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Abstract

This paper investigates the existence of holey self-orthogonal Latin
squares with a symmetric orthogonal mate of type 4nu1 (briefly
HSOLSSOM(4nu1)). For u > 0, the necessary conditions for existence of
such an HSOLSSOM are (1) u must be even, and (2) u ≤ (4n−4)/3, and
either (n, u) = (4, 4) or n ≥ 5. We show that these conditions are suf-
ficient except possibly (1) for 36 cases with n ≤ 37, (2) for n ≥ 38,
n odd and n < u ≤ (4n − 4)/3, and (3) for n ≥ 38, n even and
n + 14 < u ≤ (4n − 4)/3.

As an application of the main result, we are able to construct various
types of new idempotent incomplete self-orthogonal Latin squares with a
symmetric orthogonal mate (briefly ISOLSSOM).

1 Introduction

We first present a formal description of the terms HSOLSSOM and ISOLSSOM,
which will be used quite extensively. Let S be a finite set and H = {S1, S2, ..., Sn} be
a set of disjoint subsets of S. A holey Latin square having hole set H is an |S| × |S|
array L, indexed by S, satisfying the following properties:

(1) every cell of L either contains an element of S or is empty,

(2) every element of S occurs at most once in any row or column of L,
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(3) the subarrays indexed by Si × Si are empty for 1 ≤ i ≤ n (these subarrays are
referred to as holes),

(4) each element s ∈ S occurs in row or column t if and only if the pair (s, t) ∈
(S × S)\⋃

1≤i≤n(Si × Si).

The order of the array L is |S|. We refer to two holey Latin squares on symbol set
S and hole set H, say L1 and L2, as being orthogonal, if their superposition yields ev-
ery ordered pair in (S×S)\⋃

1≤i≤n(Si×Si). We denote by IMOLS(s; s1, ..., sn) a pair
of orthogonal holey Latin squares on symbol set S and hole set H = {S1, S2, ..., Sn},
where s = |S| and si = |Si| for 1 ≤ i ≤ n. If H = ∅, we obtain a MOLS(s).
If H = {S1}, we simply write IMOLS(s, s1) for the orthogonal pair of holey Latin
squares.

If H = {S1, S2, ..., Sn} is a partition of S, then a holey Latin square is called a
partitioned incomplete Latin square, denoted by PILS. The type of the PILS is defined
to be the multiset {|Si| : 1 ≤ i ≤ n}. We shall use an “exponential” notation to
describe types: type tu1

1 ...tuk
k denotes ui occurrences of ti, 1 ≤ i ≤ k, in the multiset.

Two orthogonal PILS of type T will be denoted by HMOLS(T ).
We say that a holey Latin square is self-orthogonal if it is orthogonal to its

transpose. For self-orthogonal holey Latin squares we use the notations SOLS(s),
ISOLS(s, s1) and HSOLS(T ) for the cases of H = ∅,H = {S1} and a holey partition
{S1, S2, ..., Sn}, respectively.

If any two PILS in a set of t PILS of type T are orthogonal, then we denote the
set by t HMOLS(T ). Similarly, we may define t MOLS(s) and t IMOLS(s, s1).

A holey SOLSSOM having partition P is 3 HMOLS having partition P, say
A, B, C, where B = AT and C = CT . Here a SOLSSOM stands for a self-orthogonal
Latin square (SOLS) with a symmetric orthogonal mate (SOM). A holey SOLSSOM
of type T will be denoted by HSOLSSOM(T ). From 3 IMOLS(s, s1) we can similarly
define an incomplete SOLSSOM which is denoted by ISOLSSOM(s, s1). Also, an
ISOLSSOM(s, s1) is called idempotent if every non-holey point appears once on the
main diagonal of each square.

With regards to the existence of HSOLSSOMs, the following basic result is known:

Theorem 1. [20] In an HSOLSSOM(T ), if one hole has an odd size, then every hole
must have an odd size and the number of holes must also be odd.

It is perhaps worth mentioning that HSOLSSOMs have been useful in the con-
struction of various types of combinatorial configurations, including resolvable or-
thogonal arrays invariant under the Klein 4-group [16], Steiner pentagon systems
[17], [3], three-fold BIBDs with block size seven [24] and authentication perpendicu-
lar arrays [14]. HSOLSSOMs of both the uniform type hn and also the nonuniform
type hnu1 have proved to be quite useful. For the existence of an HSOLSSOM(hn),
which has been investigated by several researchers (see, for example, [5], [12], [19],
[23], [20], [11], [10], [9]), the known results can be summarized in the following the-
orem.
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Theorem 2. (1) [6] A SOLSSOM(v) exists if and only if v ≥ 4, except for v = 6
and possibly for v ∈ {10, 14}.

(2) ([5], [12]) An HSOLSSOM(hn) can exist only if n ≥ 5; further, n must be
odd whenever h is odd. These necessary conditions are also sufficient except
possibly for h = 6 and n ∈ {12, 18}.

We also have the following result relating to the existence of HSOLSSOMs of
type 2nu1:

Theorem 3. [4, 22] Necessary conditions for existence of an HSOLSSOM of type
2nu1 with u ≥ 2 are that u is even and n ≥ 3u

2
+ 1. These conditions are sufficient

in the following cases:

(1) When 4 ≤ n ≤ 30 and n ≥ 3u
2

+ 1.

(2) When n > 30 and n ≥ 2(u − 2), except possibly for 19 pairs (n, u) in Table 1.

