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Abstract

Motivated by a recent result of Walter [Electron. J. Combin. 16 (2009),
R94] concerning the chromatic polynomials of some hypergraphs, we
present the chromatic polynomials of several (non-uniform) mixed hyper-
graphs. We use a recursive process for generating explicit formulae for
linear mixed hypercacti and multi-bridge mixed hypergraphs using a de-
composition of the underlying hypergraph into blocks, defined via chains.
Further, using an algebra software package such as Maple, one can use the
basic formulae and process demonstrated in this paper to generate the
chromatic polynomials for any linear mixed hypercycle, unicyclic mixed
hypercyle, mixed hypercactus and multi-bridge mixed hypergraph. We
also give the chromatic polynomials of several examples in illustration of
the process including the formulae for some mixed sunflowers.

1 Introduction

A hypergraph H is an ordered pair (X, E) where X is a finite set of vertices, with order
|X| = n, and E is a collection of nonempty subsets of X. The number of elements
of X contained in an element e of E , denoted |e|, is the size of e. When |e| = 2
for all elements of E , then H is a graph and the elements of E are its edges. More
generally, H is a hypergraph and the elements of E are its hyperedges. The degree of
a vertex v, denoted d(v) = dH(v), is the number of hyperedges of H containing v. H
is Sperner if no hyperedge is a subset of another hyperedge. H is said to be linear if
e1 ∩ e2 is either empty or a singleton for any pair of hyperedges. If all hyperedges of
H have size k, then we say H is k-uniform. Obviously a 2-uniform hypergraph is a
graph. For further basic definitions of graphs and hypergraphs, we refer the reader
to [5, 20].

Much progress has been made to extend and generalize several theories of graphs
to hypergraphs. In particular, vertex coloring is an active area of ongoing research
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[6, 7, 9, 13, 14, 15, 16]. A λ-coloring of a hypergraph H is a mapping f : X →
{1, 2, . . . , λ}. A surjective mapping f is a strict coloring. In graph theory, a coloring
is a proper coloring if f(u) �= f(v) any time u and v are adjacent, meaning {u, v} ∈ E .
The natural extension to hypergraphs, wherein f is a proper coloring if at least two
vertices of each hyperedge are assigned different colors, has been studied extensively
and is usually what is meant by hypergraph coloring. However, some authors have
studied the inverse condition, wherein at least two vertices of each hyperedge are
given the same color. Others have even required the combination of both conditions
simultaneously, which is only possible for (hyper)edges of size at least 3. When
hypergraph vertex coloring is studied, we partition E into three disjoint subsets
E = C ∪ D ∪ B and denote the hypergraph H by the four-tuple (X, C,D,B). In
this context H is a mixed hypergraph. Besides being used to encode partitioning
constraints, mixed hypergraphs theory has several other applications, notably in
communications models for cyber security [11].

A proper coloring of a mixed hypergraph is a λ-coloring such that f assigns the
same color to at least one pair of vertices of each hyperedge in C, f assigns different
colors to at least one pair of vertices in each hyperedge in D, and f assigns the
same color to one pair and different colors to another pair of each hyperedge of B.
Colorings f1 and f2 are different if f1(u) �= f2(u) for at least one vertex u. The
chromatic polynomial P (H) = P (H, λ) counts the number of proper λ-colorings of
H. Note that it is customary (in [18] for instance) to write E as the union of two
not necessarily disjoint sets C and D and define B to be their intersection. For the
purposes of writing explicit formulae for chromatic polynomials, it is more convenient
to require C, D, and B to be disjoint.

The subhypergraph H[V ] induced by a set of vertices V ⊂ X is the hypergraph
with vertices V and the hyperedges of H which are contained in V . The subhy-
pergraph H[F ] induced by a set of hyperedges F is the subhypergraph induced by
the vertices of the elements of F . The subhypergraph H[D] is a D-hypergraph, or
simply a hypergraph. The subhypergraph H[C] is a C-hypergraph or cohypergraph.
The subhypergraph H[B] is a B-hypergraph, or bihypergraph.

Explicit formulae for the chromatic polynomials for some types of hypergraphs
have been given by many authors [6, 7, 8, 19]. Fewer formulae are known for cohyper-
graphs, bihypergraphs, and general mixed hypergraphs (see for instance [3, 4, 15, 18]),
although much has been studied about these colorings and related issues, such as
the feasible set of integer values of λ for which there is a strict proper coloring
[12, 13, 14, 15, 17, 18]. Our contribution is to extend some recent results of Wal-
ter concerning some D-hypergraphs to their mixed hypergraphs counterparts, thus,
adding to the very few known literature concerning the chromatic polynomials of
mixed hypergraphs. To achieve this purpose, this paper builds on some explicit
formulae given in [3] to find chromatic polynomials for a larger collection of mixed
hypergraphs. In Section 2 we review a way to decompose mixed hypergraphs and
give a slightly more general version of a well-known splitting theorem for the chro-
matic polynomials of certain separable mixed hypergraphs. In Section 3 we review
the results of [3], as well as comment on formulations of some classes of hypergraphs.
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In Section 4 we extend the results of [3] to obtain a process to generate the chromatic
polynomial of any linear mixed hypercycle. In Section 5 we give a general expression
for the chromatic polynomial of any linear mixed hypercactus based on the formu-
lae of Sections 3 and 4, and give some examples to illustrate these formulae. In
Section 6 we give an expression for the chromatic polynomial of linear multi-bridge
mixed hypergraphs which can be referred to as mixed Θ-hypergraphs (or Θ-mixed
hypergraphs). To conclude, in Section 7, we derive the formulae for sunflower mixed
hypergraphs, which are an example of nonlinear mixed hypergraphs. Their blocks
which are sunflowers, can be included to increase the class of mixed hypergraphs
whose chromatic polynomials can be computed using the splitting theorem of Sec-
tion 2 or a combinatorial argument. We present the latter method.

