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Abstract

Here R(n, k) denotes the minimum possible size of a completely sepa-
rating system C on [n] with |A| = k for each A ∈ C. Values of R(n, k)
are determined for

(
k−1

2

) ≤ n <
(

k
2

)
or 11 ≤ n ≤ 12. Using the dual

interpretation of completely separating systems as antichains, this paper
provides corresponding results for dual k-regular antichains.

1 Introduction and Basic Results

This paper extends previous work in [9], [10], [11], [12] and more recent work by Böhm
in [1], [2] and [3], to determine the minimum size completely separating systems
(CSSs) with a single block size. This simultaneously determines the minimum size
ground set for which a k-regular antichain of a given size exists. This section contains
some basic results and a summary of relevant results from the papers mentioned
above. Subsequent sections determine the unknown values of R(n, k) for

(
k−1
2

) ≤
n <

(
k
2

)
or 11 ≤ n ≤ 12.

Let k < n be integers, with [n] = {1, 2, . . . , n}, and with 2[n] denoting the power set of
[n]. An (n)Completely Separating System ((n)CSS) C is a collection of blocks
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of [n] such that for any pair of points x, y ∈ [n] there exist blocks A, B ∈ C with
x ∈ A \B and y ∈ B \A. An (n, k)Completely Separating System ((n, k)CSS)
C is an (n)CSS in which each block is of size k. Throughout this paper it is assumed
that k > 1.

The size of C is the number of blocks in C, denoted by |C|. The integers R(n) and
R(n,k) are defined by: R(n) = min{|C| : C is an (n)CSS} and R(n, k) = min{|C| :
C is an (n, k)CSS}. In what follows R is sometimes written instead of R(n, k). An
(n)CSS for which |C| = R(n) is a minimal (n)CSS and an (n, k)CSS C for which
|C| = R(n, k) is a minimal (n, k)CSS.

The volume of a collection of blocks C is V (C) =
∑

A∈C |A|. For an (n, k)CSS C,
V (C) = k|C|. A CSS is said to be fair if each point occurs in either p or p + 1 blocks
for some integer p. A point is said to cover a collection of blocks C if each block
in C contains the point. Similarly, a point a covers another point b if each block
containing b also contains a. In any CSS, no point covers another point. A point is
called a p-point if it occurs in exactly p blocks. Note that p > 1 for each point in
an (n, k)CSS with k > 1.

CSSs or partial CSSs are often represented by arrays in this paper, with each row
representing a block or partial block. Here the word ’partial’ means that only part
of a CSS or part of a block is shown. Gaps are sometimes left in the rows to aid in
seeing the substructures.

Some values of R(n) from [9] and [12] are restated in the following lemma.

Lemma 1.1. The following hold for k < n:
1. If n ≤ 4 then R(n) = n.
2. If n = 5 or 6 then R(n) = 4 and, up to labelling of points, there is a unique way
of achieving R(n) in each case.
3. R(n) is a non-decreasing function of n.
4. R(7) = 5.
5. For 1 ≤ k < n, R(n, k) = R(n, n − k).

In [9], [10] and [11] the values of R(n, k) are determined for n ≥ (
k
2

)
, or for k ≤ 10.

The main results are summarised here:

Theorem 1.1. The following hold for 1 < k < n:
1. If n ≥ (

k+1
2

)
, then R(n, k) = �2n/k�;

2. If n =
(

k+1
2

) − 1, k > 3, then R(n, k) = k + 2 = �2n/k� + 1;

3. If k2/2 ≤ n ≤ (
k+1
2

) − 2, k ≥ 5, then R(n, k) = k + 1, with R(n, k) = �2n/k�
except for n = k2/2;
4. If

(
k
2

) ≤ n < k2/2, k ≥ 5, then R(n, k) = k + 1 > �2n/k�;
5. If

(
k
2

) − k
3

< n <
(

k
2

)
then R(n, k) ≥ k + 1.

The last result can be strengthened to R(n, k) = k + 1 due to work on regular
antichains by Böhm in [1], [2] and [3]. These papers provide various results of
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interest, including a method to construct (n, k)CSSs with k + 1 blocks for k + 3 <
n ≤ (

k+1
2

) − 2. That is,

Lemma 1.2. An (n, k)CSS with k + 1 blocks exists for k + 3 < n ≤ (
k+1
2

) − 2.

Let w = �(k
2

) − 2
5
k� for k ≡ 0, 1, 3, 4 (mod 5) and w = �(k

2

) − 2
5
k� − 1 for k ≡

2 (mod 5). The following lemma appears in [1] in the dual context of k-regular
antichains.

Lemma 1.3. Assume that k ≥ 6. Then R(n, k) ≤ k for k + 3 ≤ n ≤ w.

Hence, for all values considered in this paper, it can be assumed that R(n, k) ≤ k+1.
As R(n, k) is known for all cases with k ≤ 10, it will also be assumed that k ≥ 11.

A catalogue of non-isomorphic configurations for (n)CSSs for n ≤ 35 and with at
most 7 blocks is developed in [7]. Hence R(n, k) is determined for all n ≤ 35 provided
R(n, k) ≤ 7. Kündgen et al [8] use an asymptotic approach to determine upper and
lower bounds on R(n, k) for n ≥ 2k. Their Corollary 1 states that R(

(
rm
r

)
,
(

rm−1
r−1

)
) =

rm for r ≥ 1 and m ≥ 2.

CSSs have a dual formulation as antichains, and this has been useful in the deter-
mination of minimum size CSSs. An antichain (AC) A on [m] is a collection of
subsets of [m] such that A 
⊆ B for all distinct A, B ∈ A. Let A = {A1, . . . , An} be a
collection of subsets of [m]. The dual A∗ of A is the collection A∗ = {X1, . . . , Xm}
of subsets of [n] given by Xi = {q : i ∈ Aq}. Antichains are the duals of CSSs: if
A is a CSS then its dual A∗ is an antichain and vice versa. A flat antichain is an
antichain with ||A| − |B|| ≤ 1 for all A, B ∈ A. Fair CSSs and flat antichains are
dual concepts. An antichain A in 2[m] is m-native if the size of the antichain A
exceeds the maximum size antichain on [m− 1]. That is, |A| >

(
m−1
�m−1

2
�
)
. This means

that all elements of [m] occur in A. If C is a minimum size (n, k)CSS in m blocks
then the dual antichain is m-native.