Table 1: Unknown HSOLSSOMs of type 2nu1 with n ≥ 4 and n ≥ 2(u − 2).

n 31 32 33,34 37,38 41 46 53
u 4,6,8,10 6,8 4,6,8,18 20 22 24 28

Our main objective in this paper is to investigate the existence of HSOLSSOMs
of type 4nu1 with u > 0. The known necessary conditions for the existence of such
an HSOLSSOM are (1) u is even, and (2) u ≤ 4n−4

3
, and either (n, u) = (4, 4)

or n ≥ 5. The first of these conditions follows from Theorem 1, while condition
(2) follows from the following more general result which can be obtained by simple
counting: If s orthogonal PILS of order v with 2 holes of sizes t1 and t2 exist, then
v ≥ (s + 1)t1 + t2.

In this paper, we prove the following theorem.

Theorem 4. Necessary conditions for existence of an HSOLSSOM(4nu1) with u > 0
are (1) u is even, and (2) u ≤ (4n − 4)/3, and either (n, u) = (4, 4) or n ≥ 5.
These conditons are sufficient, except possibly in the following cases:

1. For 36 pairs (n, u) with n ≤ 37 listed in Table 2.

2. When n > 37, n is odd, and n < u ≤ (4n − 4)/3.

3. When n > 37, n is even, and n + 14 < u ≤ (4n − 4)/3.
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2 Preliminaries

Our main results will be established with a combination of both direct and recursive
constructions. Difference methods will be instrumental in our main direct construc-
tion. In particular, the following useful construction is contained in Lemma 2.1 of
[9].

Lemma 5. Let G = Zg with g even and H = {0, g/n, 2g/n, . . . , (h − 1)g/n}, the
subgroup of G of order h. Let X be any set disjoint from G. Suppose there exists a
set of 5-tuples B ⊆ (G ∪ X)5 which satisfies the following properties:

1. for each i, 1 ≤ i ≤ 5, and each x ∈ X, there is a unique B ∈ B with bi = x (bi

denotes the i’th co-ordinate of B);

2. no B ∈ B has two co-ordinates in X, or two coordinates whose difference is an
element of H;

3. for each i, j, (1 ≤ i < j ≤ 5) and for each d ∈ G\H, there exists a unique
B ∈ B with bi, bj ∈ G and bi − bj = d;

4. for b5 ∈ G, if (b1, b2, b3, b4, b5) ∈ B then (b2, b1, b4, b3, b5) ∈ B;

5. for x ∈ X, if (b1, b2, b3, b4, x) ∈ B, then (b2, b1, b4, b3, y) ∈ B for a unique
y ∈ X, x �= y, and the differences b1 − b2, b3 − b4 are both odd.

Then there exists an HSOLSSOM(hg/h|X|1), where h = |H|.
There is an important connection between HSOLSSOMs and the notion of holey

Steiner pentagon systems (HSPSs), which we briefly describe below (see, for example,
[3]).

In a cyclically ordered block (a1, a2, a3, a4, a5) of size 5, the distance between two
points ai, aj is defined to be the minimum of (i− j +5) (mod 5) and (j− i+5) (mod
5). By definition, the distance between any 2 distinct points in such a block is either
1 or 2. A holey Steiner pentagon system (or HSPS) of type t1t2 · · · tn is a design on
a set T of t =

∑n
i=1 ti points satisfying the following conditions:

1. T is partitionable into subsets T1, T2, . . . , Tn of sizes t1, t2, . . . , tn.

2. No two points in any Ti appear together in any block.

3. Any two points in different Ti’s appear in exactly one block with a distance of
1 and one block with a distance of 2.

Some types of HSOLSSOMs can be obtained from HSPSs. For this, we formally
state this result as a lemma:

Lemma 6. [11] If an HSPS of any type exists, then so does an HSOLSSOM of that
type.

Lemma 7. There exist HSPSs of types 415181, 421101, 423261, 429341 and 433361.
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Table 2: Unknown HSOLSSOMs of type 4nu1 with 5 ≤ n ≤ 37 and 2 ≤ u ≤ umax

where umax = 	(4n − 4)/3
.

n umax Exceptions for u n umax Exceptions for u
5 4 None 22 28 2
6 6 None 23 28 24, 28
7 8 None 24 30 2
8 8 None 25 32 30
9 10 None 26 32 2
10 12 None 27 34 30, 32, 34
11 12 None 28 36 None
12 14 None 29 36 30, 32, 36
13 16 None 30 38 None
14 16 2 31 40 34, 36, 38
15 18 None 32 40 None
16 20 2 33 42 34, 38, 40, 42
17 20 None 34 44 None
18 22 2 35 44 None
19 24 22 36 46 None
20 24 None 37 48 40, 42, 44, 46
21 26 2, 6, 12, 14, 16, 18, 22, 24, 26

Proof. For each of these HSPSs of type 4nu1, let X = {∞1,∞2, . . . ,∞u} and take
the point set as Z4n ∪ X. X forms the hole of size u, and the holes of size 4 are {y,
y + n, y + 2n, y + 3n} for 0 ≤ y ≤ n− 1. In each case, develop the given base blocks
(mod 4n); for type 415181, the last block, (0, 12, 24, 36, 48) generates only 4n/5 = 12
blocks. Some base blocks are of the form (0, a, b, c,∞i) with i ≤ u/2. For each of
these, if c and b − a are both odd integers, replace ∞i by ∞i+u/2 when adding odd
values to that base block. If instead, c ≡ 2 (mod 4) and b − a ≡ 2 (mod 4), replace
∞i by ∞i+u/2 when adding any values ≡ 2 or 3 (mod 4) to that block.

