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Abstract

In this paper, we study critical sets in pairs of equiorthogonal frequency
squares. Using this stronger definition of orthogonality, a pair of equi-
orthogonal frequency squares is classified into one of three classes de-
pending on the isomorphism or orthogonality of the corresponding rows
and columns. We provide a general theorem determining the size of the
critical set of a pair of equiorthogonal squares in which the corresponding
rows and columns are isomorphic. For the other possible combinations
of corresponding rows and columns, we make a few general observations
with a detailed investigation into the conditions for the existence of an
equiorthogonal mate and the size of a critical set for a pair of squares of
order 8 based on 2 symbols.

1 Introduction

Critical sets in latin squares and frequency squares have been studied in papers
such as Nelder [18], Smetaniuk [22], Curran and van Rees [5], Cooper, Donovan
and Seberry [3], Cooper, McDonough and Mavron [4], Donovan, Cooper, Nott and
Seberry [6], Donovan and Cooper [7], Fu, Fu and Rodger [11], Donovan and Howse
[8], Fitina, Seberry and Sarvate [10], Bate and van Rees [1], Cavenagh [2], Keedwell
[14], and SahaRay and Morgan [21]. Critical sets in pairs of orthogonal latin squares
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have been investigated in SahaRay, Adhikari and Seberry [19, 20], but little work
has been done studying critical sets in sets of orthogonal frequency squares. Part of
the reason for that might be the fact that the presence of orthogonality using the
usual definition provides little, if any, reduction of the size of a critical set below that
which would be obtained by considering the squares separately.

If we use a stronger definition of orthogonality, called equiorthogonality as con-
sidered in Morgan [15, 16, 17] we find that the size of a critical set for a pair of
equiorthogonal frequency squares is often reduced significantly compared to the size
of the union of the individual critical sets. We classify a pair of equiorthogonal
frequency squares into one of three classes depending on the isomorphism or orthog-
onality of the corresponding rows and columns. We focus on the determination of
the size of a critical set for a pair of squares for each of the three types of equiorthog-
onality, which require somewhat different approaches.

Before discussing the main results, some background information is needed which
is presented in Section 2. In Section 3, we investigate the case of order 4 based on
2 symbols in detail; this case provides a good introduction to the general case of
order n based on m symbols. The case of a pair of squares having isomorphic
corresponding rows and columns is dealt with in detail in Section 4. For the case
in which the corresponding rows are isomorphic and the corresponding columns are
orthogonal, we make general observations on the size of a critical set in Section 5
and also provide a detailed study for the case of order 8 based on 2 symbols. The
conditions for the existence of an orthogonal mate for such a square are explored in
Section 6. Finally, the case of a pair of squares in which the corresponding rows and
columns are orthogonal is dealt with in Section 7.

2 Preliminary Definitions and Notations

A frequency square, or F-square, F = F (n; α0, α1, . . . , αm−1) of order n is an n × n
array with entries chosen from the set N = {0, 1, 2, . . . , m−1} such that each element
i occurs αi times in each row and in each column, where each αi is a natural number
and

∑m−1
i=0 αi = n. If all of the αi are equal, they will be equal to n/m. The

reader is referred to Hedayat and Seiden [12], Hedayat, Raghavarao and Seiden [13]
and Morgan [15, 16, 17] for more information about F-squares. When there is no
potential for ambiguity, we may refer to F-squares as squares. Following the notation
from Morgan [15, 16, 17], we will use the notation F (2)(n; n/m) for a single frequency
square of order n based on m symbols with constant frequency n/m.

Two F (2)(n; n/m) frequency squares are said to be isotopic if there exist permu-
tations of the rows, columns, and set of symbols that transform one to the other.
This condition is weaker than isomorphism, which only permits a permutation or
relabeling of the symbols.

The usual definition of orthogonality for frequency squares requires only condition
(a) listed below; see, for example, Hedayat and Seiden [12] or Hedayat, Raghavarao
and Seiden [13]. Equiorthogonality is a strengthened form of orthogonality that
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makes more use of the inherent structure of the frequency squares.

Definition 2.1 In the case of F (2)(n; n/m) frequency squares, two such squares are
considered to be equiorthogonal if the following conditions hold:

(a) each ordered pair appears exactly n2/m2 times in the superimposition of the
squares;

(b) pairs of corresponding rows and columns are isomorphic (one is a relabeling
of the other) or orthogonal (with each ordered pair appearing exactly n/m2 times);
and

(c) if one pair of corresponding rows is isomorphic (resp. orthogonal), then the
same is true for all pairs of corresponding rows; likewise for the columns.

This results in three possible relationships between pairs of equiorthogonal frequency
squares, which we will refer to as equiorthogonality Type I, Type II, and Type III.

