L. Caccetta and Purwanto School of Mathematics and Statistics Curtin University of Technology

GPO Box U 1987 Perth 6001
Australia

Abstract

Let G be a finite simple graph having a maximum matching M. The deficiency $\operatorname{def}(G)$ of G is the number of M-unsaturated vertices in G. In an earlier paper we determined an upper bound for $\operatorname{def}(G)$ when G is regular and connected. This upper bound is in general not sharp when G is triangle free. In this paper we study the case when G is triangle free and r-regular. We present an upper bound for $\operatorname{def}(G)$ and determine the set of all possible values of $\operatorname{def}(G)$ when G is r-regular and (r-2)-edge-connected.

1. INTRODUCTION

In this paper the graphs are finite, loopless and have no multiple edges. For the most part our notation and terminology follow Bondy and Murty [2]. Thus G is a graph with vertex set V(G), edge set $\mathrm{E}(\mathrm{G}), v(\mathrm{G})$ vertices and $\varepsilon(\mathrm{G})$ edges. However we denote the complement of G by \bar{G}.

A matching M in G is a subset of $E(G)$ in which no two edges have a vertex in common. M is a maximum matching if $|M| \geq\left|M^{\prime}\right|$ for any other matching M^{\prime} of G. A vertex v is saturated by M if some edge of M is incident with v; otherwise v is said to be unsaturated. A matching M is perfect if it saturates every vertex of the graph. The deficiency
def(G) of G is the number of vertices unsaturated by a maximum matching M of G. Observe that $\operatorname{def}(G)=v(G)-2|M|$. Consequently, $\operatorname{def}(G)$ has the same parity as $\nu(G)$, and $\operatorname{def}(G)=0$ if and only if G has a perfect matching.

Many problems concerning matchings and deficiency in graphs have been investigated in the literature - see, for example Lovász and Plummer [6]. We have studied the function $\operatorname{def}(G)$ for: the case when G is a tree with each vertex having degree 1 or $k, k \geq 2$ [3]; the case when G is a cubic graph [4]; and the more general case when G is r-regular [5].

It is convenient to let $\mathcal{G}(\mathrm{n}, \mathrm{r}, \mathrm{k})$ denote the class of r-regular, k-edge-connected graphs on n vertices. The set of triangle free members of $\mathscr{\mathscr { G }}(\mathrm{n}, \mathrm{r}, \mathrm{k})$ is denoted by $\mathscr{G}^{\prime}(\mathrm{n}, \mathrm{r}, \mathrm{k})$.

In [4] we obtained the set of all possible values of $\operatorname{def}(G)$ when $G \in \mathscr{G}(n, r, k)$ for $k \geq 2$. In this paper we focus on the problem of determining the set of all possible values of $\operatorname{def}(G)$ when $G \in \mathcal{G}^{\prime}(n, r, k)$ for $r \geqq 4$; the case $r=3$ was resolved in [4]. Here we resolve this problem when $k=r-2$ and present an upper bound on $\operatorname{def}(G)$ for the general case.

2. UPPER BOUND

An upper bound for $\operatorname{def}(G)$ when $G \in \mathcal{G}(n, r, k)$ was determined in [5]. This bound is generally not sharp when G is triangle free. In this section we present an upper bound for $\operatorname{def}(G)$ when $G \in \mathcal{G}^{\prime}(n, r, k)$ which is sharp for $k=r-2$.

The following lemma is easily established by simple counting and application of Turan's theorem.

Lemma 2.1: Let $G \in \mathcal{G}^{\prime}(n, r, 1), r \geq 3$ and $S \subset V(G)$. If G_{0} is an odd component of G-S which is joined to S by at most $r-2$ edges, then $v\left(G_{0}\right) \geq 2 r+1$.

Our next lemma was proved in [5].

Lemma 2.2: Let G be an r-regular, connected graph having def(G) $\neq 1$. Suppose that for any $\phi \neq V_{1} \subset V(G)$ every odd component of $G-V_{1}$ is joined to V_{1} by not less than m edges, $1 \leq m \leq r-2(m \equiv r(\bmod 2))$. Then there exists a non-empty set $S \subset V(G)$ such that $G-S$ has $\ell \geq \frac{r}{r-m} \operatorname{def}(G)$ odd components joined to S by at most $r-2$ edges.

We now establish an upper bound on $\operatorname{def}(G)$.