415181:

(0, 8, 2, 18,∞1), (0, 4, 14, 38,∞2), (0, 1, 4, 21,∞3), (0, 14, 55, 33,∞4),
(0, 7, 49, 54,∞5), (0, 34, 23, 43,∞6), (0, 13, 52, 25,∞7), (0, 25, 16, 53,∞8),
(0, 32, 1, 3,∞9), (0, 12, 24, 36, 48).

421101:

(0, 17, 39, 74,∞1), (0, 1, 14, 69,∞2), (0, 14, 47, 67,∞3), (0, 41, 4, 61,∞4),
(0, 44, 33, 9,∞5), (0, 34, 8, 5, 10), (0, 32, 25, 44, 6), (0, 2, 11, 36, 8),
(0, 4, 52, 22, 45) (0, 12, 30, 83, 68).
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423261:

(0, 2, 56, 22,∞1), (0, 4, 26, 10,∞2), (0, 36, 50, 90,∞3), (0, 37, 67, 18,∞4),
(0, 57, 31, 58,∞5), (0, 18, 15, 7,∞6), (0, 1, 14, 5,∞7), (0, 6, 27, 39,∞8),
(0, 15, 76, 43,∞9), (0, 25, 8, 37,∞10), (0, 24, 17, 45,∞11), (0, 53, 48, 29,∞9),
(0, 44, 89, 57,∞13), (0, 20, 62, 52, 11).

429341:

(0, 66, 92, 22,∞1), (0, 82, 52, 46,∞2), (0, 68, 50, 26,∞3), (0, 20, 82, 98,∞4),
(0, 21, 23, 54,∞5), (0, 61, 39, 14,∞6), (0, 39, 1, 106,∞7), (0, 47, 2, 95,∞8),
(0, 4, 7, 15,∞9), (0, 1, 6, 13,∞10), (0, 12, 3, 31,∞11), (0, 15, 28, 71,∞12),
(0, 33, 16, 53,∞13), (0, 32, 5, 57,∞14), (0, 63, 4, 55,∞15), (0, 56, 37, 73,∞16),
(0, 14, 81, 41,∞17), (0, 44, 86, 76, 35).

433361:

(0, 86, 112, 22,∞1), (0, 34, 72, 62,∞2), (0, 68, 54, 26,∞3), (0, 84, 34, 74,∞4),
(0, 91, 13, 114,∞5), (0, 59, 29, 6,∞6), (0, 61, 39, 14,∞7), (0, 45, 115, 2,∞8),
(0, 67, 38, 31,∞9), (0, 12, 7, 15,∞10), (0, 9, 12, 1,∞11), (0, 24, 51, 83,∞12),
(0, 93, 16, 69,∞13), (0, 17, 4, 61,∞14), (0, 16, 37, 35,∞15), (0, 43, 80, 11,∞16),
(0, 72, 25, 45,∞17), (0, 56, 41, 77,∞18), (0, 128, 76, 82, 1), (0, 88, 30, 48, 97).

For some of our recursive techniques, we shall utilize what might be described as
generalized product type of construction. Let us denote by ILS(s, s1) a holey Latin
square of order s when it contains only one hole of size s1. An element in the hole
of an ILS is said to be evenly distributed if it does not appear on the main diagonal
and if when it appears in one cell, then it must appear also in its symmetric cell. If
each element in the hole is evenly distributed, then we say that the ILS is balanced.
Given 3 IMOLS, if one of the three ILS is balanced and each element in the hole
determines s − s1 distinct entries above the main diagonal in the other two squares,
then we say that the 3 IMOLS are compatible.

The following constructions are fairly well known and are essentially Lemmas
2.2.1 and 2.2.3 in [11].

Lemma 8. Suppose q ≥ 5, and either q is an odd prime power, or q ≡ 1 or
5 (mod 6). Suppose m is even and there exist 3 compatible IMOLS(m + et, et) where
t = 1, 2, ..., (q − 1)/2, k =

∑
1≤t≤(q−1)/2(2et). Then there exists an HSOLSSOM of

type mqk1.

Lemma 9. Suppose q is an odd prime power, q ≥ 7. Suppose m is even and there
exist 3 MOLS(m) and 3 compatible IMOLS(m+et, et) where t = 1, 2, ..., (q−5)/2, k =∑

1≤t≤(q−5)/2(2et). Then there exists an HSOLSSOM of type m(q−1)(m + k)1.

Our next recursive construction is simple, but also quite useful.

Construction 10. (Filling in Holes) Suppose there exists an HSOLSSOM of type
{si : 1 ≤ i ≤ n}. Let w ≥ 0 be an integer. For each i, 1 ≤ i ≤ n − 1, if there exists
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an HSOLSSOM of type {sij : 1 ≤ j ≤ ki} ∪ {w}, where si =
∑

1≤j≤ki
sij, then there

is an HSOLSSOM of type {sij : 1 ≤ j ≤ ki, 1 ≤ i ≤ n − 1} ∪ {sn + w}.
We wish to remark that the existence of an idempotent ISOLSSOM(n + u, u) is

equivalent to that of an HSOLSSOM(1nu1); further, by Theorem 1, existence requires
n to be even and u to be odd.

Theorem 11. There exists an HSOLSSOM of type 1nu1 (and hence also an idem-
potent ISOLSSOM(n + u, u)) whenever u is odd, u ≤ 15, n is even and n ≥ 3u + 1,
except possibly for (n, u) = (10, 3).