2 Decompositions of Hypergraphs

The subset X0 ⊂ X is a separator of the connected hypergraph H if there are

nonempty pairwise disjoint subsets X1, . . . , Xk, k ≥ 2, such that X =

k⋃
i=0

Xi and no

hyperedge containing x ∈ Xi also contains y ∈ Xj for any 1 ≤ i < j ≤ k. The in-
duced subhypergraphs Hi = H[Xi∪X0] for 1 ≤ i ≤ k are the derived subhypergraphs
with respect to X0, which is the induced subhypergraph H0 = H[X0] .

Voloshin [17] gives a decomposition theorem for chromatic polynomials which
generalizes a property of complete subgraphs, or cliques, to hypergraphs. The hy-
pergraphs performing this role are the uniquely colorable mixed hypergraphs, which
are hypergraphs that have a unique strict proper coloring, up to permutation of the
colors.

Theorem 2.1. Let H = (X, C,D,B) be a connected mixed hypergraph with de-
rived subhypergraphs H1,H2, . . . ,Hk with respect to a uniquely colorable separator
H0. Then

P (H) =
(
P (H0)

)1−k
k∏

i=1

P (Hi). (1)

It is easy to construct examples where the chromatic polynomial does not decom-
pose in this way for separators that are not uniquely colorable. See Figure 1.

Example 2.1. Let H be the D-hypergraph with two hyperedges of size 3 and a com-
mon intersection of size 2. (See Figure 1).

Then, the derived subhypergraphs H1 and H2 are the hyperedges with respect to
the separator H0

∼= K2 which is the empty graph on two vertices. The chromatic
polynomials P (H) = λ(λ − 1)(λ2 + λ − 1), P (H1) = P (H2) = λ(λ2 − 1), and
P (H0) = λ2 do not satisfy (1).

However, it is easy to extend Theorem 2.1, recursively, when derived subhyper-
graphs with respect to one uniquely colorable subhypergraph can be separated again
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Figure 1: A sunflower with two petals

��� �

by another uniquely colorable subhypergraph. We state this result in a general form,
and then give a simpler form when singletons repeatedly separate the hypergraph
which we use in the majority of this paper.

Corollary 2.1.1. Let X1
0 separate the connected mixed hypergrpah H into two derived

subhypergraphs H1
1 and H1

2 with respect to a uniquely colorable separator H1
0. Let X i

0

separate Hi−1
2 into two derived subhypergraphs Hi

1 and Hi
2 with respect to a uniquely

colorable separator Hi
0 for 2 ≤ i ≤ k. Then

P (H) =
P (H1

1)P (H1
2)

P (H1
0)

= · · · =
P (H1

1) . . . P (Hk
1)P (Hk

2)

P (H1
0) . . . P (Hk

0)
. (2)

We now define blocks of a hypergraph, following Walter [19] and Acharya [1]. A
chain in a hypergraph H = (V, E) is an alternative sequence of vertices and hyper-
edges v1, e1, v2, e2, . . . , em, vm+1 where vi �= vj for 1 ≤ i < j ≤ m and {vi, vi+1} ⊂ ei.
If the hyperedges are also distinct, i.e., ei �= ej for 1 ≤ i < j ≤ m, the chain is a path
of length m. A chain with v1 = vm+1 is a cyclic chain and a path with v1 = vm+1 is
a cycle.

The relation ∼ on E defined by e1 ∼ e2 if and only if e1 = e2 or there is a cyclic
chain containing both e1 and e2 is an equivalence relation [1]. A block of H is either
an isolated vertex or a subhypergraph induced by the hyperedge set of an equivalence
class. This definition is a natural generalization of the definition of blocks for graphs
[20], as Acharya shows with

Lemma 2.1. Two distinct blocks of a hypergraph have at most one vertex in common.

Though a block of a hypergraph can intersect two or more other blocks non-
trivially, there must always be a block which has a single vertex in common with
the union of the other blocks in the collection; else we can construct a cyclic chain
contradicting the definition of blocks. Since our hypergraphs are finite, we can order
the blocks in the following convenient way, which we state as

Corollary 2.1.2. There is an ordering of the blocks H1,H2, . . . ,Hk of a connected

hypergraph H so that
k⋃

i=2

Hi ∩H1 = {x1
0} and

j−1⋃
i=1

Hi ∩Hj = {xj
0} for 2 ≤ j ≤ k.

Since a single vertex, viewed as the induced subhypergraph Hi
0 = H[xi

0], is triv-
ially uniquely colorable, the above ordering of the blocks of a mixed hypergraph
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provides an iterated set of separators and derived subhypergraphs Hi as in Corollary
2.1.1 (with appropriate changes to names), and (2) immediately gives the

Corollary 2.1.3. Let H1,H2, . . . ,Hk be the blocks of a connected hypergraph H.
Then

P (H) = λ1−k
k∏

i=1

P (Hi). (3)

Note: Ordering the blocks as in Corollary 2.1.2 makes the proof of Corollary
2.1.3 immediate from Corollary 2.1.1, but expression (3) is symmetric and, therefore,
independent of the ordering of the blocks.