The notion of a CSS was first introduced by Dickson [6], and Spencer [13] was the
first to define the duality with antichains, and to completely determine R(n).

A k-regular antichain A on [m] has each element of [m] occurring in exactly k
sets in A. Thus V (A) = km. The dual of an (n, k)CSS C in m blocks is a k-regular
m-native antichain A with |A| = n. Thus, when we determine R(n, k) = R, we are
also determining the existence of a dual k-regular R-native antichain of size n.

The determination of values of R(n, k) involves several different approaches. A com-
monly used method is to establish a lower bound for a particular case and then try
to determine whether or not the bound is achievable. The bound is often obtained
by showing that if R(n, k) = R then certain partial structures must occur, and that
these structures cannot be completed to an (n, k)CSS in R blocks.

For the values of n and k considered here, 2n ≤ V (C) ≤ 3n and each point will
normally be a p-point with 2 ≤ p ≤ 3. For an (n, k)CSS C in R blocks with
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2n ≤ V (C) ≤ 3n, t = 3n − kR is the minimum number of 2-points that must occur
in C, and u = n − t is the maximum number of p-points in C, for p ≥ 3.

If C achieves R(n, k) then it has at least 2t
R

2-points in one of its blocks. An upper
bound on the number of 2-points in a block is the following observation.

Observation 1.1. 1. Let C be a minimal (n, k)CSS in R blocks. Then each block
in C contains at most p 2-points, where p = R(n, k)−R(k − p) − 1, and R(k − p) is
the minimum possible size of a (k − p)CSS.

To see the truth of this observation, assume that a block in C contains at least p
2-points. Each of these 2-points occur once more, each in different blocks of C. The
remaining k − p points must be completely separated in the remaining R − p − 1
blocks, which is only possible if R(k − p) ≤ R(n, k) − p − 1.

By Lemma 1.1, R(n) = n for n ≤ 4 and R(5) = R(6) = 4. Combine this with
Observation 1.1 with R = k or k − 1. This leads to the next observation.

Observation 1.2. Let C be an (n, k)CSS with |C| = k or k − 1. Then each block in
C contains at most (k − 5) or (k − 6) 2-points respectively.

A final observation then follows by considering the maximum possible number of
points in an (n, k)CSS of size at most k− 1 for n ≥ (

k−1
2

)
, and noting that there can

be at most k − 6 2-points in each block.

Observation 1.3. If n >
(

k−1
2

)
then R(n, k) ≥ k.

The following related inequality appears in [11].

Lemma 1.4.

R(n, k) ≥
⌈

5 − 2k +
√

(2k − 5)2 + 24n

2

⌉
. (1)

2 R(n, k) for
(
k−1
2

) ≤ n <
(
k
2

)
, k ≥ 11

The study of values of R(n, k) when n is bounded by the floor or ceiling of quadratic
functions of k has produced the results summarised in Theorem 1.1, and this ap-
proach is continued in this section to determine R(n, k) for

(
k−1
2

) ≤ n <
(

k
2

)
.

The main results are summarised in the following theorem. The proof is contained in
the subsequent discussion and theorems. Recall that w = �(k

2

)− 2
5
k� for k ≡ 0, 1, 3, 4

(mod 5) and w = �(k
2

) − 2
5
k� − 1 for k ≡ 2 (mod 5).

Theorem 2.1. For k ≥ 6,
1.

R(

(
k − 1

2

)
, k) =

{
k − 1 k ≡ 1 (mod 5)

k otherwise
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2. R(n, k) = k for
(

k−1
2

)
< n ≤ w.

3. R(n, k) = k + 1 for w < n <
(

k
2

)
.

The proof of Part 2 is straightforward. It follows immediately from Lemma 1.3 and
Observation 1.3. The proof of the other two parts is contained in the following
subsections.

2.1 R(n, k) for w < n <
(

k
2

)
, k ≥ 11

By Theorem 1.1 and Lemma 1.2, R(n, k) = k + 1 for
(

k
2

) − k/3 < n <
(

k
2

)
.

This leaves R(n, k) to be determined in this section for w < n ≤ (
k
2

) − k/3 =

� (k−1)2

2
� + k

6
− 1/2 for k odd, and

(
k
2

) − k/3 = � (k−1)2

2
� + k

6
− 1 for k even. For each

k ≥ 11, the number of values of n in this interval, called the gap, is approximately
k
15

. It will be shown that

Theorem 2.2. R(n, k) = k + 1 for w < n ≤ (
k
2

) − k/3.

Proof. Assume that C is an (n, k)CSS with |C| = k and w < n ≤ (
k
2

) − k/3. By
Observation 1.2, at most (k − 5) 2-points can occur in any block in a minimum size
(n, k)CSS in k blocks for k ≥ 6. A block is said to be full if it contains (k−5) 2-points.
Within the gap, the minimum number of 2-points t that can occur, is obtained when
all points are p-points, 2 ≤ p ≤ 3. Then k2 − 2n must be the number of 3-points in

C andtheir volume is 3k2 − 6n. It follows that t = V (C)−3(k2−2n)
2

= 3n− k2. For fixed
k and |C|, t increases with n, so t achieves its minimum in the gap when n = w + 1.

In the remainder of this section an argument is presented based upon the number of
2-points which might occur over all choices of an (n, k)CSS C with |C| = k. For fixed
n, k the number of 2-points can be no less than the number which would occur if all
other points are 3-points, so the argument begins with the assumption that there are
no p-points with p ≥ 4.

For fixed k, the number of 2-points t and the number of 3-points u for each n in the
gap is bounded respectively for k ≡ 0, 1, 2, 3, 4 (mod 5) by:
t ≥ 5k2−27k+30

10
and u ≤ 9k−10

5
; t ≥ 5k2−27k+12

10
and u ≤ 9k−4

5
; t ≥ 5k2−27k−6

10
and

u ≤ 9k+2
5

; t ≥ 5k2−27k+6
10

and u ≤ 9k−2
5

; t ≥ 5k2−27k+18
10

and u ≤ 9k−6
5

.
By calculating 2t− k(k − 6) it can be seen that there are at least v blocks of C that
contain exactly (k − 5) 2-points where v = 3k

5
+ 6, 3k

5
+ 12

5
, 3k

5
− 6

5
, 3k

5
+ 6

5
, 3k

5
+ 18

5

respectively for k ≡ 0, 1, 2, 3, 4 (mod 5).