Theorem 2.1: Let $G \in \mathcal{G}^{\prime}(n, r, 1), \quad r \geq 4$. If for any non-empty set $S \subset V(G)$ every odd component of $G-S$ is joined to S by at least m edges, where $1 \leq m \leq r-2$ and $m \equiv r(\bmod 2)$, then
(a) $\quad \operatorname{def}(G) \leq 2\left\lfloor\frac{r-m}{2 r}\left\lfloor\frac{r n}{2 r^{2}+r+m}\right\rfloor\right\rfloor$, if n is even ;
(b) $\quad \operatorname{def}(G)=1$, if n is odd and $n<\frac{2 r^{2}+r+m}{r}\left\lceil\frac{3 r}{r-m}\right\rceil$;
(c) $\operatorname{def}(G) \leq 1+2\left\lfloor\frac{r-m}{2 r}\left\lfloor\frac{r n}{2 r^{2}+r+m}\right\rfloor-\frac{1}{2}\right\rfloor$, otherwise.

Proof: The result is trivially true when $\operatorname{def}(G)=0$ and also when $\operatorname{def}(G)=1$ as in this case n must be odd. So suppose $\operatorname{def}(G) \geq 2$. Lemma 2.2 implies that there exists a non-empty set $S \subset V(G)$ such that G-S has

$$
\begin{equation*}
\ell \geq \frac{r}{r-m} \operatorname{def}(G) \tag{2.1}
\end{equation*}
$$

odd components, $G_{1}, G_{2}, \ldots, G_{\ell}$ say, each of which is joined to S by at most r-2 edges.

By simply counting the edges between S and these odd components we can conclude that $r|S| \geq \ell m$ and hence $|S| \geq \frac{\ell m}{r}$. Now

$$
\mathrm{n} \geq|\mathrm{S}|+\sum_{\mathrm{i}=1}^{\ell} v\left(\mathrm{G}_{\mathrm{i}}\right) \geq \frac{\ell \mathrm{m}}{\mathrm{r}}+\ell(2 \mathrm{r}+1) . \quad \text { (Lemma 2.1) }
$$

Consequently

$$
\begin{equation*}
\ell \leq\left\lfloor\frac{r n}{2 r^{2}+r+m}\right\rfloor \tag{2.2}
\end{equation*}
$$

(2.1) and (2.2) together yield

$$
\operatorname{def}(G) \leq \frac{r-m}{r}\left\lfloor\frac{r n}{2 r^{2}+r+m}\right\rfloor
$$

Now when n is even, $\operatorname{def}(G)$ must be even and thus we can write

$$
\operatorname{def}(G) \leq 2\left\lfloor\frac{r-m}{2 r}\left\lfloor\frac{r n}{2 r^{2}+r+m}\right\rfloor\right\rfloor
$$

proving (a). When n is odd, def(G) must be odd and hence

$$
3 \leq \operatorname{def}(G) \leq \frac{r-m}{r}\left\lfloor\frac{r n}{2 r^{2}+r+m}\right\rfloor
$$

Therefore

$$
\left\lceil\frac{3 r}{r-m}\right\rceil \leq\left\lfloor\frac{r n}{2 r^{2}+r+m}\right\rfloor
$$

and hence

$$
n \geq \frac{2 r^{2}+r+m}{r}\left\lceil\frac{3 r}{r-m}\right\rceil=n_{0}
$$

Thus if $n<n_{0}$, then $\operatorname{def}(G)=1$, proving (b). If $n \geq n_{0}$, then we can write

$$
\operatorname{def}(G) \leq 1+2\left\lfloor\frac{r-m}{2 r}\left\lfloor\frac{r n}{2 r^{2}+r+m}\right\rfloor-\frac{1}{2}\right\rfloor
$$

proving (c). This completes the proof of the theorem.

For the case when $G \in \mathcal{G}^{\prime}(n, r, k)$ we have the following corollaries of Theorem 2.1.