Type I: corresponding rows and columns are both isomorphic.

Type II: without loss of generality, corresponding rows are isomorphic and cor-
responding columns are orthogonal. If the corresponding rows are orthogonal and
the columns are isomorphic, the transpose can be taken of both squares. Note that
a necessary condition for Type II equiorthogonality is that m2 divide n. If m2 does
not divide n, it is impossible for corresponding rows or columns to be orthogonal, so
the only possible orthogonality is Type I.

Type III: corresponding rows and columns are both orthogonal. Note that the
condition that m2 divide n is necessary here as well.

If we think of the frequency square as a set of ordered triples F = {(i, j; k)} where
element k occurs in position (i, j), a nonempty subset S of F is defined to be a defining
set of F if F is the only frequency square with the appropriate parameters which
has element k in position (i, j) for each (i, j; k) ∈ S (i.e., F is uniquely completable
from S). The subset S is a critical set of F if, in addition, every proper subset of
S is contained in at least two frequency squares with the appropriate parameters.
This definition is equivalent to that used by Cavenagh in [2] using slightly different
language and is consistent with the definition of critical sets for Latin squares and
other combinatorial designs (see, for example, [9] and [14]).

A critical set for a pair of equiorthogonal frequency squares may be defined anal-
ogously. Note that the type of equiorthogonality is not assumed in advance; the
information contained in the critical set will determine the equiorthogonality type.
It should also be noted that, if an isotopism is applied to a square or a pair of
squares, the same isotopism, applied to a critical set, will yield a critical set for the
new square or pair of squares.

We will see that, when m2 does divide n, there are several different possibilities
for the nature of the squares, but we still get a fair amount of information from Type
II equiorthogonality. In Type III, however, there are a large number of possibilities
for the squares and the relationship between them. Consequently, critical sets are
noticeably larger in Type III than in Type I or Type II.
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Beginning in Section 4, we will consider the individual cases in a bit more detail.
First, we will explore some small cases, both to illustrate the concepts and to make
note of some of the difficulties we will encounter in the general case.

3 The case F (2)(4; 2) and introduction to the case F (2)(n; n/2)

Even in the case m = 2 and n = 8, there are a large number of nonisotopic frequency
squares and an even larger number of possible relationships among them. The case
m = 2 and n = 4 is somewhat more manageable. First of all, there are only two
possible frequency squares (up to isotopism and relabeling),

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

and

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

.

It will be useful to have notations to describe the different structures of individual
squares. We will use the term pattern, with the notation (row pattern)\(column
pattern), where the row (resp. column) pattern refers to the number of rows (resp.
columns) in each isomorphism class. We will use the pattern 41\41 to describe the
first square and 22\22 to describe the second. Note that, in the first square, all of
the rows are isomorphic and the same is true of the columns. In the second square,
rows 0 and 3 are isomorphic and rows 1 and 2 are isomorphic with (coincidentally)
the same being true of the columns.

It is not hard to show that the smallest possible critical set for each of these
squares, considered individually, has size 4. Table 1 gives the possible equiorthogo-
nality relationships among F (2)(4; 2) frequency squares, where elements of the critical
sets are denoted in bold.

We can already make some observations from this table. First, there are no
Type I pairs listed; we will see the reason for this in Section 4. Also note that
Type III equiorthogonality may or may not reduce the size of the critical set below
the amount that result from considering the squares individually. However, Type II
reduces the size of the critical set of the second square. Note that the presence of
zeroes in locations (0, 0) and (0, 1) of both squares in the first Type II pair listed
guarantees that corresponding rows are isomorphic; it will be noted in the next
section that, when m = 2, Type II equiorthogonality is guaranteed. The other zero
is necessary to distinguish the last two rows of the second square; interestingly, a
third entry is not necessary in the second square of the other Type II pair listed.
Note that the (1, 0) entry must be 1, or else the squares will be identical, hence not
equiorthogonal. Isomorphism of corresponding rows allows us to complete the second
row, after which columns 1 and 2 are determined and the rest of the second square
can be completed.



I.H. MORGAN ET AL. /AUSTRALAS. J. COMBIN. 59 (1) (2014), 182–205 186

Square Mate Pattern Orth. Type Size of Critical Set
0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 41\41, II 4+3
1 1 0 0 0 0 1 1 41\41

1 1 0 0 1 1 0 0

0 0 1 1 0 1 1 0
0 0 1 1 1 0 0 1 41\41, III 4+4
1 1 0 0 0 1 1 0 41\41

1 1 0 0 1 0 0 1

0 1 1 0 0 0 1 1
1 0 0 1 0 0 1 1 22\22, III 4+3
0 1 0 1 1 1 0 0 41\41

1 0 1 0 1 1 0 0

0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 0 22\22, II 4+2
1 0 1 0 0 1 0 1 22\22

1 1 0 0 1 1 0 0

0 0 1 1 0 1 0 1
0 1 0 1 1 1 0 0 22\22, III 4+3
1 0 1 0 0 0 1 1 22\22

1 1 0 0 1 0 1 0
Table 1

In the case of F (2)(8; 4) frequency squares, many more patterns are possible,
and even determining the size of a critical set for an individual square is not so
straightforward. There are, however, some commonalities in all of the cases where
m = 2.

