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Abstract

It is known that the Williamson construction for Hadamard matrices can
be generalized to constructions using sums of tensor products. This pa-
per describes a specific construction using real monomial representations
of Clifford algebras, and its connection with graphs of amicability and
anti-amicability. It is proven that this construction works for all such
representations where the order of the matrices is a power of 2. Some
related results are given for small dimensions.

1 Introduction

Williamson’s construction for Hadamard matrices [50] uses the real monomial rep-
resentation for the unit quaternions. This construction has been generalized in a
number of directions, including constructions based on a Cayley table for the oc-
tonions [49, [32]. Another direction of generalization is that of Goethals and Seidel
[23]. One type of generalization of Williamson’s construction seems to have been
overlooked: to generalize from the Quaternions to real monomial representations of
Clifford algebras. This is remarkable because all of the ingredients for this generaliza-
tion have been in place for a long time. Clifford algebras have been used in the study
of orthogonal designs since at least 1974 [51] [22, Sections 3.10, 5.3]. Gastineau-Hills,
in his Ph.D. thesis of 1980, used the concept of anti-amicability, along with Kronecker
products, and quasi-Clifford algebras to study systems of orthogonal designs [19, 20].
That work is related to the current investigation.

This paper describes a specific construction for Hadamard matrices, using real
monomial representations of Clifford algebras, and its connection with graphs of
amicability and anti-amicability. The aim of the paper is not to use the construction
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to find Hadamard matrices with previously unknown orders, but to better understand
the relationships between amicability and anti-amicability for {—1, 1} matrices.

The paper is organized as follows. Section 2] develops Kronecker product con-
structions for Hadamard matrices, by placing tighter and tighter restrictions on two
n-tuples of matrices. Section |3| examines the relationship between the first n-tuple
of matrices and canonical bases for the real representations of Clifford algebras. Sec-
tion 4| investigates the second n-tuple of matrices in terms of graphs of amicability
and anti-amicability. Section [5] places the construction in its historical context, and
looks at prospects for further research.

2 Kronecker product constructions for Hadamard matrices

The construction considered in this paper is motivated by the Williamson construc-
tion [50] and by the properties of real monomial representations of the basis elements
of Clifford algebras. Rather than presenting the construction at the outset, this sec-
tion shows how the construction can be arrived at by specialization from a more
general construction.

Our first generalization of the Williamson construction is the most general con-
sidered here. In this construction, we aim to find

Ap e {—1,0,1}" By {-1,1}"*", ke{l,...,n},

where the A, are monomial matrices, and construct

k=1
such that
He {-1,1}"" and HH" = nbly, (H1)

i.e. H is a Hadamard matrix of order nb.

Here we use monomial matrices, that is matrices with only one non-zero entry
in each row and each column. This starting point could be generalized even further,
but the use of n monomial matrices of order n here agrees with the Williamson
construction, is sufficient for the constructions below, and simplifies the exposition.

Due to well-known and easily verified properties of the Kronecker product (e.g.
[37, (2.8)], ) if the order of the products in (HO) is reversed to yield the construction

k=1

we obtain the equivalent result

Ge {-1,1}"™" and GG" = nbluy). (G1)
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We now begin to specialize the construction. Since
HH" =Y A;@B; Y Ay @ B},
j=1 k=1

we will impose stronger conditions on the construction by making the non-zero con-
tribution to HH' come from the diagonal of this double sum, i.e.

j=1
> > (AjAY @ BiBl + AyAT @ ByB]) = 0. (H2)
j=1 k=j+1

We also define the equivalent conditions (G2), with the Kronecker product reversed.
We now impose even stronger conditions by making each off-diagonal contribution
separately sum to zero, i.e.

ZAkAz X BkBg = an(nb),
k=1
AjAL @ BBl + AL AT @ ByBY =0 (j #k). (H3)

We also define the equivalent conditions (G3), with the Kronecker product reversed.

Up until now, because we have retained the Kronecker product in our conditions,
it is not clear how to find 2n matrices (4y,...,A,), (Bi,...,B,), which simulta-
neously satisfy these conditions, other than by a brute force search. We therefore
impose the still stronger conditions

AjxAy=0 (j#k), Y Ape{-1,1}""
k=1

AAL =1,
AGAL + X AkAT =0 (5 # ),
BBl = \jyxBiB] =0 (j # k),
Nk € {—1,1},

> " BBl = nbly), (4)
k=1

where * is the Hadamard matrix product.
It is straightforward to check the following implications.

Theorem 1. Conditions (4) on constructions (G0) and (HO) imply (G3) and (H3),
which imply conditions (G2) and (H2), which, in turn, imply (G1) and (H1).

The coupling between the A and B matrices is mediated by the \ parameters.
If we find an n-tuple of A matrices satisfying conditions (4), we can then use the
resulting A values to search for an n-tuple of B matrices satisfying conditions (4), to
complete the sums (GO) and (HO).
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Example 1: Sylvester-like construction. For our first example, we set n = 2,
b = 2. For the A matrices, we use two signed permutation matrices obtained from
the 2 x 2 matrix used for the Sylvester construction,

e[t 2] w i)

Here, A2 = 1. (Here and below, to reduce clutter in the display of matrices, we use
the conventions ‘=’ = —1, ‘> = 0.)
To satisfy conditions (4), we need to find By, B, € {—1,1}?*? such that

B1B{ + ByB; =4I, BBy — BB =0,

in other words, By and By must satisfy the Gram sum condition and be pairwise am-
icable. An amicable pair of Hadamard matrices of order b satisfies this requirement.
For example, if we use the amicable pair

11 1 -
e I

our constructions (G0) and (HO) yield
1

—_
—_

G —

N
—_

|
—_

Example 2: Anti-amicable construction. For our second example, we also
have n = 2, b = 2, but we now want an example with A\; » = —1. For the A matrices,
we use the two commuting permutation matrices,

a=|t) as]y ]

Since we now have \; o = —1, to satisfy conditions (4), we need to find By, By €
{—1,1}**% such that

BB + BoB) =415y, BiBj + BBl =

In other words, B; and By must satisfy the Gram sum condition and be pairwise
anti-amicable. For example, if we use

(ol EE B

our constructions (G0) and (HO) yield

- - 1 = - 1 = -
- - — 1 1 1 — 1
G= 1 — 1 1 |7 H=\_ _ _ 1
-1 1 1 -1 1 1
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More examples. A Williamson-like construction has n = 4, and satisfies con-
ditions (4) using 4 pairwise anti-amicable A matrices and 4 pairwise amicable B
matrices. For example, we can use 4 A matrices such that

Av=1luy, Ap=-A (k>1), \x=1 (G#k).

An octonion-like construction has n = 8, and satisfies conditions (4) using 8
pairwise anti-amicable A matrices and 8 pairwise amicable B matrices. For example,
we can use 8 A matrices such that

A1 - ](8)7 AZ - _Ak (k > ]-)a )\j,k =1 (.] 7£ k)

Following from the work of Hurwitz [28], Radon [43], Taussky [49] and others,
it is known that the only values of n for which an n-tuple of A matrices of order n
with A\;, = 1 for all (j # k) can be found are n = 1,2,4,8 [21]. (The case n =1
is vacuously true.) It is no coincidence that these are the dimensions of the real,
complex, Quaternion and Octonion algebras over the real numbers.

To go further than n = 8 with our constructions (HO0) and (GO0), with our strongest
conditions (4), we need to allow at least one case of \;; to equal —1. This leads us
to consider the Clifford algebras.

To recap, we aim to find n-tuples (Ay,...,A4,), and (By, ..., B,), with

A, € {=1,0,1}"" By e {-1,1}",

and all A; monomial, satisfying conditions (4). For the A matrices, in the next sec-
tion, we examine signed groups, cocycles and Clifford algebras. For the B matrices,
in Section [ we examine graphs of amicability and anti-amicability.