This means that in all cases except when k ≡ 2 (mod 5) and n = w + 1, on average
more than three out of every five blocks of C are full. Note that this average is larger
if there is a p-point, p > 3. The values listed here are used implicitly throughout
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the proof when making calculations relating to the number of 2-points or 3-points in
various configurations.

Some more structure is needed. Assume that a block B1 ∈ C is full. Let B1 =
{1, 2, . . . , k − 5, a, b, c, d, e}. Then each of the 2-points 1, 2, . . . , k − 5 reoccur once
more in C, say in blocks B6, . . . , Bk. This means that the 3-points a, b, c, d, e must
be completely separated in blocks in B = {B2, . . . , B5}. Up to isomorphism there is
one way to do this, as shown.

B =

a b c
a d e X Y
b d
c e

Here, X represents the subcollection of 3-points in these blocks, other than a, b, c, d, e,
and Y is the subcollection of 2-points in these blocks. Let Xi, Yi denote the ith block
of X, Y respectively. Call the collection A = {B1, B2, B3, B4, B5} a collection of
associated blocks. We proceed by considering the possible size and structure of X
and Y . The known partial structure for these associated blocks is used to impose
structural constraints within parts of a partitioning of the remaining blocks, without
having to deal with each block individually. This will make use of the following
process.

Block Partitioning Process (BPP)
Let X1, X2 be the sets of 3-points in collections of associated blocks A1, A2 respec-
tively in the same form that X is for A above. Assume that A1, A2 are disjoint in
the sense that X1 ∩X2 = ∅. It is then said that A1, A2 are X-disjoint. Then we can
partition the blocks of C into X-disjoint collections of blocks of size five, labelled,
A1, . . . , As, V, s ≤ �k

5
�, by recursively choosing a previously unassociated full block,

and including it, together with its associated blocks, in the same part. V consists of
any remaining blocks called the excess blocks.

Let A = {B1, . . . , B5} be a collection of associated blocks, let B = {B2, . . . , B5},
Z = {B6, . . . , Bk}, and let B ⊗Z = {(i, j) : Bi ∈ B, Bj ∈ Z}. A row in Y and a row
in Z are said to clash if a row in Z is covered by both a 3-point and a 2-point from
the same row in B. This reflects the fact that the 3-point covers the 2-point and so
the CSS property is violated.

Case 1: Assume that there is no 2-point which occurs twice in Y .

It is easy to see that |X| 
= 10, 11 as follows. If |X| = 10 then |Y | = 4(k − 5) and
each row of Y contains exactly (k − 5) 2-points which must be completely separated
in rows in Z. We represent this situation with the following notation for the possible
configuration of X and Y

W =

2 k − 5
2 k − 5
3 k − 5
3 k − 5

where each row represents the number of 3-points in X and 2-points in Y in the
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corresponding blocks of B. As |X| = 10, an element in X must reoccur somewhere
in blocks in Z, so rows in Y and Z will clash.

For |X| = 11 the possible nonisomorphic configurations are

W1 =

3 k − 6
2 k − 5
3 k − 5
3 k − 5

and W2 =

2 k − 5
2 k − 5
3 k − 5
4 k − 6

In either case, it is easily checked that there is a row which contains a 2-point and a
3-point which occur together again in a block in Z, and so a 2-point is covered by a
3-point.

Now consider the case |X| = 12. There are five possible configurations, given the
possible values in Y :

W1 =

2 k − 5
2 k − 5
3 k − 5
5 k − 7

, W2 =

2 k − 5
2 k − 5
4 k − 6
4 k − 6

, W3 =

2 k − 5
3 k − 6
3 k − 5
4 k − 6

, W4 =

2 k − 5
4 k − 7
3 k − 5
3 k − 5

, W5 =

3 k − 6
3 k − 6
3 k − 5
3 k − 5

The fact that each 2-point in Y needs to reoccur once in Z means that |Y ⊗ Z| =
4k − 22 so |X ⊗ Z| ≤ 2. As |X| = 12, it is easily seen, by considering the possible
placement of three points of X in Z, that |X ⊗ Z| ≥ 3 if more than four distinct
points are used in X. So we can assume that only four distinct points occur in X.

For W1: as there are at least five distinct points in X, |X ⊗ Z| ≥ 3.
For W2: assume that X4 = fghi. With only four points allowed, X3 = fghi, and
the first two blocks cannot be filled using only points from fghi.
For W3 or W4: for W3 assume that X4 = fghi. Then X3 = fgh and X2 cannot be
filled by points chosen from fghi, given that each point occurs 3 times in C. The
configuration W4 uses the same argument style with X2 = fghi.
For W5: there is one possibility, namely X1 = fgh, X2 = fgi, X3 = fhi, X4 = ghi.
This is the only possible configuration for |X| = 12.

It follows that if all associated collections have |X| = 12 then there are two possi-
bilities. If s = �k

5
� then there are insufficient 3-points for the number of associated

collections except when n = w + 1 and k ≡ 2 (mod 5). Then there are insufficient
distinct 3-points left to fill the excess rows. In all other cases there are insufficient
full rows as none of the excess rows can be full. This follows from the assumption
that |X| = 12 for all associated collections and from the fact that 3-points cannot
be shared by distinct associated collections.

Assume that C contains some associated blocks with |X| = 13, or equivalently |Y | =
4k − 23. Ensuring that no more than three pairs of rows are covered in B ⊗ Z, the
eight possible configurations are:

W1 =

2 k − 5
2 k − 5
3 k − 5
6 k − 8

, W2 =

2 k − 5
2 k − 5
4 k − 6
5 k − 7

, W3 =

2 k − 5
3 k − 6
3 k − 5
5 k − 7

, W4 =

2 k − 5
3 k − 6
4 k − 6
4 k − 6

,
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W5 =

3 k − 6
3 k − 6
3 k − 5
4 k − 6

, W6 =

3 k − 6
4 k − 7
3 k − 5
3 k − 5

, W7 =

2 k − 5
4 k − 7
3 k − 5
4 k − 6

, W8 =

2 k − 5
5 k − 8
3 k − 5
3 k − 5

Given these configurations, it can be easily checked by considering the possible place-
ment of points from X in Z, that if there are at least six distinct 3-points occuring
in X, then |X ⊗Z| ≥ 4. So we can assume that there are at most five distinct points
in X. Hence the configuration W1 is not feasible.

