DEFICIENCIES OF CONNECTED REGULAR TRIANGLE FREE GRAPHS

L. Caccetta and Purwanto School of Mathematics and Statistics Curtin University of Technology GPO Box U 1987 Perth 6001 Australia

ABSTRACT

Let G be a finite simple graph having a maximum matching M. The deficiency def(G) of G is the number of M-unsaturated vertices in G. In an earlier paper we determined an upper bound for def(G) when G is regular and connected. This upper bound is in general not sharp when G is triangle free. In this paper we study the case when G is triangle free and r-regular. We present an upper bound for def(G) and determine the set of all possible values of def(G) when G is r-regular and (r-2)-edge-connected.

1. INTRODUCTION

In this paper the graphs are finite, loopless and have no multiple edges. For the most part our notation and terminology follow Bondy and Murty [2]. Thus G is a graph with vertex set V(G), edge set E(G), $\nu(G)$ vertices and $\varepsilon(G)$ edges. However we denote the complement of G by \overline{G} .

A matching M in G is a subset of E(G) in which no two edges have a vertex in common. M is a maximum matching if $|M| \ge |M'|$ for any other matching M' of G. A vertex v is saturated by M if some edge of M is incident with v; otherwise v is said to be unsaturated. A matching M is perfect if it saturates every vertex of the graph. The deficiency

Australasian Journal of Combinatorics 5(1992), pp.73-85

def(G) of G is the number of vertices unsaturated by a maximum matching M of G. Observe that def(G) = $\nu(G) - 2|M|$. Consequently, def(G) has the same parity as $\nu(G)$, and def(G) = 0 if and only if G has a perfect matching.

Many problems concerning matchings and deficiency in graphs have been investigated in the literature - see, for example Lovász and Plummer [6]. We have studied the function def(G) for: the case when G is a tree with each vertex having degree 1 or k, $k \ge 2$ [3]; the case when G is a cubic graph [4]; and the more general case when G is r-regular [5].

It is convenient to let $\mathcal{G}(n,r,k)$ denote the class of r-regular, k-edge-connected graphs on n vertices. The set of triangle free members of $\mathcal{G}(n,r,k)$ is denoted by $\mathcal{G}'(n,r,k)$.

In [4] we obtained the set of all possible values of def(G) when $G \in \mathcal{G}(n,r,k)$ for $k \ge 2$. In this paper we focus on the problem of determining the set of all possible values of def(G) when $G \in \mathcal{G}'(n,r,k)$ for $r \ge 4$; the case r=3 was resolved in [4]. Here we resolve this problem when k = r-2 and present an upper bound on def(G) for the general case.

2. UPPER BOUND

An upper bound for def(G) when $G \in \mathcal{G}(n,r,k)$ was determined in [5]. This bound is generally not sharp when G is triangle free. In this section we present an upper bound for def(G) when $G \in \mathcal{G}'(n,r,k)$ which is sharp for k = r-2.

The following lemma is easily established by simple counting and application of Turan's theorem.

Lemma 2.1: Let $G \in \mathcal{G}'(n,r,1)$, $r \ge 3$ and $S \subset V(G)$. If G_0 is an odd component of G-S which is joined to S by at most r-2 edges, then $\nu(G_0) \ge 2r+1$.

Our next lemma was proved in [5].

Lemma 2.2: Let G be an r-regular, connected graph having def(G) \neq 1. Suppose that for any $\phi \neq V_1 \subset V(G)$ every odd component of G - V_1 is joined to V_1 by not less than m edges, $1 \leq m \leq r-2$ (m $\equiv r \pmod{2}$). Then there exists a non-empty set S $\subset V(G)$ such that G-S has $\ell \geq \frac{r}{r-m} \det(G)$ odd components joined to S by at most r-2 edges.

We now establish an upper bound on def(G).