Corollary 1: Let $G \in \mathcal{G}^{\prime}(\mathrm{n}, \mathrm{r}, \mathrm{k})$ with $\mathrm{r} \geq 4$ and $1 \leq k \leq r-2$. Then
(a) $\quad \operatorname{def}(G) \leq 2\left\lfloor\frac{r-k^{\prime}}{2 r}\left\lfloor\frac{r n}{2 r^{2}+r+k^{\prime}}\right\rfloor\right\rfloor$, if n is even ;
(b) $\quad \operatorname{def}(G)=1, \quad$ if n is odd and $n<\frac{2 r^{2}+r+k^{\prime}}{r}\left\lceil\frac{3 r}{r-k^{\prime}}\right\rceil$;
(c) $\operatorname{def}(G) \leq 1+2\left\lfloor\frac{r-k^{\prime}}{2 r}\left\lfloor\frac{r n}{2 r^{2}+r+k^{\prime}}\right\rfloor-\frac{1}{2}\right\rfloor$, otherwise;
where k^{\prime} is the least integer not less than k which has the same parity as r .

Corollary 2: Let $G \in \mathcal{G}^{\prime}(\mathrm{n}, \mathrm{r}, \mathrm{k})$ with $\mathrm{r} \geq 4,1 \leq k \leq r-2$ and n even. If G has no perfect matching, then

$$
n \geq \frac{2 r^{2}+r+k^{\prime}}{r}\left\lceil\frac{2 r}{r-k^{\prime}}\right\rceil
$$

where k^{\prime} is the least integer not less than k which has the same parity as r .

3. THE CLASS $\xi^{\prime}(n, r, r-2)$

In this section we determine the set

$$
D(n, r, r-2)=\left\{\operatorname{def}(G): G \in \mathcal{G}^{\prime}(n, r, r-2)\right\},
$$

for $r \geq 4$. We begin with some constructions. The graph $A(2 n, r)$ is defined as follows. Take the empty graph $\bar{K}_{2 n}$ with vertices $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}$. Form the Hamilton cycle $H_{i}, 1 \leq i \leq\left\lfloor\frac{1}{2} r\right\rfloor$, by joining u_{j} to $v_{2 i+j-2}$ and $v_{2 i+j-1}$ for each $j, 1 \leq j \leq n$; all integers are reduced modulo n when necessary. Define the matching M as
$M=\left\{u_{i} v_{j}: 1 \leq i \leq n\right.$ and $\left.j \equiv i+r-1(\bmod n)\right\}$. Now we define $A(2 n, r)$ as

$$
A(2 n, r)= \begin{cases}\frac{1}{2} r \\ U_{i=1}^{U} H_{i} \\ \frac{1}{2}(r-1) & \text { if } r \text { is even, } \\ U_{i=1}^{U} H_{i} U M, & \text { if } r \text { is odd. }\end{cases}
$$

Observe that $A(2 n, r)$ is an r-regular graph with a perfect matching. As to the edge-connectivity of $A(2 n, r)$ we have

Lemma 3.1:

(a) $\quad k^{\prime}(A(2 n, r))=r, \quad$ and
(b) $\quad \kappa^{\prime}(A(2 n, r)-x) \geq r-2$ for any vertex x of $A(2 n, r)$.

Proof: We prove only (b) as (a) has already been observed by Bollobás and Eldridge [1]. Without loss of generality consider $A(2 n, r)-u_{1}$.

Suppose that $\kappa^{\prime}\left(A(2 n, r)-u_{1}\right)=t<r-2$ and let $\left(V_{1}, \bar{V}_{1}\right)$ be an edge-cut set of size t with $\left|V_{1}\right| \geq\left|\bar{V}_{1}\right|$. Then $\left|\bar{V}_{1}\right| \geq 2$ and there are two Hamilton paths, P_{1} and P_{2} say each having exactly one edge of the cut $\left(V_{1}, \bar{V}_{1}\right)$. Then from the construction of $A(2 n, r)$ we have

$$
P_{1}=v_{2 i} u_{2} v_{2 i+1} u_{3} \ldots v_{2 i-1}
$$

and

$$
P_{2}=v_{2 j} u_{2} v_{2 j+1} u_{3} \ldots v_{2 j-1}
$$

for some $i \neq j$. With no loss of generality let $v_{2 i} \in V_{1}$. Then since $\left|V_{1}\right| \geq 2$ we must have $u_{2} \in V_{1}$, as otherwise P_{1} would have at least two edges of the cut $\left(V_{1}, \bar{V}_{1}\right)$. Let $W_{z} W_{z}^{\prime}, z=1,2$, be the edge of P_{z} in the cut $\left(V_{1}, \bar{v}_{1}\right)$. Then

$$
v_{1}=\left\{v_{2 i}, u_{2}, v_{2 i+1}, u_{3}, \ldots, w_{1}\right\}
$$

and also

$$
v_{1}=\left\{v_{2 j}, u_{2}, v_{2 j+1}, u_{3}, \ldots, w_{2}\right\}
$$

Thus if v_{1} contains p of the vertices $v_{1}, v_{2}, \ldots, v_{n}$, then

$$
\left\{v_{2 i}, v_{2 i+1}, \ldots, v_{2 i+p-1}\right\}=\left\{v_{2 j}, v_{2 j+1}, \ldots, v_{2 j+p-1}\right\}
$$

