*) There is a set E of disjoint edges of G such that for every unavoidable vertex v there is an edge e of 

E such that v is in e, and E contains an edge of each diamond and of each unavoidable triangle, and E 

contains k+ I edges of each unavoidable special subgraph with k: diamonds. 

This suffices because one color can be assigned to this disjoint set of edges, and the remaining graph 

will satisfy the conditions of the theorem with n replaced by n-1. (For the base case, when n = 1, a graph 

can obviously be edge-colored with one color if p(v) ::; 1 for each vertex v). 

Note that if v is unavoidable and has more than one neighbor w, then if w is unavoidable it also has 

another neighbor. This fact will be used a number of times below. 

Since p(a), p(b) ::; n there can be no more than two unavoidable mate less vertices in G. Therefore. we 

need consider only three cases, depending upon how many unavoidable mateless vertices are present We 

will assume a and b are unavoidable since it is always possible to make them unavoidable by introducing 

new neighbors for a and b without violating the conditions on G. We will also assume G is connected 

without loss of generality. 

~ Q:. There are no unavoidable mateless vertices. 

Here we consider separately the cases where there is or is not an unavoidable special subgraph. 

subcase Q:. There ~ no unavoidable ~ subgrnph. Choose edges connecting the mates of G. It is 

easy to check: that all conditions (*) are met except that a and b are not mem hers of any of the edges. 

If there is any diamond D in G then replace the edge connecting the mates in D with a guaranteed pair 

of disjoint edges in D and (*) is satisfied. 

Otherwise, since a and b are unavoidable. there must exist distinct vertices vIand uland edges {a, vI} 

a'1d (b,uI }. VI and uI cannot be mates since there is no diamond, and neither can have an unavoidable 

mate since that would yield a triangle with more than n edges. Therefore. an conditions (*) are satisfied by 

augmenting the chosen edges with {a,vI } and {b,ul}. replacing previous edges chosen including VI or ul 

(if they have mates). 

subcase 1.:. There ~ ~ unavoidable ~ subgraph. Since there is no unavoidable mateless vertex, 

there must be a diamond D such that e(D»n. Every unavoidable special subgraph must contain D as a 
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diamond or one of D's mates as an odd vertex. (Otherwise, there is an unavoidable, special subgraph 

edge-disjoint from D with k diamonds, and augmenting that subgraph with D yields a special subgraph S 

with k+ 1 diamonds such that e(S»(k+2)n.) In either case, including an edge for each pair of mates not in D 

and including a guaranteed pair of disjoint edges from D will give a set of disjoint edges satisfying (*). 

~ 1. There ~ exactly one unavoidable mateless vertex !.: 

Note here that v must be the odd vertex of any unavoidable special subgraph, and furthermore, that for 

any diamond D. e(D) ~ n, which in turn implies that the mates of D are not unavoidable and there is no 

unavoidable triangle in D. Without loss of generality assume a is a neighbor of v. Then choose an edge for 

each pair of mates in G and choose {a,v} and all conditions of ("') will be satisfied except that b is not a 

member of any chosen edge. Since b is unavoidable it neighbors some vertex VI :t; v. If VI is mateless 

then add {b,vl } and (*) is satisfied. Otherwise, if v2 is the mate of VI' replace {vl ,v2 } by [b,v I ) and ("') is 

satisfied. (v2 cannot be unavoidable, nor can {a,vl ,v2 } determine an unavoidable triangle: If (a.v l ,v2 ) 

formed a triangle VI and v2 would be in a diamond. If not then an unavoidable}'2 means edge (b,v2 ) must 

exist, and then the fact that the sum of the edges of triangle (b,v l'v2) ~ n is violated.) 

case 1. There ~ exactly two unavoidable mateless vertices! and ~ 

Assume, without loss of generality. that a and U are neighbors. Then it is easy to check that b and v are 

neighbors. Choose {a,u} and {b,v) to satisfy ("'). (The only other possible edges in the underlying graph 

ofGare {a,v} and (btU) since p(a) = p(b) = n.) 

Since there cannot be more than two unavoidable mateless vertices, the proof is complete. 

Figure 5 shows a star network (multiple edges labeled by numbers to indicate their multiplicity) which 

is not edge-colorable with n colors even though p(v) ~ n for every vertex v, e(T) ~ n for every triangle T 

and e(S) ~ (m+l)n for every special subgraph S with m diamonds, for m strictly less than k, the number 

of diamonds in G. Thi, example indicates that the technical conditions of the theorem are probably 

warranted. 
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b 

Figure S. A Star Network Not Edge-Colorable Using n Colors 

3 Doorman and Scheduler Complexity 

Let m be the number of modems in the network and s be the number of service requests. Recall that 

there are n time slots to schedule and c carrier frequencies. Then a doorman exists with complexity 

o (max. (n,m,s}) and a scheduler exists with complexity O(cn). 