One useful result follows directly from Theorem 5 of [2]:

Lemma 3.1 A critical set for one F (2)(n; n/2) frequency square must have at least
n2/4 entries.

We now provide several F (2)(n; n/2) frequency squares with different row and
column patterns that satisfy this lower bound.

Proposition 3.2 A F (2)(n; n/2) frequency square with any of the patterns (i) n1\n1,
(ii) (n/2)2\(n/2)2, (iii) (n/2)2\(3n/4)1(n/4)1, (iv) (3n/4)1(n/4)1\(n/2)2, or (v)
(3n/4)1(n/4)1\(3n/4)1(n/4)1 has a critical set of size n2/4.

Proof: Without loss of generality, we can consider the n1\n1 square to be in the
block pattern with zeroes in the upper left and lower right; it is clear that the n2/4
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zeroes in the upper left form a critical set. For case (ii), note that there exist two
nonisomorphic rows which, without loss of generality, can be written as

0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1
0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1.

If we let p denote the size of the first grouping, then the other groupings must have
sizes n/2 − p, n/2 − p, and p, respectively. In order for the column pattern to be as
stated, the columns in the first and fourth groupings must all be isomorphic and 2p
must equal n/2, from which we can conclude that 4 divides n. A similar argument
involving the row pattern shows that the square must be isotopic to

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

with each entry representing a square block of size n2/16. The entries in bold form
the desired critical set.

For the other three cases, an argument analogous to that given for case (ii) will
show that 3n/4 and n/4 must be even, so 8 must divide n for the pattern to be
possible. For case (iii), the square must be isotopic to

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1
0 0 0 1 0 1 1 1
1 1 1 0 1 0 0 0
1 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0

with each entry representing a square block of size n2/64. The entries in bold form
the desired critical set. A critical set for case (iv) may be obtained by taking the
transpose of the square just considered for the third listed case.

Finally, for case (v), the square must be isotopic to

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1
1 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
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with each entry representing a square block of size n2/64. The entries in bold form
the desired critical set.

It is not hard to see that a row pattern of n1 implies the same column pattern,
but things can get very complicated very quickly when the number of nonisomorphic
rows or columns increases. For F (2)(8; 4) frequency squares, the possible row (or
column) patterns are 81, 6121, 5113, 42, 4122, 4114, 3212, 312113, 3115, 24, 2312, 2214,
2116, and 18. Some patterns, such as 7111, are impossible in a frequency square. In
addition, some combinations of row patterns and column patterns turn out not to
be possible.

Determining the size of a critical set even for a single general F (2)(8; 4) frequency
square turns out to be a difficult problem. We conjecture that every such square
has a critical set with no more than 20 entries. In Appendix A, we provide a set of
examples that is not intended to be exhaustive.

4 Equiorthogonality Type I

The fact that corresponding rows and columns are both isomorphic gives a large
amount of information about the nature of the squares and the relationship between
them.

Lemma 4.1 A pair of Type I equiorthogonal frequency squares must have m > 2.

Proof: If m = 2 with corresponding rows and columns isomorphic, the resulting
squares are isomorphic, not equiorthogonal; either the squares are identical, or one
is a relabeling of the other with the 0’s and 1’s interchanged.

In the F (2)(4; 2) case, we have already seen that it is possible to have equiorthog-
onal frequency squares in which parallel rows or columns are not isomorphic to each
other. However, any square with a Type I equiorthogonal mate satisfies a more
stringent condition.

Proposition 4.2 Any square with a Type I equiorthogonal mate must have all of its
rows isomorphic and all of its columns isomorphic.

Proof: Without loss of generality, assume that the rows and columns of a pair of
Type I equiorthogonal squares have been permuted and the symbols have been rela-
beled so that the first row of both squares is 0, . . . , 0, 1, . . . , 1, . . . , (m−1), . . . , (m−1)
and the first column of the first square also is 0, . . . , 0, 1, . . . , 1, . . . , (m−1), . . . , (m−
1). Since corresponding columns are isomorphic, this means that the entries in rows
0 through n/m − 1 of column 0 in the second square must be 0.