Given that there are five distinct 3-points in X, two places in Z include values from
X, and there are three possible arrangements of these points in Z: the point x
repeated in two different rows of Z; the points x, y occurring in the same row of
Z; or the points x, y occurring in different rows of Z. Only the first two cases are
feasible as in the third case at least four pairs of rows will be covered by x or y.
The following constructions implicitly assume that these are the only two feasible
arrangements. Let the rows in Z, which may contain points from X, be labelled
Z1, Z2.

For W2: let X4 = fghij and X3 = fghi. Then one each of f, g, h are in X1, X2, Z1

respectively, and j must be in X1, X2, forcing i into Z2. This is not feasible.

For notational convenience when the points in one row of X are specified, then the
sets of points in the remaining rows, including those in Z, are recorded in summary
form in numeric order of their row name, as illustrated in the next case with the
vertical stroke signifying the divide between X and Z.

For W3: with X4 = fghij, the only feasible solution is gi, fij, fgh|hj (for rows
X1, X2, X3, Z1 in this order) but then Y3 clashes with Z1.

For W5: with X4 = fghi, these points must occur in pairs in four more rows, giving
fgj, fhj, gij|hi. Then Y3 clashes with Z1. A similar methodology can be used to
show that W6 (without using Z2), W7 and W8 are not feasible.

W6 is feasible with fgh, fgij, fhi, ghi|j, j.
For W4: with X4 = fghi, X3 must be fghj, forcing fj, gij|hi.

Thus W4, W6 are the only feasible configurations for |X| = 13.

The reason for doing this analysis is the following. Given the feasible configurations
above, it will be shown that for any two distinct associated collections A1, A2 of five
blocks, with A1, A2 having their associated blocks with |X| = 12 or 13, then A1, A2

are X-disjoint. Then BPP can be applied to the blocks in C.

Assume that A1, A2 are each collections of associated blocks with blocks BA1 ∈
A1, BA2 ∈ A2 being full, and X is related to A1. Assume that some 3-points are
common to both A1 and A2. This cannot happen with the one feasible configura-
tion for |X| = 12 so assume that |X| = 13. BA1 , BA2 cannot contain any of the
same five 3-points, else the 3-points cannot be completely separated appropriately.
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Assume that the 3-points in BA1 , BA2 are abcde, fghij respectively. Assume that
A1, A2 share 3-points in a common block B3 in A1. Then B3 contains one of the fol-
lowing non-isomorphic combinations of 3-points abcfgh, abcfg, abfg. For |X| = 13
there are two feasible configurations for X, namely W4 and W6. Neither of these
configurations allow for the 3-points fghij ∈ BA2 to share 3-points with A1 and
have them completely separated in only four blocks.

Hence there are no collections of associated rows with shared blocks, and any excess
rows containing 3-points common with an associated collection with |X| = 13 cannot
be full.

BPP can be applied for the case of associated blocks with |X| = 12 or 13. The
volume of 2-points in C is maximised when all but one of the associated collections
have |X| = 12. As any excess rows are not full, the volume of 2-points in C is at most
�k−5

5
�(5k−27)+(5k−28)+i(k−6) = k−5−i

5
(5k−27)+(5k−28)+i(k−6) < k2−27k

5
< 2t,

with i ≡ 0, 1, 2, 3, 4 (mod 5), except possibly when n = w+1 and k ≡ 2 (mod 5). For
k ≡ 2 (mod 5) there must be two excess rows which are not full, so the appropriate
inequality is k−7

5
(5k − 27) + (5k − 28) + 2(k − 6) =< k2 − 27k

5
− 6

5
and again there

are insufficient 2-points in C. That is, if all associated collections have |X| ≤ 13 then
the volume of 2-points will be less than 2t.

Assume that C contains an associated collection in which |X| = 14. If there is more
than one collection of associated rows with |X| = 14, and which do not share some
common 3-points, or where the excess rows are not full, then calculations similar to
those above show that the volume of 2-points is less than 2t.

Assume that all but one collection of associated rows has |X| = 12 and one collection
A of associated rows has |X| = 14. For this latter X it must be that |X ⊗ Z| ≤ 4.
There are several possible arrangements for X, but to show that the volume of 2-
points in C is less than 2t, it is sufficent in most cases to show that any excess rows
associated with A cannot be full.

Assume that A shares 3-points with another full row, say Z1, which contains the
3-points fghij. There is one way to completely separate these in four other blocks.
There must be at least two other distinct 3-points in X with one or both reoccurring
in an excess row, not Z1, and contributing at least two to the size of |X ⊗Z|. It does
not matter how fghij are arranged in X or excess rows, these contribute at least
three additional values to the size of |X ⊗ Z|. Hence |X ⊗ Z| > 4. This is also the
case if any of fghij appear in the other excess row. Hence Z1 and any other excess
rows cannot be full. After using BPP, it is easy to check that for each value of k
(mod 5), except for n = w + 1 and k ≡ 2 (mod 5), the volume of 2-points in C is
less than 2t.

When n = w + 1 and k ≡ 2 (mod 5) then there are insufficient distinct 3-points to
complete the two excess rows.

If there is an associated collection with |X| ≥ 15 then the volume of 2-points in C
requires that there is one such collection and the remaining ones have |X| = 12. Then
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there are k (mod 5) excess rows, and whether or not these are full, the calculation
of the maximum volume of 2-points in C can be found for each value of k (mod 5),
and the volume of 2-points is less than 2t.

Case 2: Assume that there is a 2-point which occurs twice in Y . Then the following
structure occurs with x the repeated 2-point in Y , and rows labelled B1, . . . , B5.

1 . . . k − 5 a b c d e
a b c
a d e X Y
b d x
c e x

This means that it is necessary that |X ⊗Z| ≤ 4(k− 5)−|Y |+2. It also means that
all 3-points in the last 2 rows B4, B5 are distinct to avoid covering x, so there are at
least six distinct points in X in B4 ∪ B5.

It is easy to check that for |X| = 10 and |Y | = 4k − 20, or for |X| = 11 and
|Y | = 4k − 19, that |X ⊗ Z| ≥ 4 > 4(k − 5) − |Y | + 2, as there must be at least two
positions filled in Z by 3-points from each of B4, B5. Thus any asssociated collection
contains at most 3 full rows.

