A study on H-line graphs

K. M. KATHIRESAN

Center for Research and Post Graduate Studies in Mathematics
Ayya Nadar Janaki Ammal College
Sivakasi - 626 124, Tamil Nadu
India
kathir2esan@yahoo.com

S. Akila Devi

Department of Mathematics
Sethu Institute of Technology
Kariapatti, Arupukkottai - 626115, Tamil Nadu
India
akis.akila@gmail.com

Abstract

For a connected graph H of order at least 3, the H-line graph of a graph is defined as that graph whose vertices are the edges of G and where two vertices are adjacent if and only if the corresponding edges of G are adjacent and belong to a common copy of H. In particular, when $H = P_3$, the H-line graph HL(G) is the standard line graph L(G) and for any connected graph G on at least three vertices, GL(G) = L(G). For $k \geq 2$, the k-th iterated H-line graph $HL^k(G)$ is defined as $HL(HL^{k-1}(G))$, where $HL^1(G) = HL(G)$ and $HL^{k-1}(G)$ is assumed to be non-empty. Chartrand et al. characterized those graphs for which the sequence $\{HL^k(G)\}$ converges, when H is P_4 , P_5 or $K_{1,n}$, $n \geq 3$. In this paper we characterize those graphs G for which the sequence $\{HL^k(G)\}$ converges, when H is P_6 .

1 Introduction and Definitions

The line graph L(G) of a nonempty graph G is that graph whose vertices are the edges of G and where two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent. A sequence $\{G_k\}$ of graphs is said to converge to a graph G if there exists a positive integer N such that $G_k \cong G$ for every integer $k \geq N$. If the sequence $\{G_k\}$ is finite, it is said to terminate. If the sequence $\{G_k\}$ neither converges nor terminates, then the sequence diverges. For a connected graph H of order at least 3, the H-line graph of a graph G is defined as that graph whose

vertices are the edges of G and where two vertices are adjacent if and only if the corresponding edges of G are adjacent and belong to a common copy of H. In particular, when $H = P_3$, the H-line graph HL(G) is the standard line graph L(G) and for any connected graph G on at least three vertices, GL(G) = L(G). For $k \geq 2$, the kth iterated H-line graph $HL^k(G)$ is defined as $HL(HL^{k-1}(G))$, where $HL^1(G) = HL(G)$ and $HL^{k-1}(G)$ is assumed to be non-empty. Necessary conditions for $\{HL^k(G)\}$ to converge to a connected limit graph and sufficient conditions for the sequence $\{HL^k(G)\}$ to diverge are discussed in [1].

Chartrand et al. [1] discussed the behaviour of the sequence $\{HL^k(G)\}$, when $H \cong P_4$ and $H \cong P_5$. Manjula [4] discussed the behavior of the sequence $\{HL^k(G)\}$ for a unicyclic graph G, which consists of a cycle C_t and a path P_m originating from a vertex v_i on the cycle such that C_t and P_m have only one vertex v_i in common, when $H \cong P_n$.

In this paper, as an extension of the result of Chartrand et al., we prove a necessary and sufficient condition for the convergence of $\{HL^k(G)\}$, when H is isomorphic to P_6 .

2 Main Theorem

For $n \geq 4$, define F_n to be the graph of order n and size n+1 consisting of an n-cycle together with an edge joining some pair of vertices on the cycle whose distance is two. We will use the following theorem in our work.

Theorem 2.1 [1] Suppose $H \cong P_n$ for $n \geq 4$, and let m be an integer with $m \geq n$; then the sequence $\{HL^k(F_m)\}$ diverges.

Theorem 2.2 Let $H \cong P_6$. Then the sequence $\{HL^k(G)\}$ converges if and only if each component of G is isomorphic to C_n for some $n \geq 6$ or each component is isomorphic to one of the graphs given below, namely, G_1 , G_2 , A_j , B_j , $C_{i,j}$.