Theorem 2.1: Let $G \in \mathcal{G}'(n,r,1)$, $r \ge 4$. If for any non-empty set $S \subset V(G)$ every odd component of G-S is joined to S by at least m edges, where $1 \le m \le r-2$ and $m \equiv r \pmod{2}$, then

(a)
$$def(G) \leq 2 \lfloor \frac{r-m}{2r} \lfloor \frac{rn}{2r^2 + r+m} \rfloor \rfloor$$
, if n is even;
(b) $def(G) = 1$, if n is odd and $n < \frac{2r^2 + r+m}{r} \lceil \frac{3r}{r-m} \rceil$;
(c) $def(G) \leq 1 + 2 \lfloor \frac{r-m}{2r} \lfloor \frac{rn}{2r^2 + r+m} \rfloor - \frac{1}{2} \rfloor$, otherwise.

Proof: The result is trivially true when def(G) = 0 and also when def(G) = 1 as in this case n must be odd. So suppose $def(G) \ge 2$. Lemma 2.2 implies that there exists a non-empty set S c V(G) such that G - S has

$$\ell \geq \frac{r}{r-m} \operatorname{def}(G)$$
 (2.1)

odd components, G_1, G_2, \ldots, G_ℓ say, each of which is joined to S by at most r-2 edges.

By simply counting the edges between S and these odd components we can conclude that $r|S| \ge \ell m$ and hence $|S| \ge \frac{\ell m}{r}$. Now

$$n \ge |S| + \sum_{i=1}^{\ell} \nu(G_i) \ge \frac{\ell m}{r} + \ell(2r+1)$$
. (Lemma 2.1)

Consequently

$$\ell \leq \left\lfloor \frac{\mathrm{rn}}{2\mathrm{r}^2 + \mathrm{r} + \mathrm{m}} \right\rfloor .$$
 (2.2)

(2.1) and (2.2) together yield

$$def(G) \leq \frac{r-m}{r} \left\lfloor \frac{rn}{2r^2 + r+m} \right\rfloor$$

Now when n is even, def(G) must be even and thus we can write

$$def(G) \leq 2 \left\lfloor \frac{r-m}{2r} \right\rfloor \frac{rn}{2r^2 + r+m}$$

proving (a). When n is odd, def(G) must be odd and hence

$$3 \leq def(G) \leq \frac{r-m}{r} \left\lfloor \frac{rn}{2r^2 + r+m} \right\rfloor$$

Therefore

$$\left[\frac{3r}{r-m}\right] \leq \left\lfloor\frac{rn}{2r^2 + r+m}\right\rfloor,$$

and hence

$$n \geq \frac{2r^2 + r + m}{r} \left\lceil \frac{3r}{r - m} \right\rceil = n_0.$$

Thus if $n < n_0$, then def(G) = 1, proving (b). If $n \ge n_0$, then we can write

$$def(G) \le 1 + 2 \lfloor \frac{r-m}{2r} \lfloor \frac{rn}{2r^2 + r+m} \rfloor - \frac{1}{2} \rfloor ,$$

proving (c). This completes the proof of the theorem.

For the case when $G \in \mathcal{G}'(n,r,k)$ we have the following corollaries of Theorem 2.1.

Corollary 1: Let $G \in \mathcal{G}'(n,r,k)$ with $r \ge 4$ and $1 \le k \le r-2$. Then

(a)
$$def(G) \leq 2 \lfloor \frac{r-k'}{2r} \lfloor \frac{rn}{2r^2 + r+k'} \rfloor \rfloor$$
, if n is even;
(b) $def(G) = 1$, if n is odd and $n < \frac{2r^2 + r+k'}{r} \lceil \frac{3r}{r-k'} \rceil$;

(c)
$$\operatorname{def}(G) \leq 1 + 2 \lfloor \frac{r-k'}{2r} \lfloor \frac{rn}{2r^2 + r+k'} \rfloor - \frac{1}{2} \rfloor$$
, otherwise;

where k' is the least integer not less than k which has the same parity as r. $\hfill \Box$

Corollary 2: Let $G \in \mathcal{G}'(n,r,k)$ with $r \ge 4$, $1 \le k \le r-2$ and n even. If G has no perfect matching, then

$$n \geq \frac{2r^2 + r + k'}{r} \left[\frac{2r}{r - k'} \right],$$

where k' is the least integer not less than k which has the same parity as r.