If |X| ≥ 12 then X has the following partial structure with 3-points f, g, h, i, j, k

a b c
a d e
b d i j k x
c e f g h x

with each of B2, B3 containing at least two 3-points. Each of the collections fgh, ijk
require at least three more rows to completely separate each of them, so each collec-
tion has points which occupy at least two places in Z.

For |X| = 12 or 13, the possible arrangements of the points fghijk which keep
|X×Z| small enough, require that there are four places in each of B2, B3 occupied
by pairs of points chosen from each of fgh and ijk. This is not possible as |X| ≤ 13.

Thus all collections of associated rows have |X| ≥ 14 and using arguments similar
to those used in Case 1, it is easy to verify that the volume of 2-points in C is less
than 2t.

The proof when there are p-points with p ≥ 4 is covered by the arguments above.
To see this, note that the number of 2-points increases by p− 3 with the inclusion of
each p-point, p ≥ 4, and so the cases above cover all possible choices for the number
of full rows which might occur when p ≥ 4. The reader may also like to note that
any row containing a p-point, p ≥ 4, can contain at most (k−5)− (p−3) = k−p−2
2-points, and so cannot be full.

Thus R(n, k) ≥ k + 1 for all values of n in the gap. The fact that R(n, k) = k + 1
follows immediately by Lemma 1.2.
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2.2 R(n, k) for n =
(

k−1
2

)
, k ≥ 11

By Lemma 1.4, R(
(

k−1
2

)
, k) ≥ k − 1.

Lemma 2.1. If k ≥ 6 and R(
(

k−1
2

)
, k) = k − 1 then k ≡ 1 (mod 5).

Proof. A fair minimal CSS on
(

k−1
2

)
points and with (k − 1) blocks has each block

containing exactly (k − 6) 2-points and six 3-points. Note that it follows from Ob-
servation 1.2 that a non-fair CSS is not possible as there would then be a block with
at least k − 5 2-points. The six 3-points a, b, c, d, e, f contained in one block of the
fair CSS must be distributed as follows:

a b c d e f
a b c
a d e
b d f
c e f

Each of the remaining (k− 6) blocks contains exactly one 2-point from each of these
five blocks. So the remaining 3-points in these blocks occur as shown:

a b c d e f
a b c g h i
a d e g h j
b d f g i j
c e f h i j

Therefore k − 1 must be divisible by five in order to allow complete separation.

It follows that if k 
≡ 1 (mod 5), R(
(

k−1
2

)
, k) ≥ k, and the following lemma provides

a construction for this case.

Lemma 2.2. For k ≥ 6, if R(
(

k−1
2

)
, k) = k then R(

(
k+4
2

)
, k + 5) = k + 5

Proof. Construct a (k +5)× (k +5) array M with the following structure, where the
sets of elements in the sub- arrays A, B and X are disjoint collections, and X is a
minimum size (

(
k−1
2

)
, k)CSS.

X

A� B

A
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where AT =

1 2 3 . . . k − 2
...

...
4k − 7 5(k − 2)

,

which together with A completely separates (5k−10) 2-points, and B is the following
array which completely separates 15 3-points.

B =

a b c d e
f g h i j

a f k l m n o
a b c g h l o
d e f i j m n
b d g i k n o
c e h j k l m

.

Then M is a (k+5)×(k+5) array which completely separates
(

k−1
2

)
+(5k−10)+15 =(

k+4
2

)
points.

Lemma 2.2 is applicable for k = 7, . . . , 10, as shown in Table 1. However, this is not
the case for k = 6 as R(10, 6) = 5.

Lemma 2.3. For k ≥ 6, if R(
(

k−1
2

)
, k) = k − 1 then R(

(
k+4
2

)
, k + 5) = k + 4.

Proof. Construct a (k +4)× (k +5) array M with the following structure, where the
sets of elements in the sub-arrays A, B and X are disjoint collections.

X

A� B

A

where A =

1 2 3 4 5
...

...
5k − 1 5(k − 1)

,

which together with AT completely separates 5(k − 1) 2-points. B is a 5 × 6 array
which completely separates ten 3-points and X is a (k−1)×k array which completely
separates

(
k−1
2

)
points.

Then M is a (k+4)×(k+5) array which completely separates
(

k−1
2

)
+5(k−1)+10 =(

k+4
2

)
points.

The lemmas give part 1 of Theorem 2.1.
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3 Minimal CSSs for 11 ≤ k ≤ 12

In Theorem 1.1 the values of R(n, k) for n ≥ k2/2 are stated and R(n, k) is known
for all n with k ≤ 10. The remaining unknown values of R(n, k) for k = 11 and 12
are determined here. When it is stated in this section, that a construction satisfy-
ing certain parameters has been found, then that construction appears in [4]. The
construction of Böhm provides an alternative construction technique when R = k+1.

3.1 Remaining cases for R(n, 11)

R(n, 11) can be determined for n ≤ 21 using results from [11] and applying R(n, k) =
R(n, n − k). Roberts [11] gives values of R(n, 11) for n = 23, . . . , 26. R(45, 11) = 10
by Theorem 2.1, R(50, 11) = 11 by Theorem 2.1, and R(n, 11) has been determined
for all n ≥ 55 by Theorem 1.1. The following unknown cases need to be determined.

Roberts [11] gives the lower bound:
(i) R(22, 11) ≥ 7.

By Lemma 1.3 lower bounds for R(n, k) are:
(ii) For 27 ≤ n ≤ 28, R(n, 11) ≥ 7
(iii) For 29 ≤ n ≤ 33, R(n, 11) ≥ 8
(iv) For 34 ≤ n ≤ 39, R(n, 11) ≥ 9
(v) For 40 ≤ n ≤ 45, R(n, 11) ≥ 10
(vi) For 46 ≤ n ≤ 50, R(n, 11) ≥ 10.

By Theorem 2.2
(vii) For 51 ≤ n ≤ 54, R(n, 11) ≥ 12.

Case (i) n = 22
Constructions have been found for R(22, 11) = 7 in [4] and [7].

Case (ii) 27 ≤ n ≤ 28

Lemma 3.1.
R(n, 11) = 8 for n = 27, 28.

Proof. For n = 27, 28 let C be an (n, k)CSS in 7 blocks. If R(27, 11) = 7, then
V (C) = 77, so there have to be at least four 2-points giving a block B with at least
two 2-points which is not possible by Theorem 1.1. If R(28, 11) = 7 there are at
least seven 2-points and a similar argument follows.