3 Signed groups and Clifford algebras

In this section, we examine in greater detail the properties of the n-tuples of A
matrices that satisfy conditions (4). We then describe the real Clifford algebras and
their underlying finite groups in terms of Craigen’s signed groups, and Horadam and
de Launey’s cocycles. Finally, we show how the real monomial representations of
Clifford algebras allow the construction of A matrices satisfying conditions (4).

Gastineau-Hills’ systems of orthogonal designs. First, we note that an n-

tuple (Ag,...,A,) of matrices satisfying conditions (4) gives rise to a special case
of a regular n-system of orthogonal designs, of order n, genus (J;4), type (1;...;1),
with py = ... = p, = 1, with \;; = (=1)17%#) according to the definition and

notation of Gastineau-Hills [I9, Section (5.1), p. 36]. The special case arises because
we require that A; x A, = 0 for all (j # k), not just when \;; = 1.
Let (Ay,...,A,) satisfy conditions (4). For j # k we define F;; := A;Al =
A; AN Then
Ejre{=1,0,1}"" Ej, = =NxEl,, EjpEl = I,
Ejy = =Njplwy,  EjnBer = Eji, EjrErj = ). ()
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In other words, the E matrices are orthogonal (—1,0,1) matrices, are either sym-
metric or skew, and the square of an £ matrix is therefore either I(,y or —I,). The
condition A; x Ay = 0 implies that F;; always has zero diagonal.

At this point, we could go on to follow Gastineau-Hills [19, Section (7), pp. 58-
61], and examine quasi-Clifford algebras, but there is a point of distinction between
between the analysis there and what is needed in our case. The E matrices defined
and examined by Gastineau-Hills [19, p. 59] may obey more relations than are listed
at [19, (7.4), p. 60], and consequently, the set of generators listed there may not be
minimal.

Signed groups and cocycles. Rather than pursuing Gastineau-Hills’ construc-
tion of quasi-Clifford algebras any further, we now briefly examine signed groups,
and go on to look at the canonical generation of a specific class of signed groups,
leading a construction for the real representation of certain the real Clifford algebras.

A signed group [10] is a finite group E of even order containing a distinguished
element of order 2 in its centre. This distinguished element is called —1.

The group E can be considered to be a central extension of the abelian group
C :={-1,1} = Z, by some group G, such that the elements of E can be written as
ordered pairs, (s,g),with s € C, and g € G [11] [I3 Chapter 12]|. This is easy to see:
given the group F, the set C' forms a normal subgroup of E. Take a transversal G of
C in E. The set GG is not yet a group, but we can define a multiplication as follows.
Each pair of elements g, h € G yields the element gh € E under the multiplication
of E. Define the multiplication in G by (gh)s := sgh if sgh € G, where s € S.

Given a group G, the multiplication in the extension F is determined by a sign
function ¢ : G x G — S such that

(s,8)(t,h) = (st ¥(g, h),gh).
Here the multiplications are in S and in G respectively.

Remark. Many authors (e.g. Isaacs [30]) use the opposite convention, and say that
E is a central extension of G by C.

Remark. It has been noted by Craigen [11] that since multiplication in E is asso-
crative, we automatically have

(r,£)((s,8)(t,h)) = (rst (f, gh)y(g, h), fgh)
=((r,£)(s,8))(t,h) = (rst ¥(f, g)¢(fg, h), fgh).

So 1) is a cocycle in the sense of Horadam, de Launey and Flannery [27] [26, Chapter
6/ [153, Chapter 12].

For much more on the relationship between central extensions of Zy and cocy-
cles, see de Launey and Smith [I5], Section 2], and de Launey and Kharaghani [14]
Section 2.2]. Chapter 12 of de Launey and Flannery [I3] treats central extensions
and cocycles in more generality.
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Signed groups yielding the real Clifford algebras. We now construct the
signed groups relevant to the real Clifford algebras. The signed group G, , of order
214744 ig extension of Zy by Z5?, defined by the signed group presentation

Gy = < ey (k€ Spy) |

ereqy = —emeyy (J # k)>’

where S, , :={—¢q,...,—1,1,....p}.

The groups G, , for all non-negative integer values p, ¢, have been studied ex-
tensively by Braden [5], Lam and Smith [33], and others, but there is no generally
accepted collective name for them. In [34], these groups are called frame groups.

The papers on asymptotic existence of cocyclic Hadamard matrices, by de Launey
and Smith [15], and de Launey and Kharaghani [14], as well as Chapters 22 and 23 of
de Launey and Flannery [13], treat these groups in some detail as central extensions
of the group Z, by Z5? with some differences in notation from that of Braden or
Lam and Smith.

Multiplication in Z5 is isomorphic to the exclusive or (XOR) of bit vectors, or
the symmetric set difference of subsets of S, ,, so elements of G, , can be written as
+er, T C S,,, with ez = 1. The 2P subsets {+er} are the cosets of {£1} = Z, in
Gp,q- These cosets can be enumerated by using a canonical indexing, using the indices
—q up to p (excluding 0) of the bits of each bit vector in ZP™%. The interpretation
of each bit vector as the binary representation of a number in Zsy+q then gives a
canonical ordering of the cosets. For example, in Gy

0« 000 > @ < {£1},
1 <001 < {-1} < {F+er 1},

3¢ 011 & {—1,1} & {Fe 11y},

7o 111« {~1,1,2} & {fe( 119}

If we take a transversal of Z, in G, 4, in particular, if we use the element er from
each coset, we obtain a canonical basis in G, 4.

The group G, , extends to the universal real Clifford algebra R, ,, of dimension
2PT4 by expressing each element x € R, , as a linear combination of the 279 basis

elements er,
X = E Trrer.

TCSp,q

The real Clifford algebra R, , is the quotient of the real group algebra RG, , by the
ideal (ep + (—ey)). That is, —ey in G, is identified with —1 in R [33, pp. 778-779]
[36, Section 14.3] [34]. If, instead of the field R, we use the ring of integers Z, we
obtain the signed group ring Z|G, | [10, p. 244].
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Real monomial representations of real Clifford algebras. In this paper, we
construct canonical real monomial representations P(G,,) and P(R,,) via sets of
generating matrices [I0, p. 243]. The key theorem in this construction is (paraphras-
ing Porteous [42, Prop. 13.17, p. 247])

Theorem 2. If the set of matrices S C {—1,0,1}"*" generates P(G,,) = G,,, then
the set of matrices

Hl ;]®E’EES}U{[1 ﬂ@h”)’[i ﬂ®[<n>}c{—1,0,1}2"“n

generates P(Gpi1.441) = Gpi1,g41-

The group P(Gop) = Goo = Zs is generated by the of 1 x 1 matrix [—1], so that
Theorem [2| yields the generating set

Ut

for P(Gy,1). Note that this set is redundant and that, in particular, the last two
elements listed also generate P(Gy ).

Real monomial representations for G, ,,, and R,, ,,, can be generated by extending
this process. These representations are faithful: P(R,,,,) is isomorphic to R?"*2"
[42] Prop 13.27] [36], Section 16.4]. Note well that the order of the matrices here is
2™ in contrast to the order of 4™ needed for the regular representation of the group
zam,

An alternative construction giving the representation P(G,,,,) and the
group Z3™. There is a second, equivalent construction of the real monomial repre-
sentation P(Gy, ) of the group G, ,,, which gives a different ordering of the cosets
of {#1} from the one given above. This construction is more useful for the purposes
of this paper.

The 2 x 2 orthogonal matrices

generate P(Gy;), the real monomial representation of group Gi;. The cosets of
{£1} =Z, in P(Gy,) are ordered using a pair of bits, as follows.

0 00« {£I},

1 < 00 < {£E,},

2 10 < {£Ey},

3 11 « {+EEo}.

For m > 1, the real monomial representation P(G,, ) of the group G,, ,,, consists
of matrices of the form Gy ® G,,,—1 with G; in P(Gy,) and Gy, in P(Gpye1m-1)-
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The cosets of {£I} = Z5 in P(G,,,,) are ordered by concatenation of pairs of bits,
where each pair of bits uses the ordering as per P(Gy), and the pairs are ordered
as follows.