3 Basic Formulae and Notations

A hypercycle is a subhypergraph HC induced by the hyperedge set of a cycle
v1, e1, v2, e2, . . . , em, v1. An elementary hypercycle is a hypercycle with dHC(vi) = 2
for 1 ≤ i ≤ m and dHC(u) = 1 for all other u ∈

⋃m
i=1 ei. When m ≥ 3, a linear

hypercycle is equivalent to being elementary. A hypercycle may be generated by
different cycles, but the hyperedges of all of the cycles generating the hypercycle will
be the same, up to a permutation.

Acyclic hypergraphs (a hypertree when the hypergraph is connected, a hyperforest
otherwise) and unicyclic hypergraphs can now be defined in the natural ways. An
acyclic hypergraph contains no hypercycle and a unicyclic hypergraph contains only
one hypercycle.

We note that (in [13]) these classes of hypergraphs have been defined by the
same structures in an underlying graph spanning the hypergraph, where a graph G
spans a hypergraph H if they have the same vertex set and each hyperedge of H
induces a connected subgraph of G. However, there is an inherent ambiguity with
this definition, since there are nonisomorphic graphs that span the same hypergraph.
We define classes of hypergraphs via hypercycles, which were defined via cycles, or
cyclic chains with the condition that ei �= ej for any two hyperedges in the chain,
to avoid the ambiguity of spanning graphs. The additional benefit of doing so is
the availability of the decomposition theorem with these definitions based on chains.
However, the analogous definitions based on spanning graphs used by Kràl et al. [13]
provides for larger classes of hypergraphs with interesting properties. We will further
this comment in the next section when we define hypercacti.

Chromatic polynomials for many hypergraphs have been expressed in terms of
the standard powers of λ [2, 6, 7, 8, 19]. However, chromatic polynomials for co-
hypergraphs and bihypergraphs can more easily be expressed using terms involving
the falling factorial λk = λ(λ − 1)(λ − 2) . . . (λ − k + 1). Further, it is also known
that when the chromatic polynomial of a mixed hypergraph is expressed in terms of
the basis of falling factorial, its coefficients are given by the values of the chromatic
spectrum, which count feasible partitions ([18], prop 2.1.1).
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In [3], we express some basic formulae in terms of the parameters γk(i) = (λ−i)k−i

and ζk(i) = λk−i − γk(i) when i = 1 or i = 2, and the chromatic polynomials for
nonlinear cohypergraphs and bihypergraphs also are easily expressed using the values
of these parameters corresponding to higher values of i ≤ k; we demonstrate this
with a result at the conclusion of this paper. Note that the parameter γk(i) counts
the number of rainbows formed using k− i vertices and λ− i colors while ζk(i) counts
the number of ways to color k − i vertices so that either at least two of the k − i
vertices receive the same color from the λ − i colors, or at least one of the k − i
vertices receives one of the other i specified colors. It is known (in [3]) and easy
to verify that the chromatic polynomials of an isolated hyperedge, cohyperedge and
bihyperedge are as follows.

Corollary 3.0.4. Let e be an isolated hyperedge. Then the chromatic polynomials
of e when viewed as a D-hyperedge, C-hyperedge, or B-hyperedge are

PD(e) = λ(λ|e|−1 − 1)

PC(e) = λ(λ|e|−1 − (λ − 1)|e|−1) = λζ|e|(1)

PB(e) = λ(λ|e|−1 − (λ − 1)|e|−1 − 1) = λ(ζ|e|(1) − 1)

(4)

respectively.

To further shorten the expressions for subsequent chromatic polynomials, we
define the edge type function π : E → {C,D,B} to specify the coloring condition
each hyperedge e is required to follow. Note the edge types can be any nonempty
set of equivalence relations on an ordered set. However, in this paper, we are only
concerned with those edge types that correspond to the C, D, or B coloring conditions.
Furthermore, we can extend π to any subhypergraph whose hyperedges all have the
same edge type. For instance, π(HC) = C, π(HD) = D, and π(HB) = B.

Since each hyperedge of an acyclic linear hypergraph is a block of the hypergraph,
we can use corollaries 2.1.3 and 3.0.4 to find the chromatic polynomial of any acyclic
linear mixed hypergraph. We state this general formula as

Theorem 3.1. Let T be a connected acyclic linear mixed hypergraph with m hyper-
edges. Then the chromatic polynomial of T is

P (T ) = λ1−m
∏
e∈E

Pπ(e)(e). (5)

Note, since each factor Pπ(e)(e) itself has λ as a factor, the denominator cancels
all but one of the λ factors in the numerator for any T .

We illustrate Theorem 3.1 with

Example 3.1. Let T be a linear acyclic mixed hypertree with one 5-hyperedge, one
3-cohyperedge, and one 4-bihyperedge. Figure 2 is a representation. Using (4), (5)
and Maple 16, we compute the chromatic polynomial in expanded form as

P (T ) = 18λ8 − 45λ7 + 37λ6 − 10λ5 − 18λ4 + 45λ3 − 37λ2 + 10λ.
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Figure 2: A linear mixed hyperpath

D−hyperedge

C−hyperedge

B−hyperedge
��� �� ���� �

Chromatic polynomials for linear uniform mixed hypercycles, though not so sim-
ple, have been computed in [3]. We record those results in the following lemma, and
defer the proof to Section 4. In Section 4 we extend the process of [3] to a method of
generating the chromatic polynomial of any linear mixed hypercycle, which naturally
includes the following lemma as a special case.