The same non-existence result could be obtained by using the catalogue in [7]. Con-
structions have been found for R(27, 11) = 8 and R(28, 11) = 8.

Case (iii) 29 ≤ n ≤ 33
For n = 29, 30, 31, the lower bound for R(n, k) is achieved and constructions have
been found for R(n, 11) = 8.
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Lemma 3.2.
R(n, 11) = 9 for n = 32, 33.

Proof. Let C be a (32, 11)CSS in 8 blocks. Then V (C) = 88 and there have to be
least eight 2-points giving a block B with at least two 2-points.

If there are at least nine 2-points then there is block B with at least three 2-points
which is not possible by Theorem 1.1.

Assume that there are exactly eight 2-points in C. By Theorem 1.1 there are at most
two 2-points in any block giving the configuration:

1 2 a . . . i
1 . . .
2 . . .
. . .

.

The nine 3-points a, . . . , i need to be completely separated in blocks four to eight.
They cover nine of the ten available pairs. This allows at most one pair of 2-points
in these blocks, and the 2-points cannot be appropriately included.

Let C be a (33, 11)CSS in 8 blocks. V (C) = 88, and there must be 11 2-points and
22 3-points or, if there is one 4-point there are 12 2-points and 20 3-points. Neither
is possible by Theorem 1.1.

Constructions have been found for R(32, 11) = R(33, 11) = 9.

Case (iv) 34 ≤ n ≤ 39
Constructions have been found for R(34, 11) = R(35, 11) = R(36, 11) = 9.

Lemma 3.3.
R(n, 11) = 10 for 37 ≤ n ≤ 39.

Proof. Let C be a (37, 11)CSS in nine blocks. V (C) = 99 and if there is a 4-point
there must be 13 2-points and 23 3-points as follows:

X 1 2 3 a − g . . . or 1 2 3 a − h . . . or 1 2 3 a − h . . .
X . . . 1 . . . 1 X . . .
X . . . 2 . . . 2 . . .
X . . . 3 . . . 3 . . .
1 . . . X . . . X . . .
2 . . . X . . . X . . .
3 . . . X . . . X . . .
. . . X . . . . . .
. . . . . . . . .

.

By Lemma 1.1, the seven (or eight) points a, . . . , g (or a, . . . , h) require five rows to
be completely separated and this will allow at most three pairs of 2-points in these
rows, so this is not possible.

If there are no 4-points then there are 25 3-points and 12 2-points, giving the following
configuration:
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1 2 3 a . . . h
1 . . .
2 . . .
3 . . .
. . .
. . .

.

The eight points a, . . . , h require five rows to completely separate and this will not
allow for any pair of 2-points in these rows, so this is not possible.

Let C be a (38, 11)CSS with R = 9. V (C) = 99 so there must be at least 15 2-points
with at least four 2-points in at least one block. Let B1 = {1, 2, 3, 4, a, . . . , g} then
a, . . . , g cannot be completely separated in the last four blocks.

Let C be a (39, 11)CSS with R = 9. V (C) = 99 so there must be at least 17 2-
points with at least four 2-points in at least one block. The proof involves the same
argument as used for n = 38.

Constructions have been found for R(37, 11) = R(38, 11) = R(39, 11) = 10.

Case (v) 40 ≤ n ≤ 44
Constructions have been found for R(n, 11) = 10 for 40 ≤ n ≤ 44.

Case (vi) 46 ≤ n ≤ 49
By Observation 1.3, R(n, 11) ≥ 11 for n > 45, and constructions have been found
for R(n, 11) = 11 for 46 ≤ n ≤ 49.

Case (vii) 51 ≤ n ≤ 54
R(51, 11), . . . , R(54, 11) ≥ 12 by Theorem 2.2, and constructions have been found
for R(n, 11) = 12 for 51 ≤ n ≤ 54.

3.2 Remaining cases for R(n, 12)

R(n, 12) can be determined for n ≤ 24 using results from [11] and applying R(n, k) =
R(n, n − k), and in [11] there is a construction for R(25, 12) = 7.

R(55, 12) = 11 by Theorem 2.1. Theorem 2.1 gives R(61, 12) = 13. All values of
R(n, 12) have been determined for n ≥ 66 in Theorem 1.1.

The remaining unknown cases are for n = 24, 26 ≤ n ≤ 30, 36 ≤ n ≤ 54, 56 ≤ n ≤ 60
and 62 ≤ n ≤ 65.

Roberts [11] gives the lower bound:
(i) R(24, 12) ≥ 7.

By Lemma 1.4 lower bounds for R(n, k) are:
(ii) For 26 ≤ n ≤ 30, R(n, 12) ≥ 7
(iii) For 31 ≤ n ≤ 36, R(n, 12) ≥ 8
(iv) For 37 ≤ n ≤ 42, R(n, 12) ≥ 9
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(v) For 43 ≤ n ≤ 48, R(n, 12) ≥ 10
(vi) For 49 ≤ n ≤ 54, R(n, 12) ≥ 11
(vii) For 56 ≤ n ≤ 60, R(n, 12) ≥ 12.

By Theorem 2.2
(viii) For 62 ≤ n < 65, R(n, 12) ≥ 13.

By Theorem 1.1, if C is an (n, 12)CSS with |C| = 7, then each block in C contains at
most |C| − 6 = 1 2-point.

Lemma 3.4. If R(n, 12) = 7 then there cannot be a 2-point in any block.

Proof. Let C be an (n, 12)CSS with R = 7. Assume there is a block containing a
2-point. This gives the following partial structure:

1 a b c d e f g h i j k
1 . . .
...

.

The 11 points a, . . . , k must be completely separated in five blocks which is not
possible since R(11) = 6.

Case (i) n = 24
A construction have been found for R(24, 12) = 7.

Case (ii) 26 ≤ n ≤ 30
By the catalogue in [7], R(n, 12) 
= 7 for n = 26, 27, 29, 30 and a construction is given
there for R(28, 12) = 7. Constructions have been found for R(26, 12) = R(27, 12) =
R(29, 12) = R(30, 12) = 8.

Case (iii) 31 ≤ n ≤ 36
Constructions have been found for R(n, 12) = 8 for 31 ≤ n ≤ 33.

Lemma 3.5. R(n, 12) = 9 for 34 ≤ n ≤ 36.