Let us now suppose that, out of rows 0 through n/m − 1, there are k rows in
which there are zeroes outside of the upper left block (i.e., the intersection of rows
0 through n/m − 1 and columns 0 through n/m − 1). In particular, in row εi let
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there be δi zeroes outside of the upper left block for i = 1, . . . , k. By isomorphism of
corresponding rows, the same will be true in the second square.

We find that the ordered pair (0, 0) occurs (n/m)2 − ∑k
i=1 δi times in the upper

left block and
∑k

i=1 δi times in those rows but outside of the upper left block. This
is a total of (n/m)2, which means that there can be no others. If k > 0, however,
there would have to be at least one column out of columns 0 to n/m − 1 with more
zeroes below row n/m− 1, and isomorphism of corresponding columns would result
in zeroes in the same location in the second square, yielding too many occurrences
of (0, 0). We conclude that k = 0 and both squares must have all zeroes in the upper
left block. A similar argument can be used to show that the entire square organizes
into such blocks. Since all rows consist of m blocks of n/m identical digits, they are
all isomorphic; the same is true of the columns.

Corollary 4.3 Any square with a Type I equiorthogonal mate is isotopic to a square
consisting of a square array of m2 blocks, each of which is a square with n2/m2

elements. The converse is true if the block pattern corresponds to an m × m latin
square with an orthogonal mate.

Proof: The isotopism comes from the proof of Proposition 4.2. For the converse,
consider the permuted original square to be an m × m latin square consisting of
blocks. The second square can be constructed by taking a latin square, consisting of
blocks, that is orthogonal to the permuted original square. Reversing the isotopism
the same way in both squares will yield a Type I equiorthogonal mate for the first
square.

We now make an observation which is simple yet crucial.

Proposition 4.4 If m2 does not divide n, then a pair of equiorthogonal F (2)(n; n/m)
frequency squares must be Type I equiorthogonal.

Proof: It is impossible for corresponding rows or columns to be orthogonal if m2

does not divide n.

With that in mind, we now state the main theorem of this section. Recall that
there is a simultaneous isotopism for Type I equiorthogonal squares that organizes
them into a block pattern which can be viewed as an m×m latin square consisting of
square blocks of n2/m2 elements. For brevity, we will refer to such a frequency square
as being in the block pattern and call such a resulting latin square the corresponding
latin square.

Theorem 4.5 (a) If m2 does not divide n, then there is a critical set for a pair of
Type I equiorthogonal F (2)(n; n/m) frequency squares whose size is 2(n/m−1)(m−1)
plus the size of a critical set for the first corresponding latin square plus the size of
a critical set for the second corresponding latin square.

(b) If m2 divides n, then there is a critical set for a pair of Type I equiorthogonal
F (2)(n; n/m) frequency squares whose size is 2(n/m − 1)(m − 1) plus the size of
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a critical set for the first corresponding latin square plus 2n/m2 plus the size of a
critical set for the second corresponding latin square.

Proof: (a) By Corollary 4.3, we know that the same permutation of rows and
columns will take the frequency squares to the same block pattern; a critical set for
the pair of corresponding orthogonal latin squares of order m then determines which
symbol is in each block. To know exactly how to divide the square into blocks, it is
necessary and sufficient to know m − 1 of the column groupings (each of which has
n/m columns) and m− 1 of the row groupings (each of which has n/m rows). Once
we have m− 1 sets of identical columns (or rows), we know that the remaining n/m
columns (or rows) must be identical. With less information about the groupings, the
locations of the blocks will not be uniquely determined.

The size of the critical set for the first frequency square is determined as follows.
We start with a critical set for the first corresponding latin square, which must have
entries in at least m− 1 rows and at least m− 1 columns of the latin square. Let us
consider any single entry with symbol j. All of the other n/m − 1 rows identical to
this row must have a j in the same column. Filling in those symbols will determine
a set of n/m identical rows. We need to do that process for m−1 groups of columns
and m − 1 groups of rows (as we noted, the last column group and row group will
then be known). So we need a total of 2(n/m − 1)(m − 1) plus the size of a critical
set to uniquely determine all entries in the first frequency square. The critical set
for the second latin square is then enough to determine the entire second frequency
square.

(b) In this case, we need additional entries in the second frequency square to
ensure that the squares are Type I equiorthogonal. We accomplish this by making
sure that there is one ordered pair that occurs more than n/m2 times in a row and
in a column. This requires the size of a critical set for the second latin square, plus
an additional n/m2 to guarantee that corresponding columns are isomorphic and an
additional n/m2 to guarantee that corresponding rows are isomorphic.

Once we know that the frequency squares are Type I equiorthogonal, we can
permute the rows and columns of the two frequency squares to obtain the same
block pattern as described in part (a). As before, the first frequency square requires
2(n/m − 1)(m − 1) plus the size of a critical set for the first corresponding latin
square.