Proof. A solution for (n, u) = (54, 3) can be found in the Appendix. The case
(n, u) = (48, 3) can be found in [4], while the case (n, u) = (58, 7) can be obtained
by applying Construction 10 with w = 1 to an HSOLSSOM of type 69101, also in
[4]. See Theorem 4.3 in [12] for (n, u) ∈ {(54, 11), (58, 13), (58, 15)}, and Theorem
4.12 of [5] for other cases with u ≥ 3, (n, u) �= (10, 3). Finally, when u = 1, see
Theorem 2(2) with h = 1.

It should be noted that from Lemma 3.2 in [11], there exist three compatible
IMOLS(v, u) for (v, u) = (10, 2). Also, since existence of an idempotent ISOLSSOM
(n+u, u) implies existence of three compatible IMOLS(n+u, u), we have the following
result.

Corollary 12. There exist 3 compatible IMOLS(n+u, u) whenever u is odd, u ≤ 15,
n is even and n ≥ 3u + 1, except possibly for (n, u) = (10, 3).

We also need some other recursive constructions for HSOLSSOMs, utilizing the
notion of group divisible designs. A group divisible design (or GDD) is a triple
(X,G,B) which satisfies the following properties:

1. G is a partition of a set X of points into subsets (called groups);

2. B is a set of subsets of X (called blocks) such that a group and a block contain
at most one common point;

3. every pair of points from distinct groups occurs in a unique block.

The group type of the GDD is the multiset {|G| : G ∈ G}. A GDD(X,G,B)
will be referred to as a K-GDD if |B| ∈ K for every block B in B. A TD(k, n) is a
GDD for which all blocks have size k, and the group type is nk. An RTD(k, n) is a
resolvable TD(k, n), that is one whose blocks can be partitioned into parallel classes.
Also, a pairwise balanced design or (v, K)-PBD, is a K-GDD on v points in which
all groups have size 1. A (v, K ∪ {w∗})-PBD is a (v, K ∪ {w})-PBD with one block
of size w and all other block sizes from K.

Wilson’s fundamental construction for GDDs [21] can also be applied to obtain
a similar construction for HSOLSSOMs. The following is Construction 2.3.3 in [11].

Construction 13. (Weighting) Suppose (X,G,B) is a GDD and let w : X →
Z+ ∪ {0}. Suppose there exists an HSOLSSOM of type {w(x) : x ∈ B} for every
B ∈ B. Then there exists an HSOLSSOM of type {∑x∈G w(x) : G ∈ G}.
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Lemma 14. Suppose there exists a K-GDD of type T where K is a set of odd integers
all ≥ 5. Then there exists an HSOLSSOM of type T .

Proof. Apply Construction 13, giving weight one to each point in the GDD.

The following product construction is similar to that given in Lemma 3.4 of [20].

Construction 15. Suppose an HSOLSSOM of type {tj : 1 ≤ j ≤ n} exists. Let
m ≥ 4 and m �∈ {6, 10}. Then an HSOLSSOM of type {mtj : 1 ≤ j ≤ n} also exists.

The next lemma is our main tool for constructing HSOLSSOMs of type 4nu1

when n is even and u ≥ n:

Lemma 16. If n is even, n ≥ 8 and n �= 10, then there exists an HSOLSSOM of
types 4nu1 whenever u is even and n ≤ u ≤ min(n + 14, (4n − 4)/3).

Proof. Since n ≥ 8 and n �= 10, a TD(5, n) exists; add an extra point x and form a
block of size n+1 on each group of the TD plus x. Delete a point (other than x), and
take the blocks containing this deleted point as groups. This gives a {5, n+1}-GDD of
type 4nn1. Give the point x weight w where w is odd and 1 ≤ w ≤ min(15, (n−1)/3);
also, give all other points weight 1. Now apply Construction 13 using HSOLSSOMs
of types 15 and 1nw1; since n �= 10, an HSOLSSOM of type 1nw1 exists by Lemma 11.
This gives an HSOLSSOM of type 4nu1 for u = n+w−1. Since 1 ≤ w ≤ min(15, (n−
1)/3) and u = n + w− 1, we have n ≤ u ≤ min(n + 14, (4n− 4)/3), as required.

The next lemma gives a similar construction for n odd, although this one works
only for one value of u:

Lemma 17. If n is odd and n ≥ 5, then there exists an HSOLSSOM of type 4n(n−
1)1.

Proof. Start with a TD(5, n) and delete any point in 5th group plus all blocks
containing this point. Then form a block of size n on each of the first 4 groups. This
gives a {5, n}-GDD of type 4n(n − 1)1. Applying Lemma 14, using HSOLSSOMs of
types 15 and 1n, we obtain the desired HSOLSSOM of types 4n(n − 1)1.

3 HSOLSSOM(4nu1) for u = 2

First we consider the case u = 2. Existence of an HSOLSSOM of type 4n21 requires
n ≥ 5. We prove:

Lemma 18. There exist HSOLSSOMs of type 4n21 for n ≥ 5, except possibly for
n ∈ {14, 16, 18, 21, 22, 24, 26}.
Proof. Solutions for n ∈ {6, 8, 12} are obtained by direct constructions given in the
Appendix.

Types 4n21 with n ∈ {5, 10, 15, 20} can be obtained by Lemma 6, using HSPSs
of these types. These HSPSs are given in Lemma 5.12 of [3] for n = 5, in Lemma 3.4
of [7] for n ∈ {10, 15}, and in Lemma 3.6 of [1] for n = 20.



R.J.R. ABEL AND F.E. BENNETT /AUSTRALAS. J. COMBIN. 59 (2) (2014), 260–281 268

1. If n is an odd prime power ≥ 5, or n = 6t+1 or 6t+5, then Lemma 8 guarantees
existence of an HSOLSSOM of type 4n21.

2. If n ≡ 3 (mod 6) and n ≥ 45, write n = 6t + 1 + 8 where t ≥ 6. By Lemma 8,
we have an HSOLSSOM of type 46t+1341. Now apply Construction 10, filling in
the hole of size 34 with an HSOLSSOM of type 4821 to obtain an HSOLSSOM
of type 4n21.