0 00...00 « {£I},
1 00...01 « {+I5" "V @By},
2 00...10 & {£I5" " @ By},

22 1 11... 11« {£(E Ey)®™}.

(Here I(2) is used to distinguish this 2 x 2 unit matrix from the 2™ x 2™ unit matrix
I.) In this paper, this ordering is called the Kronecker product ordering of the cosets
of {1} in P(Gym)-

The Kronecker product ordering of the canonical basis matrices of P(R,,,,) the
real monomial representation of the Clifford algebra R,, ., is given by an ordered
transversal of {£/} = Zy in P(G,,,,), using the Kronecker product ordering. For
example, (I,E;, Eq, E1Ey) is the Kronecker product ordering of the canonical basis
matrices of P(Ry ).

Definition 1. For some transversal of Zy in P(Gy, ), in the Kronecker product
ordering, we define a function Y, : Zom — P(Gy,.m) to choose the corresponding
canonical basis matriz for P(R,, ). The Kronecker product ordering then defines a

corresponding function on Z3™, which we also call ,,. For example, y1(1) = ~1(01) :=
E;.

Properties of the representation P(G,,,,). We collect here a number of well-

known and easily proved properties of the representation P(Gy, ).

Lemma 3. The group Gy, ,, and its real monomial representation P(Gy,m) satisfy
the following properties.

1. Pairs of elements of Gy m (and therefore P(Gy,,)) either commute or anti-
commute: for g,h € Gy, ,, either hg = gh or hg = —gh.

2. The matrices E € P(G,,m) are orthogonal: EET = ETE = 1.

3. The matrices E € P(G,,,,) are either symmetric and square to give I or skew
and square to give —I: either ET = E and E*> =1 or ET = —E and E* = —1.

The following properties of the diagonal elements of P(G,,,,) are not so well-
known, but are also easily proven by induction using the alternative construction
given above.

Lemma 4. The set of diagonal matrices D, C P(Gy,.m) forms a subgroup of order
2 of P(Gum), consisting of the union of the following cosets of {£I}, listed in
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Kronecker product order.

00...00 < {1},
00... 11 < {£IG" " @ By B},

11...1100 « {£(EEy)®™ Y @ I5)},

Each coset of Dy, in P(Gy,,) consists of a set of 2™ monomial matrices, all of
which have the same support — i.e. the same set of non-zero indices.

Application to the construction of Section We see that the Clifford algebra
R2"*2™ has a canonical basis consisting of 4™ real monomial matrices, corresponding
to the basis of the algebra R,, ,,,. From Lemma [3|it is seen that these 4™ monomial
canonical basis matrices have the following properties:

Pairs of basis matrices either commute or anticommute. Basis matrices are either
symmetric or skew, and so the basis matrices A;, A satisfy

ARA] = Lgmy, A;AL + Aj,kAkAJT =0 (j#k), Nre{-1,1}L

From Lemma [] we see that we can choose a transversal of the cosets of D,,,
consisting of n = 2™ canonical basis matrices such that

AjxAp=0 (j#k), Y Ape{-1,1}""
k=1

This satisfies conditions (4) for A matrices. Thus, if n is a power of 2, an n-tuple of
A matrices satisfying conditions (4) can always be found. In Section {4} the following
theorem is proven, completing the construction.

Theorem 5. If n is a power of 2, the constructions (G0) and (HO) with conditions
(4) can always be completed, in the following sense. If an n-tuple of A matrices
which produce a particular X is obtained by taking a transversal of canonical basis
matrices of the Clifford algebra R,, ., an of n-tuple of B matrices with a matching
A can always be found.

Example: Ry5. The real Clifford algebra Rys is isomorphic to the real matrix
algebra R***. The corresponding frame group G is generated as a signed group by
the four matrices



P.C. LEOPARDI / AUSTRALAS. J. COMBIN. 58 (2) (2014), 214-248 224

The group has 32 elements and the canonical basis of Ry has 16 elements. As
matrices, these canonical basis matrices form 4 equivalence classes of 4 elements
each, where a pair of basis matrices is equivalent if they have the same support, i.e.
the same sparsity pattern. To form a 4-tuple of canonical basis matrices satisfying
(4), we simply take a transversal, that is, we choose one basis matrix from each class.
For example,

A= | o Ay S

Age | A=

In this case, )\1,2 = /\173 = >\174 = )\2’3 = )\2,4 = )\374 =1.

An exhaustive enumeration of the 4* = 256 different transversals, each consisting
of a 4-tuple of 4 x4 canonical basis matrices, yields 256 graphs, here called transversal
graphs.

Each transversal graph is a graph giving the amicability / anti-amicability re-
lationship of the 4 matrices defining the vertices. Each such graph is a complete
graph on 4 vertices, with two edge colours. Each edge of the graph has one of two
colours, —1 (“red”) and 1 (“blue”). Matrices A; and Ay, are connected by a red edge
if they have disjoint support and are anti-amicable, i.e. A;; = 1. Matrices A; and
Ay, are connected by a blue edge if they have disjoint support and are amicable, i.e.
Ajp = —1.

When collected into equivalence classes by graph isomorphism, the set of 256
transversal graphs yields the six classes shown in Figure (plotted using the Graphviz
dot program [18§]).

In each box of Figure [1}, a red edge, corresponding to anti-amicability, is given a
solid line, and a blue edge, corresponding to amicability is given a dashed line. The
name ‘Aabcd’ in each box corresponds to the degree sequence with respect to red
edges.

Colour-complementary graphs of A matrices. Graphs A0000 , A3333 are
complementary with respect to the exchange of red and blue edges, as are graphs
A1111 | A2222, and graphs A2110 , A3221.

This phenomenon is also observed in the cases of order 2 and order 8. In each
of these three cases it is caused by the existence of a permutation 7 of the basis
matrices of the real representation of the corresponding Clifford algebra, with the
following property:
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A0000:
8 cases

All1l1l:
24 cases

A2110:
96 cases

A2222:
24 cases

A3221:
96 cases

A3333:
8 cases

225

Figure 1: 4-tuples of A matrices of order 4, dashed: A;; = —1, solid: A;; = 1.

Property 1. For canonical basis matrices Aj, A, € {—1,0,1}"*",

if Ajx A, =0 and A;AL + X\ AAl =0,
then w(A;) * m(Ag) = 0 and 7(A;) 7(Ax)" — N\jam(Ay) 7(A;)T = 0.

In other words, for pairs of basis matrices Aj, Ay, the permutation m sends an ami-
cable pair with disjoint support to an anti-amicable pair, and vice-versa.

Let A,, be the graph whose vertices are the n? = 4™ canonical basis matrices of
the real representation of the Clifford algebra R,,,,, with each edge having one of
two colours, —1 (red) and 1 (blue):

e Matrices A; and Ay, are connected by a red edge if they have disjoint support
and are anti-amicable.

e Matrices A; and Ay, are connected by a blue edge if they have disjoint support
and are amicable.

e Otherwise there is no edge between A; and Aj.

We call this graph the restricted amicability / anti-amicability graph of the Clifford
algebra R,, ,,,, the restriction being the requirement that an edge only exists for pairs
of matrices with disjoint support.

We now introduce some notation that is used in the remainder of this paper.

Definition 2. For a graph T' with edges coloured by -1 (red) and 1 (blue), T'|—1]
denotes the red subgraph of I', the graph containing all of the vertices of I', and all
of the red (-1) coloured edges. Similarly, I'[1] denotes the blue subgraph of I.
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The existence of a permutation 7 with Property 1 is equivalent to the graph A,,
having the following property.

Property la. The graph A,, is self-edge-colour-complementary. That is, there exists
a permutation of the vertices which takes every red edge to a blue edge and vice-versa.
(This permutation is m itself.)