3. THE CLASS S'(n,r,r-2)

In this section we determine the set

$$D(n,r,r-2) = \{ def(G) : G \in \mathcal{G}'(n,r,r-2) \}$$

for $r \ge 4$. We begin with some constructions. The graph A(2n,r) is defined as follows. Take the empty graph \overline{K}_{2n} with vertices $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n$. Form the Hamilton cycle H_i , $1 \le i \le \lfloor \frac{1}{2}r \rfloor$, by joining u_j to v_{2i+j-2} and v_{2i+j-1} for each j, $1 \le j \le n$; all integers are reduced modulo n when necessary. Define the matching M as

 $M = \{u_i v_j : 1 \le i \le n \text{ and } j \equiv i + r - 1 \pmod{n}\}.$ Now we define A(2n,r) as

$$A(2n,r) = \begin{cases} \frac{1}{2}r \\ U & H_{i} \\ i=1 \\ \\ \\ \frac{1}{2}(r-1) \\ U & H_{i} & U & M \\ i=1 \\ \end{cases}, \text{ if } r \text{ is odd.}$$

Observe that A(2n,r) is an r-regular graph with a perfect matching. As to the edge-connectivity of A(2n,r) we have

Lemma 3.1:

- (a) $\kappa'(A(2n,r)) = r$, and
- (b) $\kappa'(A(2n,r)-x) \ge r-2$ for any vertex x of A(2n,r).

Proof: We prove only (b) as (a) has already been observed by Bollobás and Eldridge [1]. Without loss of generality consider $A(2n,r)-u_1$.

Suppose that $\kappa'(A(2n,r)-u_1) = t < r-2$ and let (V_1, \overline{V}_1) be an edge-cut set of size t with $|V_1| \ge |\overline{V}_1|$. Then $|\overline{V}_1| \ge 2$ and there are two Hamilton paths, P_1 and P_2 say each having exactly one edge of the cut (V_1, \overline{V}_1) . Then from the construction of A(2n, r) we have

$$P_1 = v_{2i} u_2 v_{2i+1} u_3 \dots v_{2i-1}$$

and

$$P_2 = v_{2j} u_2 v_{2j+1} u_3 \dots v_{2j-1}$$
,

for some $i \neq j$. With no loss of generality let $v_{2i} \in V_1$. Then since $|V_1| \ge 2$ we must have $u_2 \in V_1$, as otherwise P_1 would have at least two edges of the cut (V_1, \tilde{V}_1) . Let $w_2 w_2'$, z = 1, 2, be the edge of P_2 in the cut (V_1, \tilde{V}_1) . Then

$$V_1 = \{v_{2i}, u_2, v_{2i+1}, u_3, \dots, w_1\}$$

and also

$$V_1 = \{v_{2j}, u_2, v_{2j+1}, u_3, \dots, w_2\}$$
.

Thus if V_1 contains p of the vertices v_1, v_2, \ldots, v_n , then

$$\{v_{2i}, v_{2i+1}, \dots, v_{2i+p-1}\} = \{v_{2j}, v_{2j+1}, \dots, v_{2j+p-1}\}$$

Hence $2j \equiv 2i + t \pmod{n}$ for some positive integer t. Now when $|\overline{V}_1| \ge 2$ we must have p < n and $1 \le t \le p - 1$. But then $2j + p - t \equiv 2i + p \pmod{n}$ implying that $v_{2j-t+p} = v_{2i+p} \in V_1$, contradicting the fact that p < n. This proves (b).

The graph B(2n+1,r) on (2n+1) vertices is defined as follows. Take the graph A(2n,r) - u₁ and add two new vertices x and y. Join x to y and to each v₁, $1 \le i \le \lfloor \frac{1}{2}r \rfloor$, and join y to each v₁, $\lfloor \frac{1}{2}r \rfloor + 1 \le i \le r$. Call the resulting graph B(2n+1,r). Note that x and y have degree $\lfloor \frac{1}{2}r \rfloor + 1$ and $\lceil \frac{1}{2}r \rceil + 1$ respectively and every other vertex has degree r. Also $\kappa'(B(2n+1,r)) \ge \frac{1}{2}r$.

The graphs A(2n,r) and B(2n+1,r) are the basic building blocks in our constructions. We next construct a triangle free r-regular graph G(m,r) of odd order $m \ge \frac{5}{2}r$ having deficiency 1. Our construction depends on the parity of $\frac{1}{2}r$.