Hence $2 j \equiv 2 i+t(\bmod n)$ for some positive integer t. Now when $\left|\stackrel{\rightharpoonup}{\mathrm{V}}_{1}\right| \geq$ 2 we must have $p<n$ and $1 \leq t \leq p-1$. But then $2 j+p-t \equiv$ $2 i+p(\bmod n)$ implying that $v_{2 j-t+p}=v_{2 i+p} \in V_{1}$, contradicting the fact that $p<n$. This proves (b).

The graph $B(2 n+1, r)$ on $(2 n+1)$ vertices is defined as follows. Take the graph $A(2 n, r)-u_{1}$ and add two new vertices x and y. Join x to y and to each $v_{i}, 1 \leq i \leq\left\lfloor\frac{1}{2} r\right\rfloor$, and join y to each v_{i}, $\left\lfloor\frac{1}{2} r\right\rfloor+1 \leq i \leq r$. Call the resulting graph $B(2 n+1, r)$. Note that x and y have degree $\left\lfloor\frac{1}{2} \mathrm{r}\right\rfloor+1$ and $\left\lceil\frac{1}{2} r\right\rceil+1$ respectively and every other vertex has degree r. Also $\kappa^{\prime}(B(2 n+1, r)) \geq \frac{1}{2} r$.

The graphs $A(2 n, r)$ and $B(2 n+1, r)$ are the basic building blocks in our constructions. We next construct a triangle free r-regular graph $G(m, r)$ of odd order $m \geq \frac{5}{2} r$ having deficiency 1 . Our construction depends on the parity of $\frac{1}{2} r$.

Consider the graph $A(2 n, r)$. Observe that the subgraph of $A(2 n, r)$ induced by the vertices $\left\{u_{1}, u_{2}, \ldots, u_{\frac{1}{2} r}, v_{\frac{1}{2} r+1}, v_{1}{ }_{\frac{1}{2} r+2}, \ldots, v_{r}\right\}$ is the complete bipartite graph $K_{\frac{1}{2} r, \frac{1}{2} r}$ with bipartitioning sets $\left\{u_{1}, u_{2}, \ldots, u_{\frac{1}{2} r}\right\}$ and $\left\{v_{\frac{1}{2} r+1}, v_{\frac{1}{2} r+2}, \ldots, v_{r}\right\}$. The edges of this subgraph
can be partitioned into $\frac{1}{2} r$ disjoint matchings $M_{1}, M_{2}, \ldots, M_{\frac{1}{2}} r$.
take $M_{1}=\left\{u_{i} v_{\frac{1}{2} r+i}: 1 \leq i \leq \frac{1}{2} r\right\}$.
For $\frac{1}{2} r$ odd we form the graph $G\left(2 n+\frac{1}{2} r, r\right)$ from $A(2 n, r) \backslash\left\{M_{1}, M_{2}, \ldots, M_{\frac{1}{2}} r\right.$ by adding $\frac{1}{2} r$ new vertices, $w_{1}, w_{2}, \ldots, w_{\frac{1}{2}} r$ say, and joining each of these to the r vertices $u_{1}, u_{2}, \ldots, u_{\frac{1}{2}} r v^{\frac{1}{2} r+1}$, $v_{\frac{1}{2}} r+2, \ldots, v_{r}$. Observe that $G\left(2 n+\frac{1}{2} r, r\right)$ is a triangle free graph on $2 n+\frac{1}{2} r$ vertices that is r-regular. We will later establish that this graph is r-edge-connected.