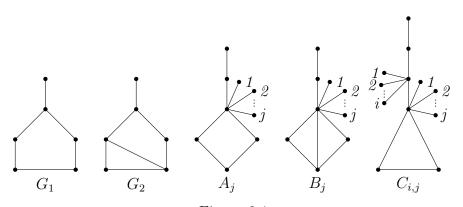


Figure 2.1

In particular, if G is connected and $G \cong C_n$, $n \geq 6$, then the sequence $\{HL^k(G)\}$ converges to C_n , and if $G \cong G_i$ for i = 1, 2 or $G \cong A_j$ or B_j or $C_{i,j}$ $(i, j \geq 0)$, then $\{HL^k(G)\}$ converges to C_6 .

Proof. Let $H \cong P_6$. Without loss of generality, let us assume that G is connected. Suppose $G \cong C_n i$, $n \geq 6$. Then $HL(G) \cong G$. Hence $\{HL^k(G)\}$ converges. Suppose $G \cong G_1$. Then $HL(G) \cong C_6$. Suppose $G \cong G_2$. Then $HL(G) \cong C_6$. Hence $\{HL^k(G)\}$ converges. Hence if $G \cong G_1$ or $G \cong G_2$, then $HL^k(G)$ converges to C_6 .

Suppose $G \cong A_j$ or $G \cong B_j$, $j \geq 0$. Then $HL(A_j)$ contains exactly one non trivial component which is isomorphic to G_1 and hence $\{HL^k(G)\}$ converges to G_2 . Similarly $HL(B_j)$ contains exactly one non trivial component which is isomorphic to G_1 and hence $\{HL^k(G)\}$ converges to G_2 .

Suppose $G \cong C_{i,j}$, $(i, j \geq 0)$. Then HL(G) contains exactly one non trivial component which is isomorphic to G_1 and hence $\{HL^k(G)\}$ converges to C_6 . Thus if G is isomorphic to G_i , i = 1, 2 (or) $G \cong A_j$ (or) $G \cong B_j$ or $G \cong C_{i,j}$, $(i, j \geq 0)$, then the sequence $\{HL^k(G)\}$ converges to C_6 .

Now consider the graph G in which each component is isomorphic to G_i , i = 1, 2 (or) $G \cong A_j$ (or) $G \cong B_j$ (or) $G \cong C_{i,j}$. Then by the above case, each component of G converges and hence $\{HL^k(G)\}$ converges.

Conversely, assume that $\{HL^k(G)\}\$ converges.

Let us show that each component G' of G is isomorphic to G_1 or G_2 or A_j or B_j or $C_{i,j}$. It is enough to show that if each component G' of G is not isomorphic to G_1 or G_2 or A_j or B_j or $C_{i,j}$, then the sequence $\{HL^k(G)\}$ diverges. Thus in what follows, we assume that G is connected and G contains a subgraph isomorphic to P_6 , for otherwise the sequence $\{HL^k(G)\}$ terminates. If G contains an n-cycle for some $n \geq 6$ but G is not isomorphic to C_n , then HL(G) contains a subgraph isomorphic to the graph F_{n+1} , and hence by Theorem 2.1 the sequence $\{HL^k(G)\}$ diverges. Thus we may assume that G contains no cycles of length G or more.

We consider four cases:

- (i) G has a 5-cycle
- (ii) G has a 4-cycle but no 5-cycle
- (iii) G has a triangle but no 5-cycle
- (iv) G is a tree

Case 1. Suppose that G has a 5-cycle and G is not isomorphic to either G_1 or G_2 . Suppose first that G has no triangle. Since G must contain P_6 as a subgraph, it follows that G contains G_1 as a proper subgraph. Then there exists an edge e of G not in G_1 such that the edge e is incident to at least one of the vertices of G_1 . It follows that G contains one of the graphs of Figure 2.2 as a subgraph.