Consider the graph A(2n,r). Observe that the subgraph of A(2n,r) induced by the vertices $\{u_1, u_2, \dots, u_l, v_l, v_l, v_l, \dots, v_r\}$ is the complete bipartite graph $K_1 = \frac{1}{2}r, \frac{1}{2}r$ with bipartitioning sets $\{u_1, u_2, \dots, u_l\}$ and $\{v_1, v_1, \dots, v_r\}$. The edges of this subgraph $u_1, u_2, \dots, u_l\}$ and $\{v_1, v_2, \dots, v_r\}$.

can be partitioned into $\frac{1}{2}r$ disjoint matchings M_1, M_2, \dots, M_1 . We may

take
$$M_1 = \{u_i v_i : 1 \le i \le \frac{1}{2}r\}.$$

For $\frac{1}{2}r$ odd we form the graph $G(2n + \frac{1}{2}r,r)$ from $A(2n,r)\setminus\{M_1,M_2,\ldots,M_1\}$ by adding $\frac{1}{2}r$ new vertices, w_1,w_2,\ldots,w_1 say, and joining each of these to the r vertices $u_1,u_2,\ldots,u_1,v_1,v_1,\ldots,v_1,v_1,v_1,\ldots,v_1,v_1,v_2,\ldots,v_1,v_1,v_1,v_2,\ldots,v_1,v_1,v_1,v_2,\ldots,v_1,v_1,v_1,v_2,\ldots,v_1,v_1,v_1,v_2,\ldots,v_1,v_1,v_1,v_1,v_1,v_1,\ldots,v_r$. Observe that $G(2n + \frac{1}{2}r,r)$ is a triangle free graph on $2n + \frac{1}{2}r$ vertices that is r-regular. We will later establish that this graph is r-edge-connected.

Now we consider the case when $\frac{1}{2}r$ is even. Recall that

$$H_{\frac{1}{4}\Gamma+1} = u v u v u v u_{3} \dots v u_{1}^{1}$$

and thus $M_1 \subseteq H_1$. Form the graph G(2n+2,r) as follows. Take $A(2n,r) \setminus \{u_1 v_1 : 1 \le i \le r\}$ and add two vertices, x and y, say. Join x to u_1, u_2, \dots, u_r , and join y to v_1, v_1, \dots, v_r . Call the resulting graph G(2n+2,r). Observe that the graph is triangle free, has 2n+2 vertices and is r-regular. Further, G(2n+2,r) contains as a spanning subgraph the graph G_0 whose edge-set is specified as :

$$E(G_{0}) = (H \{ v_{1} : 1 \le i \le r \}) \bigcup_{i=1}^{r} \{xu_{i}, yv_{i}\}$$

Observe that G_0 is the union of r edge-disjoint (x,y)-paths and thus is 2-edge-connected. Further, the graph $(G(2n+2,r)-\{x,y\})\setminus E(G_0)$ consists of the $\frac{1}{2}r-1$ Hamilton cycles H_2, H_3, \ldots, H_1 and thus is (r-2)-edge- $\frac{1}{2}r$

connected. It is easily established that G(2n+2,r) is r-edgeconnected.

For $r \ge 4$ we form the graph $G(2n + \frac{1}{2}r+1,r)$ from $G(2n+2,r)\setminus\{M_2,M_3,\ldots,M_1\}$ by adding $\frac{1}{2}r-1$ new vertices $w_1,w_2,\ldots,w_$

Lemma 3.2: Let G be a k-edge-connected graph, $k \ge 1$, and M be a matching in G of size $m \ge \lceil \frac{1}{2}k \rceil$ saturating the vertices v_1, v_2, \ldots, v_{2m} . Then the graph G' obtained by adding a vertex u to G\M and joining it to the vertices v_1, v_2, \ldots, v_{2m} is k-edge-connected.

Proof: Suppose $\kappa'(G') = t < k$ and let E_1 be a t-edge cut of G' and let E_2 denote those elements of E_1 that are incident to u. Note that $E_2 \neq \phi$ since G is k-edge-connected. Let X denote the set of M-saturated vertices of G that are, in G', incident to E_2 and M' denote the set of edges of M incident to exactly one vertex in X. The set

$$E' = (E_1 \setminus E_2) \cup M'$$

is an edge cut in G. But

 $|E'| = |E_1| - |E_2| + |M'| \le |E_1| \le k-1$,

contradicting the fact that $\kappa'(G) \ge k$. This proves the lemma.