Here are examples illustrating each of these cases.

0 0 1 1 2 2
0 0 1 1 2 2
1 1 2 2 0 0
1 1 2 2 0 0
2 2 0 0 1 1
2 2 0 0 1 1

0 0 1 1 2 2
0 0 1 1 2 2
2 2 0 0 1 1
2 2 0 0 1 1
1 1 2 2 0 0
1 1 2 2 0 0

.

A critical set for this pair requires 9 elements, 7 in the first square and 2 in the second.
Since we have a pair of equiorthogonal frequency squares in which m2 = 9 does not
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divide n = 6, Theorem 4.5 (a) applies. We know we have Type I and the squares are
known to be in the block pattern; therefore, 3 entries plus 2(2− 1)(3− 1) for a total
of 7 entries are enough to determine the first frequency square. Since the second
frequency square must be in the same block pattern by the proof of Proposition 4.2,
all we need is one entry inside each block of the corresponding latin square.

0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1

0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0

.

In this pair, two entries are not enough for unique completability of the second
square because we cannot tell if we have Type I or Type II. The two additional
entries are enough to guarantee that corresponding rows and columns are isomorphic,
therefore we have Type I.

5 Equiorthogonality Type II

As we have seen, in Type I equiorthogonal frequency squares, all of the rows of
each square must be isomorphic and all of the columns of each square must be
isomorphic. In Type II, there are many more possibilities. When the general case
becomes unwieldy, we will use the case F (2)(8; 4) for illustration.

Note that Type II includes cases where corresponding rows are isomorphic and
corresponding columns are orthogonal as well as cases where corresponding rows are
orthogonal and corresponding columns are isomorphic. Without loss of generality,
we will confine our attention to isomorphic corresponding rows and orthogonal cor-
responding columns; the other case can be obtained by taking the transpose of both
squares. However, in considering critical sets, we will never assume this a priori, just
as we never assume Type I, II, or III.

As we will see, enumerating all of the possible cases even with relatively small
parameters such as n = 8 and m = 2 is not an easy task. Here is one observation
that is helpful in the case m = 2.

Proposition 5.1 A pair of Type II equiorthogonal F (2)(n; n/2) frequency squares
must have the same pattern (as defined in Section 3).

Proof: From the definition of Type II equiorthogonality, corresponding rows are
isomorphic, so isomorphism of two rows in the first square will automatically make
the corresponding rows isomorphic in the second square.
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Now let us assume that columns i and j are isomorphic in the first square. First
suppose that both columns have a 0 in row 0. By isomorphism of corresponding
rows, both columns must have the same symbol in row 0 of the second square (it
may be a 0 or a 1).

Now consider row 1. Since columns i and j are isomorphic, locations (1, i) and
(1, j) in the first square must have the same symbol. By isomorphism of correspond-
ing rows, the same must be true in the second square. We will find that columns i
and j are the same in both squares, therefore isomorphic.

If both columns have a 1 in row 0, the argument is exactly the same. If the symbols
in locations (0, i) and (0, j) of the first square are different, a similar argument shows
that the symbols in locations (k, i) and (k, j) of the second square must be different
for all k = 1, . . . , n−1, so the fact that m = 2 guarantees that each column will have
a 0 whenever the other has a 1, therefore they are isomorphic.

This is not necessarily true if m > 2. For example, Figure 1 illustrates a pair
of Type II equiorthogonal F (2)(16; 4) frequency squares in which the pattern of the
first square is 161\161 while the pattern of the second square is 161\44.

We will now investigate critical sets for pairs of Type II equiorthogonal frequency
squares. As noted in Lemma 3.1, a critical set for one F (2)(n; n/2) frequency square
must have at least n2/4 entries. If n = 8, this results in 16 entries in a minimal
critical set. As we noted at the end of Section 3, there are some squares that seem
to need as many as 20 elements.

Once the first square is known, we will see that a critical set for the second
F (2)(8; 4) equiorthogonal square needs 3, 4, 5, or 6 entries. The fact that no more
than 6 are needed follows from a more general result:

Lemma 5.2 In a pair of Type II equiorthogonal F (2)(n; n/m) frequency squares
whose first square is known, the number of elements in a critical set for the sec-
ond square is less than or equal to (n/m)(m − 1)2 + n/m2.

Proof: Without loss of generality, we may assume that row 0 and column 0 are
arranged as 0, . . . , 0, 1, . . . , 1, . . . , (m−1), . . . , (m−1) in the first square. If we situate
all of the symbols from 0 to m− 2 in column 0 of the second square, we will be able
to fill in the remaining n/m cells with symbol m − 1. So n − n/m = (m − 1)n/m
entries suffice in the first column. We will situate these entries so that column 0 of
the second square is orthogonal to column 0 of the first square. The symbol 0 is then
entered into n/m2 additional cells in row 0 of the second square, guaranteeing that
row 0 of the second square is isomorphic to row 0 of the first square. We can now be
certain that the squares are Type II equiorthogonal.