Proof. Assume C is a (34, 12)CSS in eight blocks. By Theorem 1.1 there must be eight
2-points and 26 3-points, with exactly two 2-points per block giving the following
configuration:

1 2 a b c d e f g h i j
1 − . . .
2 − . . .
...

.

The ten 3-points a, . . . , j must be completely separated in the last five blocks covering
exactly ten pairs of these blocks (see [11]). Hence the remaining 2-points cannot be
completely separated. Adaptations of this proof show that R(35, 12), R(36, 12) > 8.
Constructions have been found for R(n, 12) = 9 for 34 ≤ n ≤ 36.
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Case (iv) 37 ≤ n ≤ 42
Constructions have been found for R(n, 12) = 9 for 37 ≤ n ≤ 39.

Lemma 3.6. R(n, 12) = 10 for 40 ≤ n ≤ 42.

Proof. Assume C is an (n, 12)CSS (40 ≤ n ≤ 42) in 9 blocks. V (C) = 108 so
there are at least 14 2-points, but this would require some blocks to contain at least
four 2-points. This is not possible by Theorem 1.1. If there were any p-points,
p ≥ 4, the number of 2-points would be greater. Constructions have been found for
R(n, 12) = 10 for 40 ≤ n ≤ 42.

Case (v) 43 ≤ n ≤ 48
Constructions have been found for R(n, 12) = 10 for 43 ≤ n ≤ 45.

Lemma 3.7. R(46, 12) = 11.

Proof. Assume that C is a (46, 12)CSS in ten blocks. There are at most four 2-points
per block by Lemma 1.1. It can be seen that there are no p-points, p ≥ 4 as follows.
Assume that the point A occurs in at least four blocks. Then there are at least 19
2-points in C and the partial structure below must occur to completely separate the
points of row 1. This forces all of the 2-points 1, . . . , 19 to occur in rows five to eight
and this is not possible.

A 1 2 3 4 a b c d e f g
A b e . . .
A c f . . .
A d g . . .
1 . . .
2 . . .
3 . . .
4 . . .
a b c d . . .
a e f g . . .

The following arguments can be made without loss of generality. V (C) = 120 so
there are 18 2-points and 28 3-points, and there is a block which contains exactly
four 2-points. This gives the following partial structure:

1 2 3 4 a b c d e f g h
1 . . .
2 . . .
3 . . .
4 . . .
...

.

The eight 3-points a, . . . , h must be completely separated in the last five blocks, and
by [11] there are two ways of doing this with volume 16. This leads to two cases
based upon the partial forms of rows six to ten:
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Case 1:

a b c d
a e f g
b e h
c f h
d g

, Case 2:

a b c d
a e f
b e g
c f h
d g h

.

These points cover eight of the 10 pairs in rows six to ten, and so at most two
2-points can occur here twice. This means that the first five rows must have the
following form:

1 2 3 4 a b c d e f g h
1 5 6 7 . . .
2 8 9 10 . . .
3 11 12 13 . . .
4 14 15 16 . . .

with each of 5, . . . , 16 occurring exactly once more in rows six to ten, and with
17 in rows eight and ten, and 18 in rows nine and ten. It follows that at least one of
the rows 6, . . . , 10 contains exactly four 2-points.

Case 1:
Assume that 5, 8 are in row ten, along with the six 3-points A, . . . F . These 3-points
must be completely separated in the four rows 4, . . . , 7 with three of each of the
3-points in each row. This means that at least one of 11, 12, 13 cannot be completely
separated from them.
Assume that 5, 8, 11 are in row nine, along with the five 3-points A, . . . , E. Each
of the points A, . . . , E must occur twice in rows 5, . . . , 8 and they cover five of the
six pairs of rows. This means that at least one of 14, 15, 16 cannot be completely
separated from them.
Assume that 5, 8, 11, 14 are in row six, along with the four 3-points A, . . . , D. Each
of the points A, . . . , D must occur twice in rows 7, . . . , 10 as follows, to avoid covering
17 or 18. The placement of 9, 10, 11, E, F is then forced as shown.

A B C 9 10 11 E F
A D E
B D F
C

Similarly to the above arguments, it can be seen that 14, 15, 16 cannot be com-
pletely separated from some of the other points. Hence Case 1 does not lead to a
(46, 12)CSS.

Case 2 follows by similar reasoning to Case 1 to show that a (46, 12)CSS cannot be
created, so only some details are included.
Assume that 5, 8, 11, 14 are in row six, along with the four 3-points A, . . . D. Then
rows 7, . . . , 10 have the following partial form and there are two subcases to check
based upon the possible ways to complete row seven: with 6, 9, 12, E, F, G or 6, 9, E,
F, G, H.
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a e f 18 A B
b e g 17 A C
c f h 17 B D
d g h 18 C D

.

This means that one of rows 7, . . . , 10 contain four 2-points, say row seven,
containing 5, 8, 11, 18, I, J, K, L, M . Then I, . . . , M must be completely separated in
rows 5, 6, 8 and 9, with I, J, K in row five, and one each of these in rows 6, 8, 9.
This means that 14, 15, 16 cannot be completely separated from them.

Lemma 3.8. R(n, 12) = 11 for n = 47, 48.

Proof. Assume C is an (n, 12)CSS in ten blocks. V (C) = 120 and there are 21 or
24 2-points respectively, but this would require some blocks to contain at least five
2-points which is not possible by Theorem 1.1. If there was a 4-point there would be
more 2-points and a similar argument would follow.

Constructions have been found for R(n, 12) = 11 for 46 ≤ n ≤ 48.

Cases (vi) 49 ≤ n ≤ 54
Constructions have been found for R(n, 12) = 11 for 49 ≤ n ≤ 54.

Case (vii) 54 ≤ n ≤ 60
Constructions have been found for R(n, 12) = 13 for 54 ≤ n ≤ 60.

R(61, 12) = 13 by Theorem 2.2. It is worth noting that a computer search (see [5])
had previously determined that R(61, 12) 
= 12, and a long analytic proof of this is
outlined in [7]. The new method using BPP is a significant improvement to these
previously used methods which dealt with this one case only. A construction for
R(61, 12) = 13 is shown in Section 4.

Case (viii) 62 ≤ n ≤ 65
Constructions have been found for R(n, 12) = 13 for 62 ≤ n ≤ 65.