3. If n ≡ 0 (mod 6) and n ≥ 30, write n = 6t + 1 + 5 where t ≥ 4. By Lemma 8,
we have an HSOLSSOM of type 46t+1221. Applying Construction 10, filling in
the hole of size 22 with an HSOLSSOM of type 4521 now gives an HSOLSSOM
of type 4n21.

4. If n ≡ 2 (mod 6) and n ≥ 38, write n = 6t + 1 + 7, where t ≥ 5. By Lemma 8,
we have an HSOLSSOM of type 46t+1301. Applying Construction 10, filling in
the hole of size 30 with an HSOLSSOM of type 4721 now gives an HSOLSSOM
of type 4n21.

5. If n ≡ 4 (mod 6) and n ≥ 28, write n = 6t + 5 + 5 where t ≥ 3. By Lemma 8,
we have an HSOLSSOM of type 46t+5221. Applying Construction 10, filling in
the hole of size 22 with an HSOLSSOM of type 4521 now gives an HSOLSSOM
of type 4n21.

Finally, for n = 32, 33 and 39, apply Lemma 16 to obtain HSOLSSOMs of
types 426261, 426301 and 430381 respectively. Now apply Construction 10 to these
HSOLSSOMs, filling in the holes of sizes 26, 30 and 38 with HSOLSSOMs of types
4621, 4721 and 4921 respectively.

4 HSOLSSOM(4nu1) with 5 ≤ n ≤ 30 and u ≥ 4

For u ≥ 4, existence of an HSOLSSOM of type 4nu1 requires (1) u to be even, (2)
either (n, u) = (4, 4), or n ≥ 5 and u ≤ (4n − 4)/3. When u = 4, HSOLSSOMs of
type 4nu1 are already known to exist for all n ≥ 4 by Theorem 2.

We now investigate existence of HSOLSSOMs of type 4nu1 with u ≥ 4. We start
by looking at the smallest values of n.

Lemma 19. Suppose either (1) (n, u) = (4, 4) or (2) 5 ≤ n ≤ 19, u is even, u ≥ 4
and u ≤ (4n − 4)/3. Then an HSOLSSOM of type 4nu1 exists, except possibly for
(n, u) = (19, 22).

Proof. For u = 4 and n ≥ 4, the result follows from Theorem 2(2). For n ∈ {5, 7,
9, 11, 13, 17, 19} and u < n, apply Lemma 8 with m = 4, q = n, et ∈ {0, 1} and
∑(q−1)/2

t=1 (2et) = u. For n ∈ {6, 8, 10, 12, 16, 18}, n + 1 is an odd prime power;
here, when u ≤ n, we can apply Lemma 9 with m = 4, q = n + 1, et ∈ {0, 1}
and

∑(q−5)/2
t=1 (2et) = u − 4. For n even, n ≥ 12, and u ≥ n, apply Lemma 16. For

types 49101, 411121, 413141, 414u1 for u ∈ {6, 8, 10}, 415101, 417201, and 419201, direct
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constructions using Lemma 5 are given in the Appendix. For types 4781, 410121,
413161 and 419241, we can apply Lemma 14, since (5, 1)-GDDs of these types are
obtainable by adding 8, 12, 16 or 24 points to the parallel classes in 4-RGDDs of
types 47, 410, 413 and 419. For types 41581 and 415121, we can also apply Lemma 14,
since 5-GDDs of these types are obtainable by deleting one point from the large block
(and the blocks containing this point) in a (69, {5, 9∗})-PBD or (73, {5, 13∗})-PBD.
These PBDs both exist [8].

This leaves the following cases to be handled: 414121, 415u1 with u ∈ {6, 14, 16,
18} and 417181. For type 414121, apply Construction 15 with m = 4 to an HSOLS-
SOM of type 11431, which exists by Lemma 11. For type 415141, apply Lemma 17.
For types 415u1 with u ∈ {6, 16, 18} and 417181, we can apply Lemma 6 since HSPSs
of these types can be found in Lemma 3.4 of [7] for 41561 and 415161, in Lemma 7 for
415181, and in Lemma 3.6 of [2] for 417181.

Lemma 20. Suppose 20 ≤ n ≤ 30, u is even, u ≥ 4 and u ≤ (4n − 4)/3.
Then an HSOLSSOM of type 4nu1 exists, except possibly for (1) n = 21, u ∈
{6, 12, 14, 16, 18, 22, 24, 26}, (2) n = 23, u ∈ {24, 28}, (3) n = 25, u = 30, (4)
n = 27, u ∈ {30, 32, 34}, and (5) n = 29, u ∈ {30, 32, 36}.
Proof. For n ∈ {23, 25, 27, 29} and u < n, apply Lemma 8 with m = 4, q = n,

et ∈ {0, 1} and
∑(q−1)/2

t=1 (2et) = u. For n ∈ {22, 24, 26, 28, 30}, and u ≤ n, use

Lemma 9 with q = n + 1, m = 4, et ∈ {0, 1} and
∑(q−5)/2

t=1 (2et) = u − 4. For n even,
and u ≥ n, use Lemma 16.

For types 420u1 with u ≤ 20, we start with a TD(6, 8), and apply Construction 13.
Here we give weight 2 to all points in first 5 groups; in the 6th group give all points
weight 0 or 2 so that total weight is u − 4. This gives an HSOLSSOM of type
165(u − 4)1. Now apply Construction 10, filling in the first 5 groups with 4 extra
points, using an HSOLSSOM of type 45.