Lemma 3.1. Let HCk,m be a linear k-uniform m-hypercycle (with m k-hyperedges)
with a well-defined edge type and with m ≥ 3. Then the chromatic polynomials for
the three possible edge types are

PD(HCk,m) = (λk−1 − 1)m + (−1)m(λ − 1)

PC(HCk,m) = λ
(

(γk(2))m−2
(
λ2k−4+

(λ − 1)(ζk(2))2) + ζk(2)
∑m−2

j=1 (γk(2))j−1(ζk(1))m−j
)

PB(HCk,m) = λ
(

(γk(2) − 1)m−2
(
λ2k−4 + (λ − 1)(ζk(2))2 − 2λk−1 + 1

)
+

ζk(2)
∑m−2

j=1 (γk(2) − 1)j−1(ζk(1) − 1)m−j
)

(6)

respectively.

It is possible to extend the results in the previous lemma to non-uniform mixed

hypercycles as Walter [19] has shown for instance that PD(HC) =
∏
e∈D

(λ|e| − 1) +

(−1)|D|(λ − 1). However, in the interest of this paper, we leave it to the reader as
an exercise and discuss in the next section a more general result concerning (non-
uniform) mixed hypercycles.

4 Mixed Hypercycles

Let HC(c1, . . . , cm1 ; d1, . . . , dm2 ; b1, . . . , bm3) be a linear (elementary) mixed hypercy-
cle with m1 cohyperedges, m2 hyperedges, and m3 bihyperedges.

Lemma 4.1. The chromatic polynomial of HC(c1, . . . , cm1 ; d1, . . . , dm2 ; b1, . . . , bm3)
is independent of the order of the hyperedges, justifying the symbol.
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Proof. Let v1, v2, . . . , vm1+m2+m3 be the vertices at which two distinct hyperedges
of the mixed hypercycle intersect. We can compute the chromatic polynomial of
the mixed hypercycle by case work corresponding to counting the number of proper
colorings adhering to each possible combination of equality over the colors of each vi.
For instance, when there are three hyperedges there are five cases: f(v1) = f(v2) =
f(v3), f(v1) = f(v2) �= f(v3), f(v1) �= f(v2) = f(v3), f(v1) = f(v3) �= f(v2), and
f(v1),f(v2),f(v3) are pairwise different.

The contribution to a particular term of the chromatic polynomial made by a
single hyperedge is determined by the relationship of the colors at the two endpoint
vertices (the two vertices at which the hyperedge intersects other hyperedges). Hence,
a permutation of the order of the hyperedges corresponds to a permutation of terms
of the chromatic polynomial over the equality relationships of the colors of each
vi.

We establish some recursive relationships to compute the chromatic polynomial
of a mixed hypercycle in terms of mixed hypertrees and mixed hypercycles with one
fewer cohyperedge, one fewer bihyperedge, or one fewer hyperedge. As such, we ex-
tend our notation so that
T (c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3) is a linear mixed hypertree with m1 cohyper-
edges, m2 hyperedges, and m3 bihyperedges.

Theorem 4.1. Let HC(c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3) be a linear (elementary)
mixed hypercycle with m1 cohyperedges, m2 hyperedges, and m3 bihyperedges. Then
if m1 ≥ 1 and m1 + m2 + m3 ≥ 3

P (HC(c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3)) =
ζ|cm1 |(2)P (T (c1, . . . , cm1−1; d1, . . . , dm2 ; b1, . . . , bm3))+
γ|cm1 |(2)P (HC(c1, . . . , cm1−1; d1, . . . , dm2 ; b1, . . . , bm3)),

(7)

if m3 ≥ 1 and m1 + m2 + m3 ≥ 3

P (HC(c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3)) =
ζ|bm3 |(2)P (T (c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3−1))+
(γ|bm3 |(2) − 1)P (HC(c1, . . . , cm1; d1, . . . , dm2 ; b1, . . . , bm3−1)),

(8)

and if m2 ≥ 1 and m1 + m2 + m3 ≥ 3

P (HC(c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3)) =
λ|dm2 |−2P (T (c1, . . . , cm1 ; d1, . . . , dm2−1; b1, . . . , bm3))−
P (HC(c1, . . . , cm1 ; d1, . . . , dm2−1; b1, . . . , bm3)).

(9)

Proof. (7) Let v1 and v2, for convenience, be the endpoints of the cohyperedge cm1 .
We can compute the chromatic polynomial of HC(c1, . . . , cm1 ; d1, . . . , dm2 ; b1, . . . , bm3)
by case work corresponding to a) f(v1) = f(v2) and b) f(v1) �= f(v2) .

In case a), we contract the hyperedge cm1 by replacing v1 and v2 with a single
vertex. Since the condition of equality of a pair of colors on cm1 has already been
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met, the remaining vertices |cm1 | − 2 are now isolated and the connected component
is chromatically equivalent to HC(c1, . . . , cm1−1; d1, . . . , dm2 ; b1, . . . , bm3).

In case b) we add a 2-hyperedge joining v1 and v2 in the original hypercycle. The
ways of coloring the vertices of HC(c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3)−cm1∪{v1, v2}
ensuring that f(v1) �= f(v2) are given by P (T (c1, . . . , cm1−1; d1, . . . , dm2 ; b1, . . . , bm3))
− P (HC(c1, . . . , cm1−1; d1, . . . , dm2 ; b1, . . . , bm3)), since the first term counts all color-
ings including when f(v1) �= f(v2) and the second term only counts colorings when

f(v1) = f(v2) . In this case, there are λ|cm1 |−2 − (λ − 2)|cm1 |−2 ways of coloring the
remaining vertices of cm1 avoiding a rainbow. Collecting terms from the two cases
now gives (7).