Table 1 provides a complete set of values of R(n, k) for 2 ≤ n ≤ 63 and k ≤ 12.

4 Comments

Quadratic Bands

It is interesting to note that in the case of n = � (k−1)2

2
�, R(n, k) = k+1 for 6 ≤ k ≤ 8

or k = 12, and R(n, k) = k for k > 8, k 
= 12. For n =
(

k−1
2

)
, R(n, k) = k − 1 if and

only if k ≡ 1 (mod 5), and R(n, k) = k otherwise. This is the first time that the
values of R(n, k) have not been found to be the same function of k for each n of the

form n = � (k+a)2

2
� or n =

(
k+a

2

)
, a ≥ −1, k ≥ 10.

A (61, 12)CSS in 13 blocks is shown below, partly because of the property just
mentioned, but also because it was very difficult to show that R(61, 12) 
= 12 before
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k
n 1 2 3 4 5 6 7 8 9 10 11 12
2 2
3 3
4 4 4
5 5 5
6 6 6 4
7 7 7 5
8 8 8 6 5
9 9 9 6 6

10 10 10 7 5 6
11 11 11 8 6 6
12 12 12 8 6 6 6
13 13 13 9 7 6 7
14 14 14 10 7 7 7 6
15 15 15 10 8 6 7 7
16 16 16 11 8 7 7 7 6
17 17 17 12 9 7 7 7 7
18 18 18 12 9 8 7 8 7 6
19 19 19 13 10 8 7 8 7 7
20 20 20 14 10 8 8 8 8 7 6
21 21 21 14 11 9 7 8 8 7 7
22 22 22 15 11 9 8 8 8 8 7 7
23 23 23 16 12 10 8 8 8 8 7 7
24 24 24 16 12 10 8 8 8 8 8 7 7
25 25 25 17 13 10 9 8 9 8 8 7 7
26 26 26 18 13 11 9 8 9 8 8 7 8
27 27 27 18 14 11 9 9 9 9 8 7 8
28 28 28 19 14 12 10 8 9 9 8 8 7
29 29 29 20 15 12 10 9 9 9 9 8 8
30 30 30 20 15 12 10 9 9 9 9 8 8
31 31 31 21 16 13 11 9 9 9 9 8 8
32 32 32 22 16 13 11 10 9 9 9 8 8
33 33 33 22 17 14 11 10 9 10 9 9 8
34 34 34 23 17 14 12 10 9 10 9 9 9
35 35 35 24 18 14 12 10 10 10 10 9 9
36 36 36 24 18 15 12 11 9 10 10 9 9
37 37 37 25 19 15 13 11 10 10 10 10 9
38 38 38 26 19 16 13 11 10 10 10 10 9
39 39 39 26 20 16 13 12 10 10 10 10 9
40 40 40 27 20 16 14 12 10 10 10 10 10
41 41 41 28 21 17 14 12 11 10 10 10 10
42 42 42 28 21 17 14 12 11 10 11 10 10
43 43 43 29 22 18 15 13 11 10 11 10 10
44 44 44 30 22 18 15 13 11 11 11 10 10
45 45 45 30 23 18 15 13 12 10 11 10 10
46 46 46 31 23 19 16 14 12 11 11 11 11
47 47 47 32 24 19 16 14 12 11 11 11 11
48 48 48 32 24 20 16 14 12 11 11 11 11
49 49 49 33 25 20 17 14 13 11 11 11 11
50 50 50 34 25 20 17 15 13 12 11 11 11
51 51 51 34 26 21 17 15 13 12 11 12 11
52 52 52 35 26 21 18 15 13 12 11 12 11
53 53 53 36 27 22 18 16 14 12 11 12 11
54 54 54 36 27 22 18 16 14 12 12 12 11
55 55 55 37 28 22 19 16 14 13 11 12 12
56 56 56 38 28 23 19 16 14 13 12 12 12
57 57 57 38 29 23 19 17 15 13 12 12 12
58 58 58 39 29 24 20 17 15 13 12 12 12
59 59 59 40 30 24 20 17 15 13 12 12 12
60 60 60 40 30 24 20 18 15 14 12 12 12
61 61 61 41 31 25 21 18 16 14 13 12 13
62 62 62 42 31 25 21 18 16 14 13 12 13
63 63 63 42 32 26 21 18 16 14 13 12 13

Table 1: Values of R(n, k) for 2 ≤ n ≤ 63 and k ≤ 12.
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BPP was developed.

1 2 3 4 5 a b c d u v w
6 7 8 9 10 a e f g u v x
11 12 13 14 15 b e h i u w y
16 17 18 19 20 c f h j v x y
21 22 23 24 25 d g i j w x y
26 27 a b c d e f g h i j
26 k l m n o p q r s t H
27 k l m n o z A B C D E
1 6 11 16 21 k p q C F G H
2 7 12 17 22 l p r B E F G
3 8 13 18 23 m q s A D G E
4 9 14 19 24 n r t z D H F
5 10 15 20 25 o s t z A B C

Monotonicity in n
Lemma 1.1 implies that R(n) is a non-decreasing function of n. One of the questions
posed in [10] was whether or not the value of R(n, k) is monotonic in n, for fixed
k 
= 4, 5 and n ≥ 2k. In [9] it was shown that the lower bound of �2n

k
� = k + 1

cannot be achieved for n =
(

k+1
2

) − 1, whilst it is achieved for
(

k+1
2

) − 2, and for

n =
(

k+1
2

)
. Thus R(n, k) is not a non-decreasing function of n at least at one point

for k ≥ 4. This paper shows that R(26, 12) = R(27, 12) = 8 but R(28, 12) = 7 and
this is the first case found of another value of n and k where R(n, k) is not monotonic
as a function of n.

Regular antichains
The dual of an (n, k)CSS in R(n, k) blocks is an R-native k-regular AC of size n.
Hence Table 1 provides the smallest size ground set for the existence of a k-regular
AC of size n.

Flat antichains
All of the constructions mentioned in Section 3 are fair CSSs. Hence their duals
are flat ACs. This continues support for the conjecture that R(n, k) can always be
achieved by a fair CSS. Equivalently, the results support the conjecture that whenever
there is a k-regular AC of size n on [R], then there is also a k-regular flat AC of size
n on [R].

Addendum: The value of R(34, 10) has been amended in Table 1 from 10 to 9. This
corrects a typographic error in [11].
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