Now we consider the case when $\frac{1}{2} r$ is even. Recall that

$$
H_{\frac{1}{4} r+1}=u_{1} v_{\frac{1}{2} r+2} u_{2} v_{\frac{1}{2} r+3} u_{3} \ldots v_{\frac{1}{2} r+1} u_{1}
$$

and thus $M_{1} \subseteq H_{\frac{1}{4} r+1}$. Form the graph $G(2 n+2, r)$ as follows. Take $A(2 n, r) \backslash\left\{u_{i} v_{\frac{1}{2} r+1}: 1 \leq i \leq r\right\}$ and add two vertices, x and y, say. Join x to $u_{1}, u_{2}, \ldots, u_{r}$, and join y to $v_{\frac{1}{2} r+1}, v_{\frac{1}{2} r+2}, \ldots, v_{r}$. Call the resulting graph $G(2 n+2, r)$. Observe that the graph is triangle free, has $2 n+2$ vertices and is r-regular. Further, $G(2 n+2, r)$ contains as a spanning subgraph the graph G_{0} whose edge-set is specified as :

$$
E\left(G_{o}\right)=\left(H_{\frac{1}{4} r+1} \backslash\left\{u_{i} v_{\frac{1}{2} r+i}: 1 \leq i \leq r\right\}\right) \bigcup_{i=1}^{r}\left\{x u_{i}, y v_{\frac{1}{2} r+i}\right\}
$$

Observe that G_{0} is the union of r edge-disjoint (x, y)-paths and thus is 2-edge-connected. Further, the graph $(G(2 n+2, r)-\{x, y\}) \backslash E\left(G_{0}\right)$ consists of the $\frac{1}{2} r-1$ Hamilton cycles $H_{2}, H_{3}, \ldots, H_{\frac{1}{2}}$ and thus is ($r-2$)-edge-
connected. It is easily established that $G(2 n+2, r)$ is r-edgeconnected.

For $r \geq 4$ we form the graph $G\left(2 n+\frac{1}{2} r+1, r\right)$ from $G(2 n+2, r) \backslash\left\{M_{2}, M_{3}, \ldots, M_{\frac{1}{2} r}\right\}$ by adding $\frac{1}{2} r-1$ new vertices $w_{1}, w_{2}, \ldots, w_{\frac{1}{2} r-1}$ and joining each of these to the r vertices $u_{1}, u_{2}, \ldots, u_{\frac{1}{2}}, v_{\frac{1}{2} r+1}$, $\mathrm{v}_{\frac{1}{2} \mathrm{r}+2}, \ldots, \mathrm{v}_{\mathrm{r}}$. The resulting graph is triangle free, has $2 \mathrm{n}+\frac{1}{2} \mathrm{r}+1$ vertices and is r-regular. Further, this graph is r-edge-connected because of the following result.

Lemma 3.2: Let G be a k-edge-connected graph, $k \geq 1$, and M be a matching in G of size $m \geq\left\lceil\frac{1}{2} k\right\rceil$ saturating the vertices $v_{1}, v_{2}, \ldots, v_{2 m}$. Then the graph G^{\prime} obtained by adding a vertex u to $G \backslash M$ and joining it to the vertices $v_{1}, v_{2}, \ldots, v_{2 m}$ is k-edge-connected.

Proof: Suppose $\kappa^{\prime}\left(G^{\prime}\right)=t<k$ and let E_{1} be a t-edge cut of G^{\prime} and let E_{2} denote those elements of E_{1} that are incident to u. Note that $E_{2} \neq$ ϕ since G is k-edge-connected. Let X denote the set of M-saturated vertices of G that are, in G^{\prime}, incident to E_{2} and M^{\prime} denote the set of edges of M incident to exactly one vertex in X. The set

$$
E^{\prime}=\left(E_{1} \backslash E_{2}\right) \cup M^{\prime}
$$

is an edge cut in G. But

$$
\left|E^{\prime}\right|=\left|E_{1}\right|-\left|E_{2}\right|+\left|M^{\prime}\right| \leq\left|E_{1}\right| \leq k-1,
$$

contradicting the fact that $\kappa^{\prime}(G) \geq k$. This proves the lemma.

Application of Lemma 3.2 to the graphs $G(m, r)$ for odd $m=2 n+\frac{1}{2} r$ or $2 n+\frac{1}{2} r+1$ establishes the r-edge-connectedness of these graphs. It
thus follows from Lemma 2.2 that $\operatorname{def}(G(m, r))=1$.
We make use of the following lemma proved in [7] to establish our main result in this section.

Lemma 3.3: For odd $n, \zeta^{\prime}(n, r, 1) \neq \phi \quad$ if \quad and only if r is even and $n \geq \frac{5}{2} r$.