The proof of (8) is identical to the proof of (7), except in case a) the contracted
hypergraph has an additional hyperedge containing the fused vertex replacing v1 and
v2 and the remaining vertices of bm3 . As such, in this case there are λ|bm3 |−2−1 ways
of coloring the remaining vertices of bm3 while avoiding a monochrome coloring. The
result (8) follows, again after combining terms.

The proof of (9) is identical to (8), except in case b) the remaining |dm2 | − 2
vertices of dm2 are isolated.

The computation of the chromatic polynomial of any linear mixed hypercycle now
reduces to the computation of the chromatic polynomial of linear mixed hypertrees
(which are given by Theorem 3.1) and the chromatic polynomials of the following six
mixed hypercycles (which can be easily confirmed). For reference, we record them
as

Lemma 4.2. The chromatic polynomial for a mixed hypercycle with two hyperedges
is one of the following six polynomials.

P (HC(d1, d2)) = λ(λ|d1|−2 − 1)(λ|d2|−2 − 1) + λ(λ − 1)(λ|d1|−2)(λ|d2|−2) (10)

P (HC(c1, c2)) = λ(λ|c1|−2)(λ|c2|−2) + λ(λ − 1)ζ|c1|(2)ζ|c2|(2) (11)

P (HC(b1, b2)) = λ(λ|b1|−2 − 1)(λ|b2|−2 − 1) + λ(λ − 1)ζ|b1|(2)ζ|b2|(2) (12)

P (HC(c1; d1)) = λ(λ|c1|−2)(λ|d1|−2 − 1) + λ(λ − 1)(λ|d1|−2)ζ|c1|(2) (13)

P (HC(c1; b1)) = λ(λ|c1|−2)(λ|b1|−2 − 1) + λ(λ − 1)ζ|c1|(2)ζ|b1|(2) (14)

P (HC(d1; b1)) = λ(λ|d1|−2 − 1)(λ|b1|−2 − 1) + λ(λ − 1)(λ|d1|−2)ζ|b1|(2) (15)

To illustrate, we find the chromatic polynomial of a non-uniform mixed hypercycle
in the next example.

Example 4.1. Let HC(c1, c2; d1, d2; b1, b2) be a linear mixed hypercycle with the hy-
peredges in any order and with sizes |c1| = 5, |c2| = 6 , |d1| = 7, |d2| = 8, |b1| = 3,
|b2| = 4, which can be written as HC(5, 6; 7, 8; 3, 4). Using Maple 16, we find that the
chromatic polynomial is

P (HC(5, 6; 7, 8; 3, 4)) = 2700λ23−32400λ22+184875λ21−647025λ20+1517340λ19−
2467905λ18 + 2796183λ17 − 2143116λ16 + 947553λ15 + 135270λ14 − 827115λ13 +
950565λ12−330977λ11−623399λ10+1040846λ9−592140λ8−341964λ7+1392942λ6−
2252053λ5 + 2397800λ4 − 1663148λ3 + 679008λ2 − 123840λ.
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We can compute this polynomial by contracting the hyperedges in any order until
we arrive at one of the six basic hypercycles in Lemma 4.2. We leave it as an exercise
for the reader to explore other reductions, while we demonstrate what is, perhaps,
the easiest order for the reduction. Since recursion (9) is simpler than recursions (7)
and (8), we choose to contract D-hyperedges first, when possible. Likewise, we then
contract cohyperedges. For Example 4.1, this gives

P (HC(5, 6; 7, 8; 3, 4)) = λ6P (T (5, 6; 7; 3, 4)) − λ5P (T (5, 6; 0; 3, 4))
+ ζ6(2)P (T (5; 0; 3, 4)) + γ6(2)ζ5(2)P (T (0; 0; 3, 4)) + γ6(2)γ5(2)P (HC(0; 0; 3, 4)).

It is an easy, although a very laborious algebraic exercise, to compute the chro-
matic polynomials of mixed hypercycles recursively. We choose to demonstrate the
general form used in Example 4.1 when m3 ≥ 2 and leave other reductions to the
reader.

Corollary 4.1.1. Let HC(c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3) be a linear (elemen-
tary) hypercycle with m1 cohyperedges, m2 hyperedges, and m3 bihyperedges with
m3 ≥ 2. Then
P (HC(c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3)) =
λ|dm2 |−2P (T (c1, . . . , cm1; d1, . . . , dm2−1; b1, . . . , bm3)) −
λ|dm2−1|−2P (HC(c1, . . . , cm1 ; d1, . . . , dm2−2; b1, . . . , bm3)) + · · · +
(−1)m2−1λ|d1|−2P (T (c1, . . . , cm1 ; 0; b1, . . . , bm3)) +
(−1)m2P (HC(c1, . . . , cm1; 0; b1, . . . , bm3))

where P (HC(c1, . . . , cm1; 0; b1, . . . , bm3)) = ζ|cm1 |(2)P (T (c1, . . . , cm1−1; 0; b1, . . . , bm3))
+ γ|cm1 |(2)ζ|cm1−1|(2)P (T (c1, . . . , cm1−2; 0; b1, . . . , bm3)) + · · · +
γ|cm1 |(2) . . . γ|c2|(2)ζ|c1|(2)P (T (0; 0; b1, . . . , bm3)) +
γ|cm1 |(2) . . . γ|c2|(2)γ|c1|(2)P (HC(0; 0; b1, . . . , bm3))

where

P (HC(0; 0; b1, . . . , bm3)) = ζ|bm3 |(2)P (T (0; 0; b1, . . . , bm3−1))+
(γ|bm3 |(2) − 1)ζ|bm3−1|(2)P (T (0; 0; b1, . . . , bm3−2)) + · · ·+
(γ|bm3 |(2) − 1) . . . (γ|b4|(2) − 1)ζ|b3|(2)P (T (0; 0; b1, b2))+