Application of Lemma 3.2 to the graphs G(m,r) for odd m = $2n + \frac{1}{2}r$ or $2n + \frac{1}{2}r+1$ establishes the r-edge-connectedness of these graphs. It thus follows from Lemma 2.2 that def(G(m,r)) = 1.

We make use of the following lemma proved in [7] to establish our main result in this section.

Lemma 3.3: For odd n, $\mathcal{G}'(n,r,1) \neq \phi$ if and only if r is even and $n \ge \frac{5}{2}r$.

Now we are ready to determine D(n, r, r-2).

Theorem 3.1: For $r \ge 4$,

(a) $D(n,r,r-2) = \phi$, if n and r are odd or n < 2r or $n < \frac{5}{2}r$ is odd; (b) $D(n,r,r-2) = \{d : 0 \le d \le 2 \lfloor \frac{n}{2(r^2 + r-1)} \rfloor$, d is even}, if $n \ge 2r$ is even; (c) $D(n,r,r-2) = \{1\}$, if n is odd and $\frac{5}{2} \le n < 3(r^2 + r-1)$; (d) $D(n,r,r-2) = \{d : 1 \le d \le 1 + 2 \lfloor \frac{n}{2(r^2 + r-1)} - \frac{1}{2} \rfloor$,

d is odd}, otherwise.

Proof: When $\mathcal{G}'(n,r,r-2) \neq \phi$, then at least one of n or r is even, and by Turan's theorem $n \ge 2r$. Further, by Lemma 3.3, if n is odd, then $n \ge \frac{5}{2}r$. This proves (a). So suppose at least one of n or r is even, $n \ge 2r$ and $n \ge \frac{5}{2}r$ if n is odd. The upper bound of def(G), $G \in \mathcal{G}'(n,r,r-2)$, is determined in Corollary 1.

First we consider the case when n is even. The graph $A(n,r) \in \mathcal{G}'(n,r,r-2)$ and has a perfect matching. This gives the lower bound of def(G) and proves (b) when $n < 2(r^2 + r-1)$. Now let

 $n \ge 2(r^2 + r-1)$ and d be an even integer, $2 \le d \le 2 \left\lfloor \frac{n}{2(r^2 + r-1)} \right\rfloor$. We construct a graph $G \in \mathcal{G}'(n, r, r-2)$ with def(G) = d for each possible value of d as follows.

Let $\ell = \frac{1}{2}rd$ and $s = \frac{1}{2}rd - d$. Take the empty graph \overline{K}_s with vertices u_1, u_2, \ldots, u_s , $\ell-1$ copies $G_1, G_2, \ldots, G_{\ell-1}$ of B(2r+1,r) and a copy G_ℓ of $B(n-d(r^2+r-1)+2r+1,r)$. Note that $n - d(r^2 + r-1) + 2r+1$ is odd and is at least 2r+1 because of the upper bound on d. Further, for $1 \le i \le \ell$, G_i has two vertices, x_i and y_i say, of degree $\lfloor \frac{1}{2}r \rfloor + 1$ and $\lfloor \frac{1}{2}r \rceil + 1$ respectively. Then join each x_i and u_j and each y_i to u_z , where $i \le j \le i + \lfloor \frac{1}{2}r \rfloor - 1 < z \le r-2$. The resulting graph G is triangle free, r-regular and has

$$\nu(G) = (\ell-1)(2r+1) + (n-d(r^2 + r-1) + 2r+1) + s$$

= $(\frac{1}{2}rd-1)(2r+1) + (n-d(r^2 + r-1) + 2r+1) + (\frac{1}{2}rd-d)$
= n.

We will now show that G is (r-2)-edge-connected. Suppose that $\kappa'(G) = t < r-2$, then there is t-edge cut, (V_1, \overline{V}_1) say, of G. Lemma 3.1 implies that for each i, $G_1 - \{x_1, y_1\}$ is (r-2)-edge-connected, and hence the vertices of $G_1 - \{x_1, y_1\}$ are all in V_1 or all in \overline{V}_1 .

