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Abstract

The plane degree gK(2) of a subset K of PG(3, q) is the greatest integer
such that at least one plane intersecting K in exactly gK(2) points exists.
In this note, (q+1)-arcs of PG(3, q) (that is, twisted cubics when q is odd)
are characterized as (q + 1)-sets of type (0, 1, s)1 of PG(3, q) of minimal
plane degree.

1 Introduction

A k-arc K in a d-dimensional finite projective space PG(d, q) over a finite field of
order q is a set of k points, no d + 1 of which belong to a hyperplane. A k-arc K
is complete if there is no (k + 1)-arc containing K. A rational normal curve C in
PG(d, q) is a complete (q + 1)-arc.

For q odd, any (q + 1)-arc of PG(3, q) is a twisted cubic (i.e. a rational normal
curve for d = 3) [9]. For q = 2h, h ≥ 3, every (q + 1)-arc of PG(3, q) is projectively
equivalent to the set K(r) = {(1, t, tr, tr+1) | t ∈ GF (2h)} ∪ {(0, 0, 0, 1)} for some
r = 2n, (n, h) = 1 [3].

The degree [12], with respect to the dimension r, of a subset K of PG(d, q), is the
greatest integer g(r) = gK(r) such that subspaces of dimension r intersecting K in
g(r) points exist. For r = 2 we speak of plane degree.

Let 0 ≤ m1 < · · · < ms be a finite increasing series of s non negative integers.
A set K of points of PG(d, q) is of class [m1, . . . , ms]1 if |� ∩ K| ∈ {m1, . . . , ms} for
any line �. Moreover a set K of class [m1, . . . , ms]1 is of type (m1, . . . , ms)1 if for
every mj , j = 1, . . . , s, there exists a line � intersecting K in mj points. The integers
m1, . . . , ms are the intersection numbers of K (with respect to the dimension r = 1).

Most of the classical subsets of finite projective geometry, such as quadrics, alge-
braic varieties which are intersection of quadrics, subgeometries have few intersection
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numbers with respect to some families of subspaces, such as for example those of lines
or of hyperplanes, and so the question of characterizing such subsets in terms of their
intersection numbers arises. There is a wide literature devoted to this question (e.g.
[1, 5, 6, 8, 11, 12, 13, 14]), in particular for the case of two intersection numbers
with respect to the hyperplane, because of its connections with coding theory (e.g.
[2, 4, 15]).

Recently, Zannetti and Zuanni [16] have given the following characterization of
twisted cubics of PG(3, q), q odd.

Theorem. (Zannetti-Zuanni, 2010) A (q+1)-set of PG(3, q), q odd, of class [a, b, c]1
such that g(2) = g(1) + 1 is a twisted cubic.

In this paper, we are going to prove the following result which generalizes the
above one; our proof is also shorter than that of Zannetti and Zuanni.

Theorem I. Let K be a (q +1)-set of PG(3, q). Then, K admits at least an external
line, a tangent line and an s-line, and if it is of type (0, 1, s)1 then g(2) ≥ s2−s+1 =
g2(1) − g(1) + 1. Moreover, g(2) = s2 − s + 1 if and only if K is a (q + 1)-arc of
PG(3, q) (and so a twisted cubic if q is odd).

2 Proof of Theorem I

Throughout this section K denotes a (q + 1)-set of PG(3, q).

Let us start by proving that K admits both external and tangent lines. Indeed,
if p is a point outside K on which there is no external line, counting k via the lines
on p gives q + 1 = k ≥ q2 + q + 1, a contradiction. Similarly, if p is a point in K on
which there is no tangent line, then q +1 = k ≥ 1+ q2 + q +1, again a contradiction.

Since a set of class [0, 1]1 is a point, it follows that K admits at least an s-line.

From now on, assume that K is of type (0, 1, s)1. Then, g(1) = s.

The following lemmas give the proof of Theorem I.

Lemma 2.1 Either K is a line or g(2) ≥ g2(1) − g(1) + 1 = s2 − s + 1.

PROOF. Let � be an s-line. If s = q + 1, namely � = K. So, we may assume s ≤ q.
Thus, there is a point x0 of K not in �. Let π be the plane containing � and x0. Any
line of π joining x0 with a point of �∩K is an s-line. So π contains at least s2 − s+1
points of K. �

Lemma 2.2 (s − 1)|q.

PROOF. Let x be a point of K and α be the number of s-lines on x. Counting k via
the lines on x gives

q + 1 = k = 1 + α(s − 1)
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from which the assertion follows. �

Thus, since q = ph, with p a prime, it follows that s − 1 = pt with t < h.

Lemma 2.3 If g(2) = s2 − s + 1 then s = 2 and K is a (q + 1)-arc of PG(3, q).

PROOF. Since g(2) = s2 − s + 1, every plane through an s-line with more than s
points in common with K intersects K in exactly s2 − s + 1 (call such a plane big
plane).

Assume s ≥ 3.

Let � be an s-line and let α be the number of big planes on �. Counting k via the
planes through � gives

q + 1 = k = s + α(s2 − 2s + 1)

so (s− 1)2|q− (s− 1). On the other hand, (s− 1)|q. If (s− 1)2|q then (s− 1)2|s− 1,
a contradiction. Hence (s − 1)2 does not divide q. That is p2t ≥ ph. Therefore,
(s − 1)2 ≥ q. Hence,

s2 − 2s + 2 ≥ q + 1 = s + α(s − 1)2,

a contradiction. Therefore s = 2. Thus, every plane intersects K in at most 3-points
and so K is a (q + 1)-arc. �

Corollary 2.4 (Zannetti-Zuanni, 2010) A (q + 1)-set of PG(3, q), q odd, of class
[a, b, c]1 such that g(2) = g(1) + 1, is a twisted cubic.

PROOF. From the remarks at the beginning of the section, K is of type (0, 1, c)1.
Now, from c + 1 = g(1) + 1 = g(2) ≥ c2 − c + 1 it follows that c = 2, and by the
Segre characterization of twisted cubics for q odd (see [9]), the assertion follows. �
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