For type 421201, apply Lemma 17, and for type 42141, see Theorem 2(2). For type
421101, apply Lemma 6, using the HSPS of this type in Lemma 7. For type 42181,
add 21 points to the parallel classes of a 4-RGDD of type 98 (which exists, see [13]);
then form a (21, 5, 1) BIBD on the extra points and a block of size 9 on each group.
This gives a (93, {5, 9}, 1)-PBD. Deleting a point from a block of size 9 (and all its
blocks) now gives a {5, 9}-GDD of type 42181, so we can apply Lemma 14.

For (n, u) ∈ {(23, 26), (29, 34)}, we can apply Lemma 6, since HSPSs of types
423261 and 429341 exist by Lemma 7. For (n, u) ∈ {(25, 28), (25, 32), (27, 28)}, we
have a (5, 1)-GDD of type 4nu1 by deleting one point from the block of size u + 1 in
a (4n + u + 1, {5, (u + 1)∗})-PBD. These PBDs all exist [8]. Now apply Lemma 14
to these GDDs.

For type 425261, delete 5 points in one block of a TD(6, 11) to obtain a {5, 6}-
GDD of type 105111. Applying Lemma 14, using HSOLSSOMs of types 25 and 26

gives an HSOLSSOM of type 205221. Applying Construction 10, filling in the holes
of size 20 with 4 extra points and an HSOLSSOM of type 46, we now obtain the
desired HSOLSSOM of type 425261.
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5 HSOLSSOM(4nu1) with 31 ≤ n ≤ 37 and u ≥ 4

Lemma 21. There exist HSOLSSOMs of types 4nu1 for n ∈ {31, 37} and either
4 ≤ u ≤ n or (n, u) ∈ {(31, 40), (37, 48)}. Also there exist HSOLSSOMs of types
4nu1 for n ∈ {35, 36} and 4 ≤ u ≤ (4n − 4)/3.

Proof. For n = 36, and 4 ≤ u ≤ 36, we can apply Lemma 8 with m = 4, q = 37,
et ∈ {0, 1} and

∑(q−1)/2
t=1 (2et) = u−4. For n = 36 and 36 ≤ u ≤ 46, apply Lemma 16.

When n ∈ {31, 35, 37} and u < n, the required HSOLSSOMs are obtainable

by applying Lemma 8 with m = 4, q = n, et ∈ {0, 1} and
∑(q−1)/2

t=1 (2et) = u. In
addition, HSOLSSOMs of types 431401 and 437481 are obtainable by Lemma 14, since
(5, 1)-GDDs of these types are obtainable by adding 40 or 48 points to the parallel
classes of a 4-RGDD of type 431 or 437. For types 435u1 with u even and 36 ≤ u ≤ 44,
apply Lemma 8 with m = 28, q = 5 and et = 9 for t = 1, 2 to obtain an HSOLSSOM
of type 285361. Now apply Construction 10, filling in the holes of size 28 with s extra
points where 0 ≤ s ≤ 8, using HSOLSSOMs of types 47s1.

The next lemma helps us obtain one more case for each n ∈ {31, 37}.
Lemma 22. If p is a prime power, then a {p−1, p}-GDD of type (p−2)p−1(p−1)1p1

exists.

Proof. Take the blocks in one parallel class of the RTD(p − 1, p) as groups, and
the groups of this RTD as blocks to obtain a {p − 1, p}-RGDD of type (p − 1)p.
Delete all points in 1 block of size p − 1 to obtain a {p − 2, p − 1}-RGDD of type
(p − 2)p−1(p − 1)1. This design has p parallel classes; finally add p points, each to a
parallel class of blocks to obtain a {p− 1, p}-RGDD of type (p− 2)p−1(p− 1)1p1.

Lemma 23. There exist HSOLSSOMs of types 431321 and 437381.

Proof. From the previous lemma, a {6, 7}-GDD of type 566171 and a {7, 8}-GDD
of type 677181 both exist. Deleting one group of size 5 from the first GDD and 2
groups of size 6 from the second, we obtain a {5, 6, 7}-GDD of type 556171 and a
{5, 6, 7, 8}-GDD of type 657181. Applying Construction 13 to these GDDs, giving
all points weight 4, we obtain HSOLSSOMs of types 205241281 and 245281321. Now
apply Construction 10 to these HSOLSSOMs. By filling in the holes of sizes 20, 24
in the first HSOLSSOM with 4 new points, using HSOLSSOMs of types 46 and 47,
we obtain an HSOLSSOM(431321). Similarly, filling the holes of sizes 24, 28 in the
second HSOLSSOM with 6 extra points, using HSOLSSOMs of types 4661 and 4761

gives an HSOLSSOM of type 437381.
Now we consider the case n ∈ {32, 33, 34}. Here we require the following lemma

for some values of u:

Lemma 24. Suppose a TD(6, m) exists and 0 ≤ x ≤ m. If HSOLSSOMs of types
4mt1 and 4m−xt1 exist for t even, 0 ≤ t ≤ m−x, then there also exists an HSOLSSOM
of type 45m−xu1 for u even and 4m ≤ u ≤ 5m − x.