By isomorphism of corresponding rows, columns 1 through n/m− 1 are identical
to column 0. We now repeat the process used for column 0 to enter (m − 1)n/m
entries in column n/m, and the next n/m− 1 columns are identical to it. This only
needs to be done a total of m−1 times because the last n/m columns will be forced.
Specificiation of these (m − 1)2n/m + n/m2 entries in the second square guarantees
unique completability.
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0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 0 0 0 0 1 1 1 1 2 2 2 2
0 0 0 0 2 2 2 2 3 3 3 3 1 1 1 1
1 1 1 1 0 0 0 0 2 2 2 2 3 3 3 3
2 2 2 2 3 3 3 3 1 1 1 1 0 0 0 0
3 3 3 3 1 1 1 1 0 0 0 0 2 2 2 2
0 0 0 0 3 3 3 3 1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2 0 0 0 0 3 3 3 3
2 2 2 2 1 1 1 1 3 3 3 3 0 0 0 0
3 3 3 3 0 0 0 0 2 2 2 2 1 1 1 1
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0

Figure 1: Two Type II equiorthogonal frequency squares with different patterns
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Corollary 5.3 In a pair of Type II equiorthogonal F (2)(8; 4) frequency squares whose
first square is known, the number of elements in a critical set for the second square
is less than or equal to 6.

Proposition 5.4 In a pair of Type II equiorthogonal F (2)(8; 4) frequency squares
whose first square is known, the number of elements in a critical set for the second
square is greater than or equal to 3, and the lower bound can be attained.

Proof: There needs to be one row with at least three entries to guarantee that
corresponding rows are isomorphic, establishing the lower bound.

Here is a pair of squares in which three entries form a critical set for the second
square, illustrating that the lower bound can be attained:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
1 0 0 1 1 0 1 0
1 0 1 0 1 0 0 1
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

and

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1
0 1 1 0 0 1 0 1
0 1 0 1 0 1 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

.

First, note that a 1 in location (1, 0) yields the following partial completion:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
1 0 0 1 1 0 1 0
1 0 1 0 1 0 0 1
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

and

0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0

.

The only two ways to fill in rows 2 and 3 are as follows:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
1 0 0 1 1 0 1 0
1 0 1 0 1 0 0 1
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

and

0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1
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or
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
1 0 0 1 1 0 1 0
1 0 1 0 1 0 0 1
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

and

0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0

.

In both cases, the partial column with all zeroes forces completion of the rest of
the square using isomorphism of corresponding rows, but the completions are not
legal frequency squares. Therefore, there must be a 0 in location (1, 0) and also in
location (1, 1).

By orthogonality of corresponding columns, entries (2, 0) and (3, 0) of the second
square must be 1. Then, by isomorphism of corresponding rows, entries (2, 1) and
(3, 1) must be 0, and the whole square can then be completed.

Proposition 5.5 The upper bound established in Corollary 5.3 can be attained.

Proof: Here is an example of a pair where the upper bound is attained:

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0

and

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0

.

Note that removal of any of the zeroes in the first row opens up the possibility of
Type III equiorthogonality, and removal of any of the zeroes in the first column leaves
ambiguities in the positioning of the rows.

We would like to have conditions to determine whether there exists a critical set
for the second square of size 3, 4, or 5. We now provide some sufficient conditions.
Our convention for this series of results is that isotopic configurations will be con-
sidered to be the same but we will not relabel any entries. All entries of the first
square are considered to be known; however, in the second square, only elements of
the critical set are known until others are deduced.

We would like to note that, although we have usually arranged our equiorthogonal
pairs with column 0 of the first square having all of the zeroes at the top, the
configurations in the next two propositions can be presented most compactly with
column 0 of the second square having all of the zeroes at the top.

Proposition 5.6 In a pair of Type II equiorthogonal F (2)(8; 4) frequency squares
whose first square is known, if either of the following configurations is present, a
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critical set for the second square will need no more than four entries. The configu-
rations are left justified in the applicable squares.

0 0 0 0 0 0
0 0 0 0
1 0 0 1

Configuration 1: First square: 1 0 ; Second square: 0 1
0 1
0 1
1 1
1 1

0 1 0 0 0 1 0 0
0 1 0 1
1 1 0 0

Configuration 2: First square: 1 1 ; Second square: 0 0
0 1
0 1
1 1
1 1

Proof: In Configuration 1, the three zeroes in row 0 of the second square guarantee
isomorphic corresponding rows, after which we can conclude that location (1,1) has
a 0. Orthogonality of corresponding columns gives the ones in locations (2,1) and
(3,1), after which isomorphism of corresponding rows gives the zeroes in locations
(2,0) and (3,0). With all zeroes in column 0 known, the second square can now be
completed.