Now we are ready to determine $D(n, r, r-2)$.

Theorem 3.1: For $r \geq 4$,
(a) $D(n, r, r-2)=\phi, \quad$ if n and r are odd or $n<2 r$ or $n<\frac{5}{2} r$ is odd;
(b) $D(n, r, r-2)=\left\{d: 0 \leq d \leq 2\left\lfloor\frac{n}{2\left(r^{2}+r-1\right)}\right\rfloor\right.$, d is even $\}$, if $n \geq 2 r$ is even;
(c) $D(n, r, r-2)=\{1\}$, if n is odd and $\frac{5}{2} \leq n<3\left(r^{2}+r-1\right)$;
(d) $D(n, r, r-2)=\left\{d: 1 \leq d \leq 1+2\left\lfloor\frac{n}{2\left(r^{2}+r-1\right)}-\frac{1}{2}\right\rfloor\right.$, d is odd\} , otherwise.

Proof: When $\mathscr{G}^{\prime}(n, r, r-2) \neq \phi$, then at least one of n or r is even, and by Turan's theorem $n \geq 2 r$. Further, by Lemma 3.3, if n is odd, then $n \geq \frac{5}{2} r$. This proves (a). So suppose at least one of n or r is even, $n \geq 2 r$ and $n \geq \frac{5}{2} r$ if n is odd. The upper bound of $\operatorname{def}(G)$, $G \in \mathscr{G}^{\prime}(n, r, r-2)$, is determined in Corollary 1.

First we consider the case when n is even. The graph $A(n, r) \in \mathcal{G}^{\prime}(n, r, r-2)$ and has a perfect matching. This gives the lower bound of $\operatorname{def}(G)$ and proves (b) when $n<2\left(r^{2}+r-1\right)$. Now let
$n \geq 2\left(r^{2}+r-1\right)$ and d be an even integer, $2 \leq d \leq 2\left\lfloor\frac{n}{2\left(r^{2}+r-1\right)}\right\rfloor$. We construct a graph $G \in \mathcal{G}^{\prime}(n, r, r-2)$ with $\operatorname{def}(G)=d$ for each possible value of d as follows.

Let $\ell=\frac{1}{2} r d$ and $s=\frac{1}{2} r d-d$. Take the empty graph \bar{K}_{s} with vertices $u_{1}, u_{2}, \ldots, u_{s}, \quad \ell-1$ copies $G_{1}, G_{2}, \ldots, G_{\ell-1}$ of $B(2 r+1, r)$ and a copy G_{ℓ} of $B\left(n-d\left(r^{2}+r-1\right)+2 r+1, r\right)$. Note that $n-d\left(r^{2}+r-1\right)+2 r+1$ is odd and is at least $2 r+1$ because of the upper bound on d. Further, for $1 \leq i \leq \ell, G_{i}$ has two vertices, x_{i} and y_{i} say, of degree $\left\lfloor\frac{1}{2} r\right\rfloor+1$ and $\left\lceil\frac{1}{2} r\right\rceil+1$ respectively. Then join each x_{i} and u_{j} and each y_{i} to u_{z}, where $i \leq j \leq i+\left\lfloor\frac{1}{2} r\right\rfloor-1<z \leq r-2$. The resulting graph G is triangle free, r-regular and has

$$
\begin{aligned}
v(G) & =(\ell-1)(2 r+1)+\left(n-d\left(r^{2}+r-1\right)+2 r+1\right)+s \\
& =\left(\frac{1}{2} r d-1\right)(2 r+1)+\left(n-d\left(r^{2}+r-1\right)+2 r+1\right)+\left(\frac{1}{2} r d-d\right) \\
& =n .
\end{aligned}
$$

We will now show that G is (r-2)-edge-connected. Suppose that $\kappa^{\prime}(G)=t<r-2$, then there is t-edge cut, $\left(V_{1}, \bar{V}_{1}\right)$ say, of G. Lemma 3.1 implies that for each $i, G_{i}-\left\{x_{i}, y_{i}\right\}$ is ($r-2$)-edge-connected, and hence the vertices of $G_{i}-\left\{x_{i}, y_{i}\right\}$ are all in V_{1} or all in \bar{V}_{1}.