Proof. Start with a TD(6, m), and truncate one of its groups to size m − x, giving
a {5, 6}-GDD of type m5(m − x)1. Apply Construction 13, giving all points weight
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4 to obtain an HSOLSSOM of type (4m)5(4(m − x))1. Now apply Construction 10,
filling in all holes (except one of size 4m) with t points where 0 ≤ t ≤ m − x;
here we require HSOLSSOMs of types 4mt1 and 4m−xt1. This gives an HSOLSSOM
of type 44m+(m−x)(4m + t)1 for 0 ≤ t ≤ m − x, i.e. an HSOLSSOM(45m−xu1) for
4m ≤ u ≤ 5m − x, as required.

Lemma 25. There exists an HSOLSSOM of type 4nu1 for n ∈ {32, 34}, u even and
4 ≤ u ≤ (4n− 4)/3. Also an HSOLSSOM of type 4nu1 exists for n = 33, u even and
either 4 ≤ u ≤ n or n = 36.

Proof. First we deal with the case 4 ≤ u ≤ 22. Take s = 2, 3 and 4 respectively,
when n = 32, 33 and 34. Start with a TD(11, 11), let B be a specified block in
this TD, and delete the 10 points in both B and one of the first 10 groups. Now
truncate s of the first 10 groups to size 2, and 4 − s of them to size 0. This gives
a {6, 7, 8, 9}-GDD of type 1062s111. Apply Construction 13, giving weight 2 to all
points in the groups of sizes 2 and 10; in the group of size 11, give points weight 0
or 2 so that the total weight is u. This gives an HSOLSSOM of type 2064su1. Now
apply Construction 10, with w = 0, filling in the holes of size 20 with an HSOLSSOM
of type 45.

For (n, u) = (33, 24), (34, 24), (33, 26) and (34, 26) respectively, we can similarly
truncate one block and one or two groups in a TD(8, 11) to obtain {5, 6, 7, 8}-GDDs
of types 10682, 10781, 10582111, and 10681111. Applying Construction 13, giving
weight 2 to all points gives HSOLSSOMs of types 206162, 207161, 205162221 and
206161221. Now apply Construction 10 with w = 4, filling all holes with 4 extra
points, except one hole of size 20 (in the first two cases) or size 22 (in the last two
cases). Here we use HSOLSSOMs of types 45 and 46. This gives HSOLSSOMs of
types 433241, 434241, 433261 and 434261, respectively.

For n ∈ {33, 34} and 28 ≤ u ≤ n, use Lemma 24 with m = 7, and x = 35 − n ∈
{1, 2}. Here m−x ∈ {5, 6}. For the required HSOLSSOMs of types 45t1 with t even
0 ≤ t ≤ 4, and 46t1, 47t1 with t even, 0 ≤ t ≤ 6, see Lemma 19.

For n ∈ {32, 34} and u ≥ n, apply Lemma 16. For n = 33 and u = 36, we can
apply Lemma 6, since an HSPS of type 433361 exists by Lemma 7.

For n = 32 and 20 ≤ u ≤ n, we can use Lemma 9 with m = 16, q = 9,
et ∈ {0, 1, 3, 5} for t ∈ {1, 2}, and

∑2
t=1(2et) = u − 20 to obtain an HSOLSSOM

of type 168(u − 4)1. Note that for these values of et, there exist an idempotent
ISOLSSOM(16 + et, et) and hence also 3 compatible IMOLS(16 + et, et) by Theo-
rem 11. Now apply Construction 10, filling in all holes of size 16 with 4 extra points,
using an HSOLSSOM of type 45.

6 HSOLSSOM(4nu1) with 38 ≤ n ≤ 66 and u ≥ 4

For n ≥ 38, we are able to prove the existence of HSOLSSOM(4nu1) whenever
u ≤ n (if n is odd) or u ≤ min(n + 14, (4n − 4)/3) (if u is even). For n even and
n ≤ u ≤ min(n + 14, (4n − 4)/3), this HSOLSSOM exists by Lemma 16. Below is
one major lemma which will be used in establishing this result for u ≤ n.
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Lemma 26. Suppose a TD(5+z, m) exists and 4 ≤ ai ≤ m for 1 ≤ i ≤ z. Then there
exists an HSOLSSOM of type (4m)5 (4a1)

1 (4a2)
1 . . . , (4az)

1. Also, for t =
∑z−1

i=1 ai,
there exists an HSOLSSOM of type and 45m+t(4(az + 1))1.

Proof. Start with a TD(5 + z, m), and apply Construction 13, giving weight 4 to all
points in groups 1 to 5; in group 5 + i for 1 ≤ i ≤ z, give weight 4 to ai points and
zero weight to the rest. This gives an HSOLSSOM of type (4m)5 (4a1)

1 (4a2)
1 . . . ,

(4az)
1. By applying Construction 10 with w = 4 to this HSOLSSOM, forming an

HSOLSSOM of type 4m+1 or 4ai+1 on each hole (except the one of size 4az) plus 4
infinite points, we now obtain the required HSOLSSOM of type 45m+t(4(az+1))1.

Lemma 27. There exists an HSOLSSOM of type 4nu1 for n ∈ {38, 39}, u even and
4 ≤ u ≤ 38.

Proof. For 4 ≤ u ≤ 26, start with a TD(9, 11). Delete the 8 points in both a specified
block and one of the first 8 groups; also delete two more points from both the first and
second groups (when n = 38) or from just the first group (when n = 39). This gives
{6, 7, 8, 9}-GDDs of types 10682111 and 10781111. Now we apply Construction 13:
here we give weight 2 to all points in the groups of sizes 8 and 10, and in the
group of size 11, we give points weight 0 or 2 so that the total weight is u − 4.
This gives HSOLSSOMs of types 206162(u − 4)1 and 207161(u − 4)1. We now apply
Construction 10, filling in the holes of sizes 16 and 20 with 4 extra points, using
HSOLSSOMs of types 45 and 46 to give the desired result.