Property la (and therefore Property (1)) was verified for m = 0,1,2,3 via the
Python interface to the igraph network research package [12]. For each m, the
graph A, was formed from the relevant coloured adjacency matrix, and the rou-
tine get_isomorphism vf2 was called to find all isomorphisms between the graph
A, and the same graph with the complementary colouring. The Python code used,
and the pickled Python output are available via the author’s web page [35]. The
results are listed in Table [1

m n=2" |A,|=4" degrees isomorphisms

0 1 1 (0,0) 1
12 4 (1,1) 4

2 4 16 (6,6) 192
38 64 (28, 28) 86016
4 16 256 (120, 120) ?

Table 1: Isomorphisms of 4,, with its edge-colour-complement.

One key result is that each graph 4,, is a regular two-edge-coloured graph on
4™ vertices. The fourth column of Table (1| gives the number of red and blue edges
from each vertex. For example, the graph Ay with 16 vertices has 6 red edges and
6 blue edges meeting each vertex. The total number of edges meeting each vertex is
4™ — 2™ since an edge only exists for a pair of matrices with disjoint support.

The fifth column gives the number of isomorphisms found by the igraph library
function get_isomorphism vf2. No attempt was made to further identify the groups.
Also, since the algorithm used by get_isomorphism vf2 is exponential in the number
of vertices, and since the case of Az took about 8 hours on a 2 GHz CPU, no attempt
has yet been made to obtain the isomorphisms for Ay.

If we take every subset S of the vertices of A,,, of size n = 2™ such that each pair
of matrices has disjoint support, then, as in our example for n = 4 above, each such
subset yields a subgraph that gives a two-edge-colouring to the edges of the complete
graph on n vertices. The permutation 7 then induces a map S +— 7.5 such that the
corresponding subgraph maps to a edge-colour-complementary subgraph. Thus the
existence of the permutation 7 implies the weaker property:

Property 2. For the Clifford algebra R,, ,,,, the subset of transversal graphs that are
not self-edge-colour-complementary can be arranged into a set of pairs of graphs with
each member of the pair being edge-colour-complementary to the other member.
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This, in turn implies the even weaker property:

Property 3. For the Clifford algebra R,, ,,,, if a graphT" exists amongst the transver-
sal graphs, then so does at least one graph with edge colours complementary to those
of T.

Since Property [1] is true for the three cases m = 1,n = 2, m = 2,n = 4, and
m = 3,n = &, then so are Properties 1a, 2 and [3|

These properties may continue for larger values of m, and so it is worth making
the relevant conjectures:

Conjecture 1. Property|1| holds for all m > 0. In other words, for all m = 0 there
is a permutation w of the set of 4™ canonical basis matrices, that sends an amicable
pair of basis matrices with disjoint support to an anti-amicable pair, and vice-versa.

Conjecture 2. Property[d holds for allm > 0. In other words, for allm > 0, for the
Clifford algebra R,, ,,,, the subset of transversal graphs that are not self-edge-colour-
complementary can be arranged into a set of pairs of graphs with each member of the
pair being edge-colour-complementary to the other member.

Conjecture 3. Property[q holds for all m > 0. In other words, for all m > 0, for
the Clifford algebra R,, ,,,, if a graph T ezists amongst the transversal graphs, then
so does at least one graph with edge colours complementary to those of T'.

As is shown in Section [4] these conjectures are also relevant to the {—1,1} ma-
trices.

The full amicability / anti-amicability graphs of R,,,, and G,,.

The full amicability / anti-amicability graph A,, ,, of the canonical basis matrices
for the real representation of the Clifford algebra R,,,, can be obtained from the
restricted graph 4A,, by recalling that, as a result of Lemma 4 two canonical basis
matrices A; and A; have common support if and only if Ay = SA;, where S € D,,
is a diagonal signed permutation matrix. We then have

AT = A ATST = ST = 5, A, AT = SA AT = 8.

So A; and A, are amicable. Thus the graph A,, ,, is a complete graph on 4™ vertices,
with a self-loop on each vertex, and two-edge-coloured so that each vertex has (4™ —
2™)/2 red edges and the remaining edges, including the self-loops, are coloured blue.

The full amicability / anti-amicability graph I, ,, of the group G, ,, is obtained
from A,, ,,, by including the negatives of all of the 4™ canonical basis matrices that are
the vertices of A, ,,,. Thus I3, ,,, has |G, | = 2 x 4™ vertices. Every canonical basis
matrix A; is amicable with —A;, and if A; is amicable with A, then —A;, — Ay, A;,
and A, are all pairwise amicable. If A; is anti-amicable with Ay, this yields the
subgraph shown in Figure [2| (plotted using the Graphviz circo program [18]).

Thus the number of red edges on each vertex of I}, ,, is twice that of A, .
(We say that the red subgraph I,,,[—1] is the double graph of the red subgraph
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Figure 2: Anti-amicable matrices A;, A, and their negatives, solid: anti-amicable,
dashed: amicable.

Amm[—1] [29].) So I,m is the complete graph on 2 x 4™ vertices, with self-loops on
each vertex, with a two-edge-colouring such that the vertices and the red edges form
a regular graph of degree 4™ — 2™,

Examples: I7; has 8 vertices and 2 red edges on each vertex. I has 32 vertices
and 12 red edges on each vertex. These examples occur again in Section

It is clear from the presentation of G, , that G, , is isomorphic to a subgroup of
Gpg whenever p < P and ¢ < . Thus the full amicability / anti-amicability graph
I, , is a subgraph of I}, ,, whenever p < m and ¢ < m.
The anti-amicability graph of R,,,,. Let ®,, be the graph whose vertices are
the n? = 4™ canonical basis matrices of the real representation of the Clifford algebra
Rym, with matrices A; and A, connected by an edge if and only if they have disjoint
support and are anti-amicable. We call this graph the anti-amicability graph of the
Clifford algebra R, ,,. This graph is isomorphic to the red subgraph A,,[—1] of the
restricted graph A,, described above, and is also isomorphic to the red subgraph
Ay m[—1] of the graph A, ,,,.

Recall the following.

Definition 3. [/, [7/[8, Chapter 9]. A simple graph T' of order v is strongly regular
with parameters (v, k, \, ) if

e cach vertex has degree k,
e cach adjacent pair of vertices has A common neighbours, and
e cach nonadjacent pair of vertices has p common neighbours.

It was verified, using igraph and the Python networkz package [24], that ®,, is
a strongly regular graph for m from 1 to 5. In particular, the networkz package was
used to verify that the graph @, is isomorphic to the lattice graph L(4), and not the
Shrikhande graph [9, p. 92] [47]. The graph parameters are listed in Table [2|
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m v k A=

1 4 1 0

2 16 6 2

3 64 28 12

4 256 120 56

5 1024 496 240

m qm 22m—1 _ 2m—1 22m—2 _ 2m—1

Table 2: Strongly regular graph parameters of ®,,.

The last line of Table [2| gives a general formula for the parameters in terms of m,
suggesting the following.

Theorem 6. For all m > 1, the graph ®,, is strongly reqular, with parameters
v(m) = 4™, k(m) = 22"~ —2m=1 X\(m) = p(m) = 22m—2 — 2m~1,

A proof of this theorem is given in the rest of this section.

Hadamard difference sets and bent functions. We first review some well
known properties of Hadamard difference sets and bent functions.

Definition 4. [16, pp. 10, 13].

The k-element set D is a (v, k, A\, n) difference set in an abelian group G of order
v if for every non-zero element g in G, the equation g = d;—d; has exactly X solutions
(d;,d;) with d;,d; in D. The parameter n ==k — X. A (v, k, \,n) difference set with
v = 4n s called a Hadamard difference set.