In Configuration 2, we again get isomorphism of corresponding rows from row
0. This forces the ones in locations (0,1) and (1,1). The completion of the second
square proceeds similarly to Configuration 1.

In both cases, the four entries may form a critical set, or the critical set may
have size 3 as demonstrated in Proposition 5.4, depending on the composition of the
undefined entries in the pair.

Proposition 5.7 In a pair of Type II equiorthogonal F (2)(8; 4) frequency squares
whose first square is known, if either of the following configurations is present, a
critical set for the second square will need no more than five entries. The configura-
tions are left justified in the applicable squares.

0 1 0 0 0 1 0 0
0 1 0 1
1 1 0 0

Configuration 3: First square: 1 ; Second square: 0
0 1
0 1
1 1
1 1
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0 0 0 0 0 0
0 0 0 0
1 0 0 1

Configuration 4: First square: 1 ; Second square: 0 0
0 1
0 1
1 1
1 1

Proof: Isomorphism of corresponding rows is established immediately. In Config-
uration 3, we thereby deduce ones in locations (0,1) and (1,1). Orthogonality of
corresponding columns forces a 0 in location (2,1), therefore also in location (2,0).
With all of the zeroes in column 0 known, the square can be completed.

In Configuration 4, isomorphism of corresponding rows gives a 0 in location (1,1),
orthogonality of corresponding columns gives a 1 in location (2,1), and isomorphism
of corresponding rows gives a 0 in location (2,0).

As before, it is possible that a critical set may have fewer than these five entries.

6 Conditions for the existence of a Type II equiorthogonal
mate

Existence of an orthogonal mate for a F (2)(n; n/m) frequency square is straightfor-
ward in Type I but poses a complicated question in the other types. We now provide
a result that addresses whether a F (2)(8; 4) may have an equiorthogonal mate with
isomorphic corresponding rows and orthogonal corresponding columns.

Theorem 6.1 Consider the following configuration:

. . 1 1 1 . . .

. . 1 1 1 . . .

. . . . . . . .

. 1 1 1 . . . .
1 . 1 . . . . .
1 . . 1 . . . .
1 1 . . 1 . . .
1 1 . . . . . .

A F (2)(8; 4) frequency square with this configuration fails to have a Type II (with
isomorphic corresponding rows) equiorthogonal mate. However, any proper subset of
the configuration can be completed to a frequency square that admits such a Type II
equiorthogonal mate.

Proof: First, let us show that any square with the given configuration cannot have
an equiorthogonal mate.

Without loss of generality, we may assume that the entry in location (0,0) of the
second square is a 0. Because of isomorphism of corresponding rows, we may begin
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as follows:

0 . 1 1 1 . . . 0 . 1 1 1 . . .
0 . 1 1 1 . . .
0 . 0 0 . . . .
0 1 1 1 . . . .
1 . 1 0 . . . .
1 . 0 1 . . . .
1 1 0 0 1 . . .
1 1 0 0 . . . .

By orthogonality of corresponding columns, exactly one of locations (1,0), (2,0),
or (3,0) in the second square is a 0. We will rule out all three possibilities.

If location (1,0) has a 0, we get the following:

0 . 1 1 1 . . . 0 . 1 1 1 . . .
0 . 1 1 1 . . . 0 . 1 1 1 . . .
0 . 0 0 . . . . 1 . 1 1 . . . .
0 1 1 1 . . . . 1 0 0 0 . . . .
1 . 1 0 . . . .
1 . 0 1 . . . .
1 1 0 0 1 . . .
1 1 0 0 . . . .

Orthogonality of corresponding columns gives 0 in location (4,2) and location
(5,3) of the second square:

0 . 1 1 1 . . . 0 . 1 1 1 . . .
0 . 1 1 1 . . . 0 . 1 1 1 . . .
0 . 0 0 . . . . 1 . 1 1 . . . .
0 1 1 1 . . . . 1 0 0 0 . . . .
1 . 1 0 . . . . 0 . 0 1
1 . 0 1 . . . . 0 . 1 0
1 1 0 0 1 . . .
1 1 0 0 . . . .

and we will have to violate orthogonality of column 4 in the next step.

If location (2,0) in the second square is a 0, then locations (6,0) and (7,0) will
have to have the other two zeroes in column 0 and orthogonality of column 1 will
be violated. If location (3,0) in the second square is a 0, locations (4,0) and (5,0)
must have the other two zeroes in column 0 and orthogonality of column 1 will
again be violated. Therefore, no square with the given configuration can have an
equiorthogonal mate.