(γ|bm3 |(2) − 1) . . . (γ|b3|(2) − 1)
(
λ(λ|b2|−2 − 1)(λ|b1|−2 − 1) + λ(λ − 1)ζ|b2|(2)ζ|b1|(2)

)
.

(16)

When the hypercycle is k-uniform and of a well-defined edge type, we can sim-
plify the recursive expression and substitute the corresponding formulae for mixed
hypertrees to obtain (6). For instance, the third expression of (6) is just (16) when
all of the sizes of the bihyperedges are k.

5 Mixed Hypercacti

Hypercacti are hypergraphs whose blocks are either elementary hypercycles or acyclic
subhypergraphs. In this section we work with linear hypercacti, where blocks are
either elementary hypercycles or hyperedges.
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As a side note on these definitions, our class of hypercacti is different from those
studied by Kràl et al. [13]; because, a cactus graph can span a hypergraph that does
not decompose into blocks such as the examples used by Kràl et al. to show that
some (weak) hypercacti have broken feasible sets (Theorem 3, [13]). If we remove the
restriction in our definition that blocks of hypercacti are elementary hypercycles and
allow for arbitrary hypercyclic blocks, then we allow for the complexity exhibited in
examples such as those cited from Kràl et al. Restricting ourselves to linear mixed
hypergraphs, the confusion over these terms does not affect us in this paper.

We can now find the chromatic polynomials for any linear mixed hypercactus.
The general expression immediately follows from Corollaries 2.1.3 and 3.0.4 and
Lemma 3.1, and we record it as

Theorem 5.1. Let H be a connected linear mixed hypercactus with blocks arranged
into subhypergraphs T1, . . . , Tn1, HC1, . . . ,HCn2 where each Ti is a connected acyclic
linear mixed hypergraph and each block HCj is a linear mixed hypercycle. Then the
chromatic polynomial of H is

P (H) = λ1−n1−n2

n1∏
i=1

P (Ti)

n2∏
j=1

P (HCj). (17)

Figure 3: A unicyclic mixed hypercycle
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As a special case, where the hypercyclic blocks are uniform and of a well-defined
edge type, we record the adapted formula as a corollary, since this case uses the
reduced formulae recorded in (6) and provides examples which are more easily com-
puted.

Corollary 5.1.1. Let H be a connected linear mixed hypercactus with blocks arranged

into subhypergraphs T1, . . . , Tn1, HCk1,m1

1 , . . . ,HCkn2 ,mn2
n2 where each Ti is a connected

acyclic linear mixed hypergraph and each block HCkj ,mj

j is a linear mixed kj-uniform
mj-hypercycle with a well-defined edge type and with mj ≥ 3. Then the chromatic
polynomial of H is

P (H) = λ1−n1−n2

n1∏
i=1

P (Ti)

n2∏
j=1

P
π(HCkj,mj

j )
(HCkj ,mj

j ). (18)
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Note: Since each factor of the numerator corresponding to one of the listed sub-
hypergraphs has a factor of λ with multiplicity 1, by examination of (6) and the
comment following Theorem 3.1, the denominator of (17) will be canceled, leaving a
factor of λ with multiplicity 1 in a reduced form of the polynomial. We now look at
several examples to illustrate Corollary 5.1.1.

Example 5.1. Let H1 be a linear unicyclic mixed hypergraph with one 3-uniform
3-hypercycle, one 5-hyperedge, one 3-cohyperedge, and one 4-bihyperdege. Figure 3
shows this mixed hypergraph as a “hairy mixed hypercycle” ([13]), but other non-
isomorphic arrangements will have the same chromatic polynomial.

Using (4),(5),(6),(18) and Maple 16, we compute the chromatic polynomial in
expanded form as

P (H1) = 18λ13 − 45λ12 − 17λ11 + 125λ10 − 75λ9 − 78λ8 + 173λ7 − 192λ6 + 67λ5 +
123λ4 − 156λ3 + 67λ2 − 10λ.

Example 5.2. Let H2 be a linear mixed hypercactus with one 3-uniform hypercycle
of each edge type, one 5-cohyperedge, and one 4-hyperedge. Figure 4 shows a version
of this mixed hypercactus arranged in such a way that the hyperedges separate the
cycles. Kràl et al. use the term weak mixed hypercactus for such a mixed hypergraph
and show that some weak mixed hypercacti have gaps in their feasible domain. Using
(4),(5),(6),(18) and Maple 16, we compute the chromatic polynomial in expanded
form.

Figure 4: A weak mixed hypercactus

�

�
�

�

�

�

� �� � �

�

�� ��

�

�

� �
��

�

P (H2) = 10λ18+335λ17+1315λ16−22944λ15+83457λ14−116239λ13−16361λ12+
236106λ11 − 198736λ10 − 129724λ9 + 336372λ8 − 349896λ7 + 513731λ6 − 749582λ5 +
673924λ4 − 344712λ3 + 93312λ2 − 10368λ.