In any of these cases, either $HL(T_i)$ or $HL^2(T_i)$ contains F_6 or F_7 as a subgraph. Hence by Theorem 2.1, $\{HL^k(G)\}$ diverges. We now show that if G is not isomorphic to G_2 and G contains a triangle, then $\{HL^k(G)\}$ diverges. Suppose that G is such a graph and let T denote a triangle in G and G denote a 5-cycle in G. Then $E(T) \cap E(G)$ has zero or two edges since G does not contain a 6-cycle.

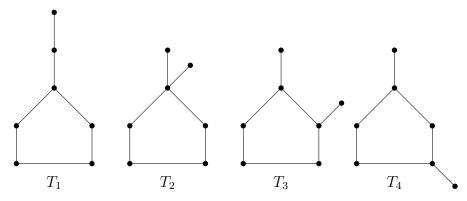


Figure 2.2

If $E(T) \cap E(C) = \emptyset$, then G contains T_1 as a subgraph, and hence $\{HL^k(G)\}$ diverges. Suppose $|E(T) \cap E(C)| = 2$. Since G must contains P_6 as a subgraph, it follows that G contains one of the graphs $J_i(1 \le i \le 4)$ of Figure 2.3 as a subgraph.

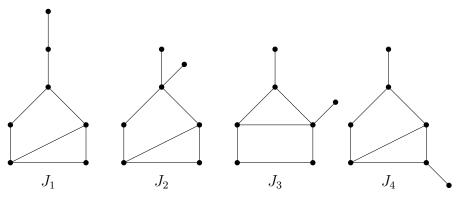


Figure 2.3

Now for each $i=1,2,\ldots,4$, the graph T_i is a subgraph of J_i , and so by Theorem 2.1, the sequence $\{HL^k(J_i)\}$ diverges. For J_2 , $HL^4(J_3)$ contains F_7 as a subgraph and hence by Theorem 2.1, the sequence $HL^k(J_3)$ diverges. Thus if G is any graph having a 5-cycle but no cycle of length 6 or more, and G is isomorphic to neither G_1 nor G_2 , then $\{HL^k(G)\}$ diverges.

Case 2. Suppose that G has a 4-cycle but no 5-cycle or more and G is isomorphic to neither A_j nor B_j $(j \ge 0)$. Consider the graph $S_{m,n}$.

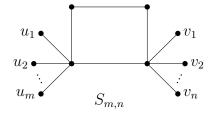


Figure 2.4

Then $HL(S_{m,n})$ contains no subgraph isomorphic to P_6 and thus, if G is a subgraph of $S_{m,n}$ for $m, n \geq 1$, then $\{HL^k(G)\}$ terminates. Consider the graph $A_{m,n}$.

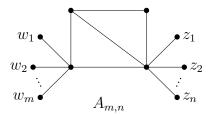
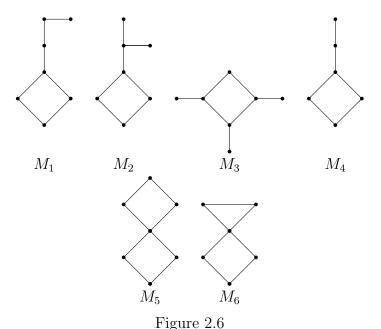


Figure 2.5

Then $HL(A_{m,n})$ contains no subgraph isomorphic to P_6 and thus, if G is a subgraph of $A_{m,n}$ for $m, n \geq 1$, then $\{HL^k(G)\}$ terminates. So we assume that G is not a subgraph of $S_{m,n}$ or $A_{m,n}$ for all $m, n \geq 1$.