Let $U_1 = V_1 \cap \{u_1, u_2, \dots, u_s\}$ and $U_2 = \overline{V}_1 \cap \{u_1, u_2, \dots, u_s\}$. We first prove that $U_i \neq \phi$, i = 1, 2. Without loss of generality suppose that $U_1 = \phi$. Then $V(G_i) \notin V_1$ for any i. Further $V(G_i) \cap V_1 \neq \phi$ for some i. Since t < r-2 and the vertices of $G_i - \{x_i, y_i\}$ are all in V_1 or all in \overline{V}_1 , then V_1 contains exactly one of x_i or y_i . But each of these possibilities results in $t \ge r-2$. Thus $U_i \neq \phi$, i = 1, 2.

Since, for each i, G_i is $\frac{1}{2}r$ -edge-connected, then there cannot be more than one G_i for which $V(G_i) \cap V_1 \neq \phi$ and $V(G_i) \cap \overline{V}_1 \neq \phi$. We now define a graph G' as follows. If there exists a G_i with $V(G_i) \cap V_1 \neq \phi$ and $V(G_i) \cap \overline{V}_i \neq \phi$, then let

$$G' = G - \bigcup_{\substack{j=1}}^{i+d-1} V(G_j)$$

where the integers are reduced modulo ℓ when necessary. If there is no such ${\rm G}^{}_{\rm i}$, then take

$$G' = G - \bigcup_{j=1}^{d} V(G_j)$$

Then there exists an edge-cut set (V_2, \bar{V}_2) of G' with less than r-2 edges. If we contract every G_1 in G' to a single vertex, then the resulting graph G* is isomorphic to the graph A(2s,r-2). Further there is an edge-cut set (V_3, \bar{V}_3) of G* with $|(V_3, \bar{V}_3)| < r-2$. This contradicts the fact that A(2s,r-2) is (r-2)-edge-connected. Hence $G \in \mathcal{G}(n,r,r-2)$.

Now take S =
$$\{u_1, u_2, ..., u_S\}$$
. Then
 $o(G-S) - |S| = \ell - s$
 $= \frac{1}{2}rd - (\frac{1}{2}rd + d)$
 $= d$.

and so def(G) \geq d. Further, every component G_i of G-S has def(G_i) = 1, and hence def(G) \leq d. Thus def(G) = d and this completes the proof of (b).

Now consider the case when n is odd. The graph $G(n,r) \in \mathcal{G}'(n,r,r-2)$ and has deficiency one. This gives the lower bound of def(G) and proves (c). Let $n \ge \frac{5}{2}r$. For each odd d,

$$3 \le d \le 1 + 2 \left\lfloor \frac{n}{2(r^2 + r - 1)} - \frac{1}{2} \right\rfloor$$
,

we construct a graph $G \in \mathcal{G}'(n,r,r-2)$ with def(G) = d following the procedure described for the case when n is even. This completes the proof.

REFERENCES

- B. Bollobás and S.E. Eldridge. "Maximal matchings in graphs with given minimal and maximal degrees", Math. Proc. Cambridge Philos. Soc. 79 (1976), 221-234.
- [2] J.A. Bondy and U.S.R. Murty, "Graph Theory with Applications", The MacMillan Press, London (1977).
- [3] L. Caccetta and Purwanto, "Deficiencies and vertex clique covering numbers of a family of trees", The Australasian Journal of Combinatorics, 1 (1990), 15-27.
- [4] L. Caccetta and Purwanto, "Deficiencies and vertex clique covering numbers of cubic graphs", Graphs, Matrices and Designs (in press).
- [5] L. Caccetta and Purwanto, "Deficiencies of r-regular k-edgeconnected graphs", The Australasian Journal of Combinatorics (In press).
- [6] L. Lovász and M.D. Plummer, "Matching Theory", Annals of Discrete math. 29, North-Holland, Amsterdam (1986).
- [7] N.J. Pullman and D. de Caen, "Clique coverings of graphs I: Clique partitions of regular graphs", Utilitas Mathematica, 19 (1981), 177-205.