The bottleneck to an efficient doorman is checking the special subgraph condition. but by reasoning as 

in case 0, subcase 1 of the proof in the previous section we can achieve the efficiency claimed. The idea is 

to only worry about the worst case special subgraph with a minimum number of diamonds, which involves 

precisely the diamonds with more than n edges and possibly a mateless vertex of maximum degree. We 

begin with the subgraph only including the edges including a or b. We flISt partition the vertices other than 

a and b so that V[i]=(mateless v: p(v)=i}, i ~ n. (All vertices start out being mateless so only com

munications with the controUer are considered thus far). Then service requests are considered in priority 

ordel. Each new request causes the two vertices involved to leave the mateless partition V. If a diamond D 

is formed by the new request, and if e(D) > n, then the excess e(D)-n is accumulated in E &nd r, the 

minimum p(v), for v in such D's, is maintained. IfR is the largest index such that V[R] is non-empty, it is 

easy to check that the special subgraph condition stiU holds with the new service included iff E + R s n 

and E - (e(D)-n) + (e(D)-r) ~ n (the latter condition corresponds to the case where the odd vertex is 

chosen to be the mate of the v with p(v)::::r in a D with e(D»n, and simplifies to the condition E ~ r). 

The fast scheduler claimed to exist can be achieved by also partitioning the diamonds D so that 

D[i]={diamonds D: e(D)=i}, i ~ 2n-1. Then at any stage 'Ie from ° to n-1 (corresponding to time slots in 

the frame or edge-colors of the graph) the construction given in the proof of the theorem can be used to 

produce a matching in O(c) steps. The case to consider in the proof is given by the size of V[n-kJ and in 

the non-trivial case 0, subcase I, a disjoint pair of edges can be selected from a diamond in D(i] where i is 

largest such that D[i] is non-empty. Updates to the D and V arrays can be done in constant time for each of 

the at most c edges chosen in the matching. 
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4 Limitations or the Model 

In making our claim that edge-colorings of multigraphs provide a good model for scheduling modem

to-modem satellite communications. we neglected a technical signal processing problem of locating the 

exact starting bit of a data stream. A common solution to this problem is to include a known preamble 

pattern at the beginning of each data burst for signal acquisition purposes. However, the overhead of such 

preambles can be considerable if communication between pairs of modems is broken up into multiple 

bursts. If we consider the correspondence of edge colors and consecutive time slot numbers, what we 

would really like to achieve is an interval edge-coloring, where multiple edges receive consecutive colors. 

This extra constraint is sometimes impossible to meet For example. it is easy to check that a star 

network with no controller communications and with c pair: of mates, each communicating for n-l time 

slots. will require at least c-l extra bursts (c-l "interrupts") using c carriers and n time slots per carrier. 

[Schneider ar] has shown that there are examples of networks requiring on the order of c2 interrupts on c 

carriers. 

Remark: The problem of minimizing the number of interrupts in a schedule is NP-hard since it can be 

used to solve the bin packing problem: Given c bins of capacity n and k packages of sizes sl' s2' ...• ~, 

define a star network with k pairs of mates, where the ith pair communicates for si time slots. Then the 

communication can be scheduled on c carriers of n time slots each with a minimum of zero interrupts if and 

only if the packages may be packed into the c bins. 

Preambles are a particular nuisance in controller communications. One way around the preamble 

problem in this case is to allow the controller to broadcast to the other modems, i.e., put all transmissions 

into a single burst with one preamble and require all modems to simultaneously tune to th.:: same carrier 

frequency to listen to this burst. Ge:1eral broadcasting would require a hypergraph model, which we won't 

discuss here. If we just limit broadcasting to the controller, we can divide the frame into the broadcast 

region (where only one carrier can be used) and the remaining region (in which there are no special 

subgraphs, so that scheduling is relatively easy.) 

The penalty of only utilizing one carrier during the broadcast is severe if there are mCw1Y frequencies 

available. A possible solution to this problem is to partition the modems into two or more groups and 

broadcast to each group separately. Then, during a broadcast to one group. communications among the 

modems not in the group could be scheduled on the other carriers. 
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