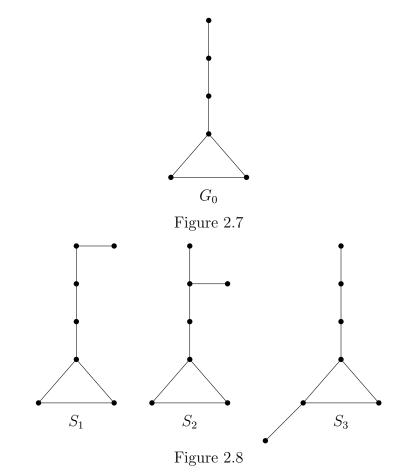
This implies that G must contain one of the graphs $M_i(1 \le i \le 16)$ as shown below:



For each i = 1, 2, 3, the H-line graph of M_i is isomorphic to one of the graphs given in Figure 2.2 and for M_4 , $HL(M_4)$ has F_6 as a subgraph, and hence by Theorem 2.1, the sequence $\{HL^k(G)\}$ does not converge. For M_5 , $HL^3(M_5)$ contains F_7 as a subgraph and for M_6 , $HL^3(M_6)$ contains F_7 as a subgraph and hence by Theorem 2.1, the sequence $HL^k(G)$ diverges.

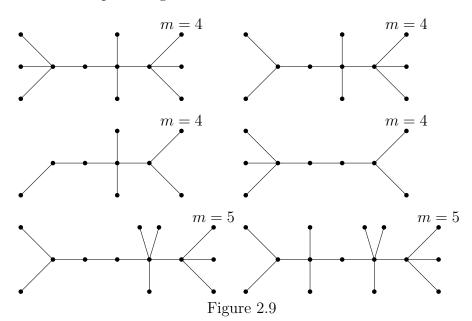
Case 3. Suppose G has a triangle but no cycles of length 5 and $G \not\cong C_{i,j}$, $(i, j \geq 0)$. Since G must contain P_6 as a subgraph, it follows that G contains the above G_0 as a proper subgraph. Then there exists an edge e of G not belonging to G_0 such that e is incident to at least one of the vertices of G_0 . Hence G must contain one of the graphs given in Figure 2.8.

For the graphs S_1 and S_2 , $HL^4(S_1)$ and $HL^4(S_2)$ contain F_7 as a subgraph. For the graph S_3 , $HL(S_3)$ contains F_5 as a subgraph. Thus by Theorem 2.1, $\{HL^k(G)\}$ diverges.



Case 4. G is a tree. Suppose that G is a tree containing P_6 as a subgraph. For $m \geq 3$, let T_m denote the tree having the property that the removal of its end vertices leaves a path of order m and such that if $v \in V(T_m)$ with deg $v \geq 3$, then v is either an end vertex of P_m or v is adjacent to an end vertex of P_m .

Some of the examples are given below:



Observe that $HL^{m-1}(T_m)$ consists no subgraph isomorphic to P_6 , and thus if G is a subtree of T_m for some $m \geq 4$ then $\{HL^k(G)\}$ terminates. Hence we may assume that G is not a subtree of any such T_m . Thus G must contain a subgraph isomorphic to the graph Y_1 or Y_2 of Figure 2.10.

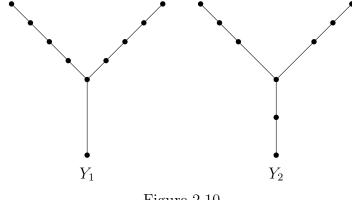


Figure 2.10

Since $HL^k(Y_i)$ for k > 1, i = 1, 2, contains F_n subgraphs, by Theorem 2.1 the sequence $\{HL^k(G)\}$ diverges.

Acknowledgements

Many thanks to the anonymous referees for their valuable comments and suggestions.

References

- [1] G. Chartrand, H. Gavlas and M. Schultz, Convergent sequences of iterated *H*-line graphs, *Discrete Math.* **147** (1995), 73–86.
- [2] G. Chartrand and P. Zhang, *Introduction to Graph Theory*, Tata McGraw-Hill Publishing Company, New Delhi, 2006.
- [3] F. Harary, Graph theory, Addison-Wesley Publishing Company, 1969.
- [4] K. Manjula, Some results on *H*-line graphs, *Indian J. Pure Appl. Math.* **34**(9) (2003), 1307–1314.

(Received 6 June 2012; revised 20 Dec 2012, 29 Dec 2013)