Example 5.3. Let H3 be a linear mixed hypercactus with one 3-uniform bihypercycle,
one 4-uniform hypercycle, and one 5-uniform cohypercycle. Figure 5 shows a version
of this hypergraph. Kràl et al. [13] call such mixed hypercacti, strong, and show that
the feasible set of any such mixed hypergraph is gap free. Using (4),(6),(17) and
Maple 16, we compute the chromatic polynomial in expanded form as
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P (H3) = λ21 + 989λ20 + 6327λ19 − 167076λ18 + 1173697λ17 − 4671361λ16 +
12552218λ15−25154549λ14+41274344λ13−60558188λ12+82266525λ11−100474755λ10

+107431796λ9−101811056λ8+84213724λ7−52320940λ6+14282640λ5+9532944λ4−
11620800λ3 + 4790016λ2 − 746496λ.

Figure 5: A strong mixed hypercactus
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6 Mixed Θ-hypergraphs

Thus far, we have only considered mixed hypergraphs whose chromatic polynomials
can be decomposed as in Corollary 2.1.3 and factors are given by the basic formu-
lae in (4), and (6). It is immediately apparent that generalizations are possible by
either extending the dictionary of the basic formulae or by considering more general
separators. As a step in this direction, we define a class of multi-bridge mixed hyper-
graphs that are an extension of Θ-graphs [10], which we call mixed Θ-hypergraphs.
See [6, 7, 10] for other work with the hypergraphs of this class.

Let Θr be a connected mixed hypergraph with separator K2
∼= Θr[{u, v}], the

empty graph on two vertices u and v, whose derived subhypergraphs T1, . . . , Tr are
acyclic mixed hypergraphs. Clearly each Ti is a bridge between the vertices u and v.

Since K2 is not uniquely colorable, we cannot immediately decompose the chro-
matic polynomial of a mixed Θ-hypergraph using Corollary 2.1.1. However, a funda-
mental reduction of any chromatic polynomial reduces the computations to the two
cases when 1) f(u) = f(v) and 2) f(u) �= f(v) for a specified pair of vertices. Case
1) corresponds to identifying the two vertices u and v by a single vertex (the result
of contracting an added 2-hyperedge), and case 2) corresponds to connecting u and
v by an additional 2-hyperedge.

In case 1) the new hypergraph is simply a (strong) mixed hypercactus with mixed
hypercycles HCi separated by the new vertex. As such, the first component of the
chromatic polynomial of Θr is given by (17), without the mixed hypertree factors.

In case 2) the new hypergraph Θ∗
r is separated by the complete graph on two

vertices K2 and its chromatic polynomial can be found using (2) in Corollary 2.1.1.
The derived subhypergraphs of Θ∗

r are T ∗
1 , . . . , T ∗

r where each T ∗
i is Ti with the
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additional 2-hyperedge connecting u and v. Observing that P (T ∗
i ) = P (Ti)−P (HCi),

since P (HCi) counts the proper colorings of Ti when f(u) = f(v) and P (T ∗
i ) only

counts the colorings of Ti when f(u) �= f(v), completes the proof of:

Theorem 6.1. Let Θr be a connected mixed hypergraph with separator
K2

∼= Θr[{u, v}], the empty graph on two vertices u and v, whose derived subhyper-
graphs T1, . . . , Tr are acyclic mixed hypergraphs. Furthermore, let HCi be the mixed
hypercycle formed by identifying the two vertices u and v into a single vertex in Ti.
Then

P (Θr) = λ1−r
r∏

i=1

P (HCi) + λ1−r(1 − λ)1−r
r∏

i=1

(
P (Ti) − P (HCi)

)
. (19)

We leave it as an exercise for the reader to compute the chromatic polynomials of
mixed Θ-hypergraphs with non-uniform mixed bridges (using Theorem 3.1 and the
remark following Lemma 3.1). In interest of space we illustrate the process, using
expressions (6), to find an explicit expression for the chromatic polynomial of Θr

when each Ti bridge is a ki-uniform linear mixed hypertree with mi hyperedges of
the same edge type, so that each HCi is a hypercycle HCki,mi with well-defined edge
type.

Example 6.1. Let Θ3 be the mixed Θ-hypergraph with T1 a 5-uniform linear hyper-
path of length 4, T2 a 3-uniform linear bihyperpath of length 3, and T3 a 4-uniform
linear cohyperpath of length 5. Figure 6 is a representation.

Figure 6: A mixed Θ−hypergraph
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Then, using the notations in expression (4) and (6), and following (5) and (19),

we have P (Θ3) = λ−2PD(HC5,4)PB(HC3,3)PC(HC4,5)+λ−2(λ−1)−2

(
λ−3
(
PD(e1)

)4

−

PD(HC5,4)

)(
λ−2
(
PB(e2)

)3

− PB(HC3,3)

)(
λ−4
(
PC(e3)

)5

− PC(HC4,5)

)
where ei is

any hyperedge of Ti. Using Maple 16 to expand, we find

P (Θ3) = λ29 +209917λ28−2553850λ27 +14504412λ26−50900694λ25 +122254132λ24

− 206276727λ23 + 226570863λ22 − 78922300λ21 − 280202606λ20 + 734764864λ19 −
1006697220λ18 + 813848600λ17 − 104669524λ16 − 825215186λ15 + 1470992011λ14 −
1448149789λ13 + 768125234λ12 + 169428056λ11 − 862855382λ10 + 1038127864λ9 −
77398819λ8 +362123049λ7−58306248λ6−60471792λ5 +59166288λ4−27064368λ3 +
6998400λ2 − 839808λ.