Remark. [38] [16, Remark 2.2.7] [{5].
A Hadamard difference set has parameters of the form
(v,k,\,n) = (4N?,2N? — N, N* — N, N?)
or (4N%2N?+ N,N? 4 N, N?).
Definition 5. [16, p. 7/].
A Boolean function f : 23 — Zs is bent if its Hadamard transform has constant

magnitude.
Specifically:

1. The Sylvester Hadamard matriz H,,, of order 2™, is defined by

1 1
(1]

H,  =H, 1® H, for m>1.
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2. For a Boolean function f : 23" — Zso, define the vector [ by
£ = ()79, ()W, (e,
where the value of fli],i € Zom is given by the value of f on the binary digits
of 1.
3. In terms of these two definitions, the Boolean function f : ZY — Zs is bent if
|Hnf| =C[1,...,1]".
for some constant C.

Remark. [70, Theorem 6.2.2]
The Boolean function f : Z§ — Zsy is bent if and only if D = f~Y(1) is a
Hadamard difference set.

Remark. [70, Remark 6.2.4]

Bent functions exist on Z5' only when m is even.

The sign-of-square function o, on Zy» and Z3™. We use the basis element
selection function v, of Definition [I|to define the sign-of-square function o,, : Z3™ —
Zo as

oo (i) = 1‘_>'7m(i)2:_j
o {OH%@')Q:I,

for all 7 in Z2™. Using the vector notation from Definition , we see that o =
[1,—1,1,1]7. If we define © : Zy x Z3™? — Z2™ as concatenation of bit vectors, e.g.
01 ® 1111 := 011111, it is easy to verify that

Om (i1 @ im-1) = 01(i1) + Om1(im—1)

for all 4; in Zy and i,,_; in Z2™ 2, and therefore Om = 01 @ 0p_1. Also, since each
Ym (%) is orthogonal (from Lemma [3)), 0,,(7) = 1 if and only if 7,,(7) is skew.
We are now in a position to prove the following.

Lemma 7. The function o,, is a bent function on Z3™.

Proof. Recall that oy = [1,—-1,1,1]".
We show that o; is bent by forming

1 1 1 1 2

1 == | 2

1 - - 1 =2 |

- — 1 1 2
=01 & Oy

Recall that for m > 1, Hy,, = Hy ® Hyy,—o and oy,

Hz[Ul] =

—_ = =

1. Therefore

Hypmom = Hy01 @ Hopy 90,1 = (Hzﬂ)@m),

which has constant absolute value. O
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Bent functions and strongly regular graphs Now that we have established
that the sign-of-square function o, is bent, we complete the proof of Theorem [f]
by using a result of Bernasconi and Codenotti [2] on the relationship between bent
functions and strongly regular graphs.

First we recall a special case of the definition of a Cayley graph.

Definition 6. The Cayley graph of a binary function f : Z5' — Z is the undirected
graph with adjacency matriz F given by F; ; = f(g:+9;), for some ordering (g1, g2, - . .)
of Zy'.

The relevant result is the following.

Lemma 8. [2, Lemma 12]. The Cayley graph of a bent function on Z" is a strongly
reqular graph with X = p.

Remark. [3, Theorem 3]. Bent functions are the only binary functions on Z3* whose
Cayley graph is a strongly regular graph with A = p.

Proof of Theorem [0l Lemma [7] says that the function o,, on the canonical basis
matrices of R, ,,, such that o,,(A) = 0 when the matrix A is symmetric and 0,,(A) =
1 when the matrix A is skew, is a bent function. Lemma [§] then implies that the
Cayley graph ©,, corresponding to this bent function f,, is strongly regular. But
this Cayley graph ©,, is isomorphic to ®,,, since

(V@)™ = (VD))" = +5)?

for all 4, j € Z3™. []

4 Amicability / anti-amicability of {—1,1} matrices

Given an n-tuple of A matrices, this fixes A;;. We now must find an n-tuple of
{—1,1} B matrices with a complementary graph of amicability and anti-amicability.
We start with a theoretical result which may help our search a little.

Theorem 9. For anti-amicable pairs of matrices in {—1,1}**?,
Bi1B; + BB =0,
therefore By BT is skew, so b must be even.

As a result of this theorem, our interest in odd b is restricted to the cases where
n = 2,4,8, as remarked in Section
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Figure 3: {—1, 1} matrices of order 2, solid: anti-amicable, dashed: amicable.

Example: 2 x 2 matrices. An exhaustive search over the 16 x 15 = 240 distinct
multisets of 2 matrices chosen from the 16 matrices of the form {—1,1}**? with
no constraints on the sum of the Gram matrices, reveals the amicability / anti-
amicability relationships seen in the graph of Figure [3| (plotted using the Graphviz
neato program [1§]).

Here, each of the 16 matrices is given a numbered vertex, from 0 to 15. The map
from a number a to a matrix A is obtained via numbering the element positions of

the matrix as
01
2 3|

The number a is then written in binary, with each position in the matrix A being
given the value (—1)° where b is the corresponding bit. For example, the number 4
yields the matrix

1 1

— 1|

In Figure |3 a dashed edge between vertices corresponds to an amicable pair.
A solid edge corresponds to an anti-amicable pair. Each matrix is amicable with
itself, so each vertex has a dashed loop attached. The graph has two connected
components. One component is the complete graph Kg with self-loops, with two
edge-colours. This represents a set of 8 matrices that are pairwise either amicable or
anti-amicable. The other component includes a number of double edges, representing
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pairs of matrices that are both amicable and anti-amicable. An example of such a

pair is
- 1 11
M.z[l _}, N.:[l 1},
where MNT = 0.

In Figure {4 (plotted using the Graphviz neato program [18]) the edges are re-
stricted to those pairs of matrices where B;B] + BB{ = 41(y).

Figure 4: {—1,1} matrices of order 2, BijT + BB} = 415).

The two-edge-coloured Ky still appears, but the other component is now split
into two. These two new components each consist of 4 matrices, where each matrix
is both amicable and anti-amicable with two other matrices. Our previous example
is also an example here, since

2 =2 2 2
T _ T _
= | 5 S wr= 13 0]

SO
MM" + NN = 414,

The vertices of the Ky still have self-loops, indicating that the corresponding 8
matrices are Hadamard. This Ky of Hadamard matrices is remarkable, but it occurs
for a simple reason, given by Theorem below. The vertices of the other two
components do not have self-loops.
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Multisets of 4 matrices. An exhaustive search over the (149) = 3876 distinct
multisets of 4 matrices of type {—1,1}?>*? for multisets where each pair is either
amicable or anti-amicable, and where the sum of the 4 Gram matrices is 81(y), results
in 618 qualifying multisets, yielding seven isomorphism classes of graphs, as shown

in Figure || (plotted using the Graphviz dot program [18]).

B1111: B2211: B2220: B2222: B3221: B3322: B3333:
36 cases || 72 cases || 32 cases || 52 cases || 168 cases || 120 cases || 138 cases

Figure 5: 4-multisets of B matrices of order 2, solid: A;; = —1, dashed: A;; = 1.

A naive algorithm was used to obtain the graphs in Figure 5] First, a canonical
ordering was given for both the 4 vertices and the 6 edges of the graph K}, implying
an ordering of the 64 possible two-edge-colourings of this graph. Then, a canonical
ordering was given for the 16 matrices of type {—1,1}**? implying an ordering
for the 3876 possible multisets. For each of the 64 possible two-edge-colourings,
each of the 3876 possible multisets was checked: firstly that the amicability and
anti-amicability relations of the four matrices matched the two-edge-colouring, and
secondly, that the Gram sum was 8/(3). The number of matches was counted for each
of the 64 possible two-edge-colourings. The two-edge-colourings were then combined
into the isomorphism classes shown in Figure [, by examining the corresponding
degree sequences. The code to implement the algorithm was written in Octave, and
is available from the author’s web page [35]. It takes less than a second to run on an
Intel® Core™ i7 870 CPU at 2.93 GHz.

In each box of Figure 5] the complete graph Ky is given two colours. The vertices
correspond to 4 B matrices. If \;; = —1, then the edge between the vertices corre-
sponding to matrices B; and By, is coloured red and is given a solid line. If A\, =1,
then the edge between the vertices corresponding to matrices B; and B, is coloured
blue and is given a dashed line. The name ‘Babed’ in each box corresponds to the
degree sequence with respect to dashed edges.