Let $U_{1}=v_{1} \cap\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ and $U_{2}=\bar{v}_{1} \cap\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$. We first prove that $U_{i} \neq \phi, i=1,2$. Without loss of generality suppose that $U_{1}=\phi$. Then $V\left(G_{i}\right) \nsubseteq V_{1}$ for any i. Further $V\left(G_{i}\right) \cap V_{1} \neq \phi$ for some i. Since $t<r-2$ and the vertices of $G_{i}-\left\{x_{i}, y_{i}\right\}$ are all in V_{1} or all in \bar{V}_{1}, then V_{1} contains exactly one of x_{i} or y_{i}. But each of these possibilities results in $t \geq r-2$. Thus $U_{i} \neq \phi, i=1,2$.

Since, for each i, G_{i} is $\frac{1}{2} r$-edge-connected, then there cannot be more than one G_{i} for which $V\left(G_{i}\right) \cap V_{1} \neq \phi$ and $V\left(G_{i}\right) \cap \bar{V}_{1} \neq \phi$. We now define a graph G^{\prime} as follows. If there exists a G_{i} with $V\left(G_{i}\right) \cap V_{1} \neq \phi$
and $V\left(G_{i}\right) \cap \bar{V}_{1} \neq \phi$, then let

$$
G^{\prime}=G-\bigcup_{j=i}^{i+d-1} V\left(G_{j}\right)
$$

where the integers are reduced modulo ℓ when necessary: If there is no such G_{i}, then take

$$
G^{\prime}=G-\bigcup_{j=1}^{d} V\left(G_{j}\right)
$$

Then there exists an edge-cut set $\left(V_{2}, \bar{V}_{2}\right)$ of G^{\prime} with less than $r-2$ edges. If we contract every G_{i} in G^{\prime} to a single vertex, then the resulting graph G^{*} is isomorphic to the graph $A(2 s, r-2)$. Further there is an edge-cut set $\left(V_{3}, \bar{V}_{3}\right)$ of G^{*} with $\left|\left(V_{3}, \bar{V}_{3}\right)\right|<r-2$. This contradicts the fact that $A(2 s, r-2)$ is $(r-2)$-edge-connected. Hence $G \in \mathscr{G}(n, r, r-2)$.

Now take $S=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$. Then

$$
\begin{aligned}
o(G-S)-|S| & =\ell-s \\
& =\frac{1}{2} r d-\left(\frac{1}{2} r d+d\right) \\
& =d,
\end{aligned}
$$

and so $\operatorname{def}(G) \geq d$. Further, every component G_{i} of $G-S$ has $\operatorname{def}\left(G_{i}\right)=1$, and hence $\operatorname{def}(G) \leq d$. Thus $\operatorname{def}(G)=d$ and this completes the proof of (b).

Now consider the case when n is odd. The graph $G(n, r) \in$ $\mathscr{G}^{\prime}(n, r, r-2)$ and has deficiency one. This gives the lower bound of def (G) and proves (c). Let $n \geq \frac{5}{2} r$. For each odd d,

$$
3 \leq d \leq 1+2\left\lfloor\frac{n}{2\left(r^{2}+r-1\right)}-\frac{1}{2}\right\rfloor
$$

we construct a graph $G \in \mathcal{G}^{\prime}(n, r, r-2)$ with $\operatorname{def}(G)=d$ following the procedure described for the case when n is even. This completes the proof.

REFERENCES

[1] B. Bollobás and S.E. Eldridge. "Maximal matchings in graphs with given minimal and maximal degrees", Math. Proc. Cambridge Philos. Soc. 79 (1976), 221-234.
[2] J.A. Bondy and U.S.R. Murty, "Graph Theory with Applications", The MacMillan Press, London (1977).
[3] L. Caccetta and Purwanto, "Deficiencies and vertex clique covering numbers of a family of trees", The Australasian Journal of Combinatorics, 1 (1990), 15-27.
[4] L. Caccetta and Purwanto, "Deficiencies and vertex clique covering numbers of cubic graphs", Graphs, Matrices and Designs (in press).
[5] L. Caccetta and Purwanto, "Deficiencies of r-regular k-edgeconnected graphs", The Australasian Journal of Combinatorics (In press).
[6] L. Lovász and M.D. Plummer, "Matching Theory", Annals of Discrete math. 29, North-Holland, Amsterdam (1986).
[7] N.J. Pullman and D. de Caen, "Clique coverings of graphs - I: Clique partitions of regular graphs", Utilitas Mathematica, 19 (1981), 177-205.