7 Comments

To complete the comment we started at the beginning of Section 6, we close this
paper with the formulae for another class of mixed hypergraphs. These hypergraphs
appear as blocks of a super hypergraph, along with mixed acyclic and hypercyclic
blocks, and Corollary 2.1.3 says the chromatic polynomial splits with factors given
by these subhypergraphs. The decomposition via case work in the proof of Theorem
6.1 also illustrates a brute force way to decompose the chromatic polynomials of
mixed hypergraphs which are separated by non-uniquely colorable subhypergraphs.
Such a process certainly grows in complexity with non-polynomial growth. Thus, the
formulae for mixed hypergraphs which separators are not uniquely colorable are often
obtained through a combinatorial argument, when it is possible. As an example, we
present here the result of a nonlinear mixed hypergraph after its definition [4].

A sunflower (hypergraph) S = (X, E) with l petals and a core S is a collection of
sets e1, . . . , el such that ei ∩ ej = S for all i �= j. The elements of the core are called
seeds. Figure 1 is an example of a 3-uniform sunflower with 2 seeds. When all the
petals of S are of type D, C or B, the resulting mixed hypergraph is called a D-, C-
or B-sunflower, respectively.

The formula for the chromatic polynomial of a non-uniform D-sunflower was first
obtained by Walter [19]. We report his result here as a corollary (with a slightly
different notation) after we present an extension of that result to mixed sunflowers
with petals of both types D and C. We note that when |S| = 1, a mixed sunflower is
isomorphic to a mixed hyperstar which chromatic polynomial is given by Theorem
3.1. Thus, for the next results, we assume |S| ≥ 2 and require that |e| − |S| > 0 for
each e ∈ E = C ∪ D.

Theorem 7.1. Let S = (X, C,D) be any mixed sunflower. Then P (S, λ) =

λ
∏

d∈D
c∈C

λ|c|−|S|(λ|d|−|S|−1)+λ|S|∏
d∈D
c∈C

λ|d|−|S|ζ
|c|

(|S|)+λ(ζ
|S|

(1)−1)
∏

d∈D
c∈C

λ|d|−|S|λ|c|−|S|.
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Proof. In any proper coloring of the core S, either one of the following is true:

(i) S is rainbow (or polychromatic). Then there are λ|S| ways to color its seeds.
For each such coloring, there are λ|c|−|S| − (λ− |S|)|c|−|S| = ζ|c| (|S|) and λ|d|−|S| ways

to color (independently) the remaining vertices of each petal c ∈ C and each petal
d ∈ D, respectively. This ensures the condition that no C-petal is rainbow and no
D-petal is monochromatic, giving the middle term.

(ii) S is monochromatic. In this case, there are λ|c|−|S| and λ|d|−|S| − 1 ways to
color the remaining vertices of each C-petal and each D-petal, respectively. Thus,
the first term gives the number of proper colorings.

(iii) S is neither polychromatic nor monochromatic. There are λ|S| − λ|S| − λ =
λ(ζ|S|(1) − 1) ways to color its seeds. The number of proper colorings in this case is

therefore given by the last term.

Corollaries 7.1.1 and 7.1.2 follow from Theorem 7.1 when D = ∅ and C = ∅,
respectively (after expansion of the last term).

Corollary 7.1.1. Let S = (X, C) be any C−sunflower. Then

P (S, λ) = λn − λ|S|∏
c∈C

λ|c|−|S| + λ|S|∏
c∈C

ζ|c| (|S|).

Corollary 7.1.2. Let S = (X,D) be any D−sunflower. Then

P (S, λ) = λn − λn−|S|+1 + λ
∏
d∈D

(λ|d|−|S| − 1).

We point out that Walter’s original proof of Corollary 7.1.2 is by induction ([19],
Theorem 2.2).

Work such as this to compute the chromatic polynomials of some mixed hyper-
graphs are useful in some specific applications (see [18]), and we hope aids in ex-
perimentation toward the goal of interpreting the coefficients of these polynomials,
which remains an open problem.

References

[1] B. D. Acharya, Separability and acyclicity in hypergraphs, Graph theory, Proc.
Symp., Calcutta 1976, 1979, 65–83.

[2] J. A. Allagan, The chromatic polynomials of some linear uniform hypergraphs,
Congr. Numerantium 187 (2007), 156–160.

[3] J. A. Allagan and D. Slutzky, Chromatic Polynomials of Linear Mixed Hypercy-
cles, (to appear).

[4] J. A. Allagan, On the Chromatic Polynomials of Some Sunflowers Mixed Hyper-
graphs, (to appear).



J.A. ALLAGAN ET AL. /AUSTRALAS. J. COMBIN. 58 (1) (2014), 197–213 213

[5] C. Berge, Graphs and hypergraphs, North-Holland, Amsterdam, 1973.

[6] A. A. Bhatti, S. A. Bokhary and I. Tomescu, On the chromaticity of multi-bridge
hypergraphs, Graphs Combin. 25 (2009), 145–152.

[7] S. A. Bokhary and I. Tomescu, Series-parallel chromatic hypergraphs, Discrete
Applied Math. 158 (2010), 198–203.

[8] M. Borowiecki and E. �Lazuka, Chromatic polynomials of hypergraphs, Discuss
Math., Graph Theory 20 (2000), no. 2, 293–301.
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