Graphs B1111 and B2222 are dual with respect to the exchange of solid and
dashed edges, and graph B2211 is self-dual.

Note that only graphs B1111, B2222, B3221 and B3333 are colour complemen-
tary to graphs of A matrices in Figure [l The pairs of graphs (A1111,B1111),
(A2222 B2222), (A3221,B3221), and (A3333,B3333) result in Hadamard matrices
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of order 8.

The existence of complete two-edge-coloured subgraphs. As was noted
above, the amicability / anti-amicability graph of the matrices in {—1,1}**? con-
tains a complete two-edge-coloured subgraph containing 8 Hadamard matrices. This
is a general phenomenon, as shown by the following theorem.

Theorem 10. Ifb is a power of 2, b= 2", m > 0, the amicability / anti-amicability
graph Py, of the matrices {—1,1}"*® has the following properties.

1. The graph P, contains a complete two-edge-coloured graph on 2b* vertices with
each vertex being a Hadamard matriz. This graph is isomorphic to I}, ,, the
amicability / anti-amicability graph of the group Gy, .

2. Call two Hadamard matrices, H and H' of order b, Hadamard-row-equivalent
if there exists a signed permutation matrix S of order b such that H' = SH. If
r(b) is the number of Hadamard-row-equivalence classes of Hadamard matrices
of order b, and s(b) is the order of the group of signed permutation matrices of
order b, then the graph P, contains at least 7(b)s(b)/(2b?) isomorphic copies of
the graph I, .

Proof. First, some notation. Let S, be the group of signed permutation matrices of
order b. The real representation of the Clifford algebra R,,,, has a canonical basis
consisting of b? matrices in Sp. These matrices and their negatives form the group
Gnm, @s a subgroup of Sy.

We first prove statement 1. Since b = 2™, it is well-known that b is a Hadamard
order. Choose a Hadamard matrix H of order b and any signed permutation matrix
S € Syp. Since S is orthogonal, we have

SH(SH)" = SHH"S" = Spl»)S™ = plw),

so SH is a Hadamard matrix. This is well known.
Now take A, A; to be members of the canonical matrix basis of the real repre-
sentation of the Clifford algebra R,, ,,,. Thus A; and A, are elements of S;. If

ALAT 4 )5 A AT = 0,
then
(A1H>(A2H)T = pAlAg = —)\LgpAQA{ = —)\172(A2H)(A2H)T,

that is, the Hadamard matrices A1 H and A, H have the same amicability relationship
as the matrices A; and As. The same argument applies to any combination of +A;
and £A4,. Thus the set of 2b> Hadamard matrices

GuumH = {AH | A € G}

has an amicability / anti-amicability graph isomorphic to I}, .
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Now for statement 2. The group G, ,, has s(b)/(2b*) disjoint cosets within Sy.
For S,T € S, with disjoint cosets Gy, S, G, T, and for some Hadamard matrix
H of order b, consider the two sets

GrmSH = {ASH | A € G},
GpumTH = {ATH | A€ Gy}

These two sets are disjoint, since the corresponding cosets are disjoint and H is
invertible. Using the argument from the proof of statement 1, we see that each set
yields an amicability / anti-amicability graph isomorphic to the graph I, .

The union of all of these s(b)/(2b?) disjoint cosets is the group S, itself, and
the set SyH is the Hadamard-row-equivalence class containing H. Now repeat the
argument for representatives of each of the r(b) equivalence classes. Each class yields
s(b)/(2b%) disjoint cosets, giving a total of r(b)s(b)/(2b%) disjoint sets of Hadamard
matrices, each of which yields a graph isomorphic to I}, . O

Corollary 11. For b = 2™, the red subgraph Py[—1] contains at least r(b)s(b)/(2b?)
isomorphic copies of the graph I, ,[—1], the double graph of the graph ®,,.

In the light of Theorem we now re-examine the case b = 2. A matrix in
{—1,1}** has only two rows and is singular if the second row is + the first row.
There are 4 possible assignments of —1 and 1 to the first row, and thus 8 of the 16
matrices of {—1,1}?*? are singular. The remaining 8 matrices are Hadamard, of the
form SH, where S is one of the 22 x 2! = 8 signed permutation matrices of S,, and
H is the representative matrix

11
nely L

These 8 matrices form a Hadamard row equivalence class. All of this is well-known.

Theorem |10|says that the graph P contains at least r(2)s(2)/(2 x 22) isomorphic
copies of the amicability / anti-amicability graph I ;. Here, r(2) = 1 is the number
of Hadamard row equivalence classes, and s(2) = 8 is the order of S;. Thus the
theorem says that the graph P, contains at least one isomorphic copy of I3 ;. Our
exhaustive search has found the only such copy.

Example: 4 x 4 matrices. In the case b = 4, we can form representatives of two
distinct Hadamard row equivalence classes as follows.

1 1 1 — 1 1 1
1 - - , -1 = =
R R
- 1 = - - 1 =

—_ = = =

It is clear that there is no signed permutation matrix S € S, such that SH = H’,
because the number of —1 entries in each row of H is even, the number in each row
of H' is odd, and the total number of {—1, 1} entries in each row of each matrix is
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even. Therefore, with respect to Theorem (4) is at least 2, and s(4), the order
of Sy is 2% x 4! = 16 x 24 = 384. Theorem [10] therefore says that the amicability
/ anti-amicability graph P; contains at least 2 x 384/32 = 24 isomorphic copies of
the graph I 5, a complete two-edge-coloured graph on 32 vertices. Corollary says
that the anti-amicability graph P,[—1] contains at least 24 copies of the double graph
of ®,.

Figure 6: Hadamard matrices of order 4, edges denote anti-amicability.

An exhaustive search over the 65536 x 65535 = 4294901 760 distinct 2-multisets
of matrices of the form {—1,1}%* was undertaken to find anti-amicable pairs of
Hadamard matrices of order 4. The algorithm used to obtain these 2-multisets was
essentially the same as that used in the 2 x 2 case above. The search program was a
modified version of the Octave program used in the 2 x 2 case, run as 16 parallel jobs
on a cluster of AMD Opteron 2356 CPUs, each running at 2.3 GHz, taking a total
of about 260 CPU hours. Figure [0 (plotted using the Graphviz circo program [I8])
shows the pairwise anti-amicability relationships between these Hadamard matrices.
The graph, a subgraph of the graph P,[—1], contains 24 connected components,
each of which is 12-regular on 32 vertices, in agreement with Corollary [11] and the
properties of the graph I'; 5 described in Section . Specifically, as a consequence
of Corollary each component is the double graph of the graph ®,, which was
identified using networkz as the lattice graph L(4).

The search criterion was then relaxed to look for anti-amicable 2-multisets of
matrices B}, By of the form {—1,1}*** where B;B] + BB = 413).

The resulting graph was then examined using the open source Gephi package
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[1]. This package reported that the graph contains 20 352 vertices and 36 864 edges,
with 3552 connected components, comprising 2304 components with 4 vertices each
(isomorphic to Ks2), 1152 with 8 vertices (isomorphic to Ky4), 72 with 16 vertices
(isomorphic to Kgg), and 24 components with 32 vertices. These last 24 components
are the 24 copies of the double graph of ®; = L(4) seen in Figure [

Proof of Theorem [5]  As a result of Theorem [10] we know that if n = 2™, for every
n-tuple (Aj, ..., A,) of matrices given by a transversal of the canonical matrix basis
of the Clifford algebra R, ,,,, there is an n-tuple (Bj,..., B,) of distinct Hadamard
matrices of order n, with an amicability / anti-amicability graph isomorphic to that
of (Ay,...,A,). The conditions (4) require instead that an n-tuple of B matrices
be found with an amicability / anti-amicability graph edge-colour-complementary to
that of (Ay,...,4,). One way to do this stems from the following result.