The remainder of the proof proceeds by constructing a completion and an equi-
orthogonal mate for the configuration with any single entry removed. For example,
if the 1 in location (6,4) is removed, here is one possible completion:
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0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 1 1 1 0 0 0
1 1 1 0 0 1 0 0
1 0 0 1 0 0 1 1
1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1

0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
1 1 1 1 0 0 0 0
1 0 0 0 0 1 1 1
0 0 0 1 1 0 1 1
0 1 1 0 1 1 0 0
1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1

For brevity, the other cases are listed in Appendix B.

7 Equiorthogonality Type III and Topics for Further Re-
search

When two frequency squares are Type III equiorthogonal, the patterns of the two
squares do not need to be the same, and the sizes of the critical sets are noticeably
larger. In some cases, the fact of equiorthogonality does not seem to reduce the size
of the critical set much if at all; most of those gains seem to be in Type I and Type
II. For now, we will undertake a brief examination of Type III.

Theorem 7.1 Suppose an F (2)(8; 4) frequency square has pattern 81\81. Then a
critical set for a Type III equiorthogonal mate consists of exactly 16 entries.

Proof: Without loss of generality, we can consider the first square to be organized
into the block pattern. Because corresponding rows and columns are orthogonal, the
second square will be of the form

F1 F2

F3 F4

where each Fi is a frequency square. We can permute the rows and columns of both
squares so that the first row and column of the second square are

0 0 1 1 0 0 1 1
0
1
1
0
0
1
1

.

A critical set for each Fi will have exactly 4 elements which cannot be reduced
based on orthogonality considerations. A critical set for F1 can be taken consisting
of the entries in location (0,0), (0,1), (1,0), and one other. For F2, we use locations
(0,4) and three more, (4,0) and three more for F3, and any critical set of size 4 for
F4. Note that the presence of the entries in locations (0,0), (0,1), (0,4), (1,0), and
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(4,0) guarantee that neither corresponding rows nor corresponding columns can be
isomorphic; therefore, we must have Type III. The union of those 16 entries forms a
critical set for the second square.

Much more investigation into Type III is possible. Other future research possi-
bilities include generalizations of some of the results in this paper to larger m and n,
specific conditions for a frequency square to have a minimal critical set of a specific
size and for a pair of equiorthogonal frequency squares to have a combined critical
set of a specific size, and determination of which patterns are possible for individual
frequency squares and for pairs of equiorthogonal frequency squares.

Appendix A

Here we present critical sets for some frequency squares with a variety of row and col-
umn patterns. Note that the patterns 81\81, 42\42, 42\6121, 6121\42, and 6121\6121

have critical sets of size 16 by Proposition 3.2.

Square Square Type Size of Critical Set

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 1 0 0 1 0 1 1
0 1 0 1 1 0 0 1 4122\4122 17
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 1 0 1 0 0
1 0 1 0 0 1 1 0

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 1 4122\3212 17
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 1 1 0
1 0 0 1 1 0 0 1

0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0
0 0 0 1 1 1 0 1
0 0 0 0 1 1 1 1 4122\5113 17
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 0 1
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Square Square Type Size of Critical Set

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1
1 1 0 0 1 1 0 0 4122\24 20
1 1 0 0 0 0 1 1
1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0

Appendix B

Now we provide the details of the proof of Theorem 6.1, where we show that the
removal of any of the 1’s in the given configuration admits a completion to a frequency
square with an equiorthogonal mate. We already considered the removal of the 1
in location (6,4). Elements of the configuration are in bold face, with the changed
element in italics.

0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Location (1,4): 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 1
1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0
1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0

Location (0,4): same as (1,4) with rows 0 and 1 interchanged.

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Location (5,3): 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0
1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
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0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1

Location (3,3): 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1
1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0
1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0
1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Location (1,3): 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

Location (0,3): same as (1,3) with rows 0 and 1 interchanged.

Location (4,2): same as (5,3) with rows 4 and 5 and columns 2 and 3 interchanged.

Location (3,2): same as (3,3) with rows 4 and 5 and columns 2 and 3 interchanged.

Location (1,2): same as (1,3) with rows 4 and 5 and columns 2 and 3 interchanged.

Location (0,2): same as (1,2) with rows 0 and 1 interchanged.

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Location (7,1): 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0
1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1
1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0
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0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Location (6,1): 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 1
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0
1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0
1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Location (3,1): 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0
1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1
1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1

Location (7,0): 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0
1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1
1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0
0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

Location (6,0): 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1
1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
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0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

Location (5,0): 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1
1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

Location (4,0): same as (5,0) with rows 4 and 5 and columns 2 and 3 interchanged.
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