Lemma 12. (See also Gastineau-Hills [20), Theorem 3.4).)
Given an n-tuple of {—1,1}"*® matrices (By, ..., B,) satisfying

B;Bj = \juBy Bl (j # k), Z BB = nbly,

k=1

and an n-tuple of Hadamard matrices (C4,...,C,) of order ¢, satisfying
CiCp = wikCiCy (j # k),
the n-tuple of matrices (By ® C4,..., B, ® C,) satisfies

(B; @ C;)(B @ Cr)" = Nt (Br @ Co)(B; @ C))T - (j # k),

n

Z(Bk X Ok>(Bk X Ck)T = nbc](bc).
k=1

Proof. For (j # k) we have
(Bj ® Cj)(Br® Cr)" = (B;By) ® (C;Cy)
= (M\uBeB]) @ (1 CuCY)
= Njkbik(Be @ Cr)(B; @ Cj)T.

Also,
D (B @ C)(Br @ Cr)" = (BiB{) ® (Cp ® Ci)"
k=1 k=1
= (B«B}) @l
k=1

= nbf(b) & CI(C) = nbc](bc).
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In particular, if the n-tuple of Hadamard matrices (C, ..., C,) are mutually anti-
amicable then y1;, = —1 and the matrices (B;®C4, ..., B, ®C,,) have an amicability
/ anti-amicability graph that is edge-colour-complementary to that of (B, ..., B,).
All that is left is to find n mutually anti-amicable Hadamard matrices. To do this,
we use the argument given in the proof of Theorem [I0} given a Hadamard matrix H

of order ¢, and n mutually anti-amicable signed permutation matrices (S, ..., S,) of
the same order, (S1H,...,S,H) is an n-tuple of mutually anti-amicable Hadamard
matrices.

We now use the following observation:

Lemma 13. In the frame group Go,—1, the identity and the n — 1 generators
€{1-n},- .-, €1} are mutually anti-amicable.

Proof. Recall that a real monomial representation of a signed group consists of signed
permutation matrices, which are orthogonal. Thus the anti-amicability relationship
is expressed in the context of the group Gy, as

aja,’ = —aga;', equivalently, (aja;')? = —L1.
If we set a,, = 1, and ap = e;_yy for k from 1 to n — 1, then
(ana;1)2 — (e{*_lk})2 = e%_k} = 1.
—1\2 —1 -1
(ajak ) = e{fj}e{ik}e{,j}e{ik}

= (- j)C(-k}{—j}C(-k} = —€(-j}e(—j}e{-ke(-k = — L.

We now recall the following result from [34]. See that paper for the proof.
Lemma 14. [3], Theorem 4.3] Define

(B2 +1, ifg—p=2,3,4 (mod8),

[EX4]  otherwise.

M(p, q) ;:{

There is a faithful real monomial representation of the Clifford algebra R, , where
the matrices have order 2M®9)

This gives us the result we need.

Corollary 15. The set of —1,1 matrices of order 2=V contains an n-tuple of
mutually anti-amicable Hadamard matrices.

Thus, if n is a power of 2, n = 2™, and an n-tuple (A4;,..., A,) of {—1,0,1}"*"
matrices is obtained by taking a transversal of the canonical basis matrices for R, ,,
there is an algorithm to construct an n-tuple of matrices (By, ..., B,) in {—1,1}*?
with matching A:

1. Find a Hadamard matrix H of order n. Since n is a power of 2, the Sylvester
Hadamard matrix will do.
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2. Form the n-tuple (A1H,...,A,H). This has the same amicability / anti-
amicability graph as (A;,..., A,).

3. Form the n-tuple (Cy, ..., C,) of matrices in {—1,0, 1}°*¢, where ¢ = 2M©On=1)
the matrices C1, ..., C,_; are the canonical signed permutation matrices cor-
responding to the Clifford algebra generators e;_1y, ..., ey}, and the matrix
Cn = I(¢). By Lemma , these n matrices are mutually anti-amicable.

4. By Lemma 12 the n-tuple of Hadamard matrices (By,...,B,) = ((A1H) ®
Ch,...,(A,H)®C,) of order nc matches the A values of (A, ..., A,), satisfying
conditions (4), and completes the constructions (G0) and (HO).

This completes the proof.

5 Discussion

Historical context. Much of the credit for the following historical discussion goes
to an anonymous reviewer of an early draft of this paper.

The current paper describes and investigates one of a long line of plug-in con-
structions for Hadamard matrices, extending at least as far back as Williamson [50].
The review paper by Seberry and Yamada [46] describes many more of these con-
structions, especially Williamson-type constructions [46, p. 445 and Sections 8 and
9]. While it is a long and comprehensive review, with a special focus on orthog-
onal designs and amicability, the paper of Seberry and Yamada does not discuss
anti-amicability, or mention the work of Gastineau-Hills [19] 20].

The constructions (G0) and (HO0) with conditions (4) can be viewed as a gener-
alization of a plug-in construction using an orthogonal design of the form OD(n;1,

.., 1) with n suitable mutually amicable {—1,1} matrices. The difference between
that construction and the one in the current paper is that the matrices used to de-
fine the orthogonal design are mutually anti-amicable, but conditions (4) use the
parameters ) to allow each pair of matrices to be either amicable or anti-amicable.

In his paper of 1982 Gastineau-Hills describes Kronecker products of systems of
orthogonal designs [20, Theorem 3.4]. This is essentially the published version of the
concepts and results of his Ph.D. thesis [19] see especially Theorem 6.3, p. 47]. The
constructions (G0) and (HO) with conditions (4) can be viewed as being similar to a
special case of the Kronecker product construction of Gastineau-Hills. Specifically,
in Section [3|it is mentioned that conditions (4) make the n-tuple of A matrices into
a special case of a regular n-system of orthogonal designs, of order n, genus (§;y),
type (1;...;1), with py = ... = p, = 1, with \;; = (=1)1#%#)_ in the notation
of Gastineau-Hills [19]. The 1982 paper [20] uses this same notation, and Theorem
3.4 in that paper gives a Kronecker product construction for systems of orthogonal
designs that can be made into a special case of the constructions (G0) and (HO)
with conditions (4). In particular, if we also use an n-system of orthogonal designs
of order b, genus (1 — d;%), type (b;...;b), with py = ... = p, = 1, and set all of
the variables x;; to 1, then we obtain an n-tuple of Hadamard matrices (B, ..., B,)
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with A matching that of our n-tuple of A matrices. We then use [20, Theorem 3.4]
with 7 = 2 to complete the construction and obtain a Hadamard matrix.

The differences between the construction of [20, Theorem 3.4] and constructions
(G0) and (HO) with conditions (4) are:

1. Conditions (4) ensure that the A matrices have disjoint support. This is
stronger than just being a regular n-system.

2. Conditions (4) impose a constraint on the Gram sum of the B matrices rather
than constraining them to be Hadamard matrices. This is weaker than the
n-system constraint of Gastineau-Hills [20].

Gastineau-Hills’” paper [20] cites a construction by Robinson of product designs [44]
as an example of the more general construction of Theorem 3.4.

Part IT of Gastineau-Hills’ thesis [19] consists of a thorough classification of quasi-
Clifford algebras, each of which is essentially a direct sum of 2* copies of a Clifford
algebra for some £ > 0. In Section [3| we remark that the papers by de Launey
and Smith [15], and de Launey and Kharaghani [14], as well as Chapters 22 and 23
of de Launey and Flannery [13], examine the finite groups underlying the Clifford
algebras in some detail. In these papers there is described the set of finite groups
R(Q). The structure, and in particular, the power-commutator presentations of these
groups suggest that these are the groups underlying Gastineau-Hills’ quasi-Clifford
algebras. A deeper examination of the relationship between the R(()) groups and
the quasi-Clifford algebras has not yet been undertaken.

A 1981 paper by Hammer and Seberry [25] mentions anti-amicability and pro-
duces the following isolated example.

If X and Y are anti-amicable and

XX +5YY" =6nly,

then
X Y Y Y Y Y|
Yy X Y -Y -Y Y
7. Yy Y X Y -Y -Y
1Y -Y Y X Y -Y
Yy - Yy - Y Y X Y
Y Y -Y -V Y X |
satisfies
ZZ" = 6nlen).-

— Hammer and Seberry [25, p. 183].
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This particular construction can be seen as a generalization of constructions (GO)
and (HO) with conditions (4). Here the A matrices are A; := I(5) and

1 1 1 1 1
1 . 1 — — 1
11 . 1 - —

A2‘—1—1.1—
1 — — 1 . 1
11 - — 1 .|

so that As is not monomial. The relevant generalization of this construction is

G = Z Bk X Ak, (GO’)

k=1

with conditions

A A, =0 (j#k), ZAke{ll}”X"

AkAk; akf(n Z ar =mn,

A AT—F)\jkAkA =0 (j %k),
B;B — )\]kBkB =0 (j#k),
]k S { 1 1}7

k=1

which is a generalization of the construction (G0) with conditions (4). The paper
[25] does not mention the work of Gastineau-Hills, and does not examine n-tuples
of anti-amicable matrices for n larger than 2. This provides some incentive to re-do
the analysis of the current paper in the context of this, more general construction.

Questions. We have shown that for the constructions (G0) and (H0) with condi-
tions (4), to construct the A matrices, it is sufficient that n is a power of 2, and that
the real monomial representations of Clifford algebras can be used in this case. The
following related questions arise.

Question 1. By Theorem [3, if n is a power of 2 and an n-tuple of A matrices is
obtained by taking a transversal of the canonical basis matrices for R, ., an n-tuple
of B matrices can always be found to complete the constructions (G0) and (H0), but
the order of the B matrices constructed in the proof of the theorem is quite large.
Can this order be improved?
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Recall that, for n = 2™, by Theorem the set {—1, 1}™*" contains at least one
isomorphic copy of the whole graph I, ,,, where each vertex is a Hadamard matrix.
For the constructions (G0) and (HO) to work for some particular n-tuple (A, ..., A4,),
all that is needed is that the full amicability / anti-amicability graph I3, ,, of the
group G, ,, contains a subgraph on n vertices that is edge-colour-complementary to
that of (Ay,...,A4,). This would then imply that there was at least one isomorphic
copy of this subgraph, whose vertices are Hadamard matrices of order n. These
vertices would be the n-tuple of B matrices needed to complete the constructions
(G0) and (HO).

Now recall that in the cases where m = 1,2,3 we found a permutation of the
canonical matrix basis of the Clifford algebra R,, ,, that mapped each such transver-
sal graph onto its edge-colour-complement (Property 1 in Section 3| above). This
implies the weaker Property 3: “For the Clifford algebra R,, ,,, if a graph T exists
amongst the transversal graphs, then so does at least one graph with edge colours
complementary to those of T'.” If Property 3 is true for all m > 1, this is sufficient
to complete the constructions (G0) and (HO) with an n-tuple of B matrices of order
n. This provides some motivation for the following.

Conjecture. If n is a power of 2, the constructions (G0) and (HO) with conditions
(4) can always be completed, in the following sense. If an n-tuple of A matrices
which produce a particular X\ is obtained by taking a transversal of canonical basis
matrices of the Clifford algebra R,, .., an of n-tuple of B matrices of order n with a
matching \ can always be found.

Question 2. For the constructions (G0) and (HO) with conditions (4), is it necessary
that n is a power of 2 [19, Chapters 16, 17]?

We recap conditions (4), splitting these into sub-conditions for closer examination.

Ajx Ay =0 (j#k), ZAke{ 1,1}, (4a)
AR AT _](n (4b)
AjAZ + /\jkAk:Aj =0 (j#k), (4c)

So, each Ay is a signed permutation matrix. If we multiply each Ay on the left by
some fixed signed permutation matrix S, we permute and change the signs of the all
the corresponding rows of each Ay, so (4a) is still satisfied. Since SST = I,,), (4b)
and (4c) are also satisfied, and in particular, multiplication by S does not affect the
values of \;j; in (4c). Similarly, if we multiply each A, on the right by S. We therefore
have an equivalence class of n-tuples under these two types of transformation, and
without loss of generality, can set A; = I(,y. In this representative case, each of the
other Ay, k > 1 must be symmetric or skew, with zero diagonal.

If we now take a linear combination of the corresponding permutation matrices
P, = |Ag|, we have a symmetric Latin square with constant diagonal. This type of
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Latin square must have even order. Sequence A003191 in Sloane’s Online Encyclo-
pedia of Integer Sequences [48] lists the number of such Latin squares for each even
order. The entire listed sequence is

1,1,6,5972,1225 533 120,

corresponding to orders 2, 4, 6, 8 and 10, respectively. The sole examples of orders
2 and 4 can be obtained via the Clifford algebra representation, as per Figure [7]

| — |
> Q
S o
_ 1
QO o
o Q9 o
R U0
Q O

Figure 7: Symmetric Latin squares with constant diagonal: orders 2 and 4.

The 6 cases of order 6 are as per Figure [§]

a b c d e f a b c d e f a b c d e f
b a f e ¢ d b a f ¢ d e b a e ¢ f d
c f a b d e c f a e b d c e a f d b
d e b a f c d ¢ e a f b d ¢ f a b e
e ¢ d f a b e d b f a c e f d b a c
|/ d e ¢c b a| |f e db ca] | f db e c a]
(¢ b ¢c d e fl [a b ¢c d e fl]l [a b c d e f]
b a e f d c b a d e f ¢ b a d f ¢ e
c e a b f d c d a f b e c d a e f b
d f b a c e d e f a ¢ b d f e a b c
e d f ¢ a b e f b ¢ a d e ¢ f b a d
| f ¢ d e b a] |f c e b da]| |f e b c d a,]

Figure 8: Symmetric Latin squares with constant diagonal: order 6.

Recalling condition (4c),
AJAL + N ARAT =0 (j # k),

we see that A;A] must either be symmetric or skew, and so each corresponding
product of permutation matrices P; P! for our representative case must be symmetric,
for each pair j,k > 1. If we enumerate all six cases of symmetric Latin squares of
order 6 with constant diagonal, we find that none of these cases yields permutation
matrices P,, P3 with P2P3T symmetric.

For general even order n, we see that there must be a set of n — 1 permutation
matrices which each represent a fixed-point-free involution on the set of n symbols,
and that all n —1 of these involutions must commute. Further, each product P; P, =
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P; Pl must again be a fixed-point-free involution, because the supports of P; and P
are disjoint.

A deeper analysis of the general case is yet to be performed, although it is quite
obvious that the more general construction (G0’) with conditions (4’) does allow
n = 6 as per the example of Hammer and Seberry [25].

Question 3. Based on the tables listed in the Masters and PhD theses of O Cathdin
[39, [40], the frame groups G, ,, we use to construct our A matrices are not Hada-
mard groups in the sense of Ito [31), [17], yet these frame groups arise naturally in
the work of de Launey and Smith [15, Section 2/, de Launey and Kharaghani [1]),
Section 2.2/, and de Launey and Flannery [13]. What is the reason for this seeming
discrepancy, and are there cases where the construction described in the current paper
does not give a matriz equivalent to a cocyclic Hadamard matriz?

This question is yet to be addressed.

Prospects. The matrices of {—1,1}?>*? were investigated via an exhaustive search
using naive methods. A search for pairs of {—1,1}*** matrices was also conducted,
but no attempt was made to obtain larger n-tuples. To investigate higher orders b
and larger n-tuples, a more sophisticated strategy is needed. Perhaps the way to
proceed is to first find multisets of size n of B matrices obeying the Gram constraint
of (4), and then examine the multiset for pairwise amicability and anti-amicability.
The methods of Osborn [41] and some of the software techniques of Brent [6] could
be used as the basis for such a search. Surely, more work is needed before the graphs
of amicability and anti-amicability can be truly said to be well understood.
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