For u ∈ {28, 30}, apply Lemma 26 with m = 7 and z = 2 to obtain an HSOLS-
SOM of type 285202 (when n = 38) or 285201241 (when n = 39). For u = 28, 30
respectively, take t = 0, 2, and apply Construction 10, filling in all holes except one
of size 28 with t extra points, using HSOLSSOMs of types 45t1, 46t1 and 47t1.

Finally, for 32 ≤ u ≤ 38, use Lemma 24 with m = 8 and x = 40 − n.

Lemma 28. There exists an HSOLSSOM of type 4nu1 for n ∈ {44, 45}, u even and
4 ≤ u ≤ n.

Proof. When 4 ≤ u ≤ 36, apply Lemma 26 with m = 8, z = 2, to obtain HSOLS-
SOMs of types 325161(u−4)1 and 325201(u−4)1. Now, apply Construction 10, filling
in all holes of sizes 16, 20 and 32 with 4 extra points, using HSOLSSOMs of types
45, 46 and 49.

When 36 ≤ u ≤ 44, apply Lemma 24 with m = 9 and x = 45 − n.

Lemma 29. There exists an HSOLSSOM of type 4nu1 for n ∈ {50, 51, 54, 56, 57},
u even and 4 ≤ u ≤ n.

Proof. For 4 ≤ u ≤ 36, apply Lemma 26 with m = 9 to obtain HSOLSSOMs of types
365201(u − 4)1, 365241(u − 4)1, 366(u − 4)1, 365201241(u − 4)1 and 365242(u − 4)1

respectively, when n = 50, 51, 54, 56, 57. Filling in the holes of sizes 20, 24, 32 and
36 with 4 extra points, using HSOLSSOMs of type 4y with y ∈ {6, 7, 9, 10} now gives
the desired result.

When 36 ≤ u ≤ 42, we similarly apply Lemma 26 with m = 9 to obtain HSOLS-
SOMs of types 365321241, 366241, 367, 365241282 and 365283 respectively, for n = 50,
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51, 54, 56 and 57. Now let w = u − 36 ∈ {0, 2, 4, 6}, and apply Construction 10,
filling in all holes except one of size 36 with w extra points, using HSOLSSOMs of
types 4yw1 for y ∈ {6, 7, 8, 9}.

When u ∈ {44, 46}, and n ∈ {56, 57}, we apply Lemma 26 with m = 11 to
obtain an HSOLSSOM of type 445242 (when n = 56) or 445241281 (when n = 57).
Now let w = u − 44 ∈ {0, 2}, and apply Construction 10, filling in all holes except
one of size 44 with w extra points, using HSOLSSOMs of types 4yw1 for y ∈ {6, 7,
11}.

When 44 ≤ u ≤ n and n ∈ {50, 51, 54}, use Lemma 24 with m = 11 and
x = 55 − n. When 48 ≤ u ≤ n and n ∈ {56, 57}, use Lemma 24 with m = 12 and
x = 60 − n.

Lemma 30. There exists an HSOLSSOM of type 4nu1 for n ∈ {62, 63, 64}, u even
and 4 ≤ u ≤ n.

Proof. For u ≤ 44, apply Lemma 26 with m = 11 to obtain HSOLSSOMs of types
445281(u−4)1, 445321(u−4)1 and 445361(u−4)1 for n = 62, 63, 64 respectively. Now
apply Construction 10, filling in the holes of sizes 28, 32, 36 and 44 with 4 extra
points, using HSOLSSOMs of type 4t with t ∈ {8, 9, 10, 12}.

When 44 ≤ u ≤ 50, we can similarly apply Lemma 26 with m = 11 to ob-
tain HSOLSSOMs of types 445362, 445361401 and 445402. Now let w = u − 44 ∈
{0, 2, 4, 6}, and apply Construction 10, filling in all groups except one of size 44 with
w extra points, using HSOLSSOMs of type 4yw1 with y ∈ {9, 10, 11}.

When 52 ≤ u ≤ n, use Lemma 24 with m = 13 and x = 65 − n.

Lemma 31. There exists an HSOLSSOM of type 4nu1 for 38 ≤ n ≤ 66, u even, and
4 ≤ u ≤ n.

Proof. The cases n ∈ {38, 39, 44, 45, 50, 51, 54, 56, 57, 62, 63, 64} were handled in
Lemmas 27, 28, 29 and 30. For other even values of n, n + 1 is a prime power, and
we can use Lemma 9 with m = 4, q = n + 1, et ∈ {0, 1}. For other odd values of n,
n ≡ 1 or 5 (mod 6), and we can use Lemma 8 with m = 4, q = n, et ∈ {0, 1}.

7 HSOLSSOM(4nu1) with n > 66 and u ≥ 4

We now consider HSOLSSOMs of type 4nu1 for all values of n > 66. When n is
even and n ≤ u ≤ min(n + 14, (4n − 4)/3) these HSOLSSOMs can be obtained by
Lemma 16. The following two lemmas will be used to obtain the majority of these
HSOLSSOMs when 4 ≤ u ≤ n:

Lemma 32. If a TD(13, m) exists, then an HSOLSSOM(4nu1) exists for n ∈ [10m+
4, 12m], u even and 4 ≤ u ≤ 12m + 4. In particular, if n ∈ [10m + 4, 12m], this
HSOLSSOM exists whenever u is even and 4 ≤ u ≤ n.

Proof. Let n = 10m+s+t where s, t are either zero or in the range [4, m]. Start with
a TD(13, m), and give all points in the first 10 groups weight 4; in groups 11 and 12,
give weight 4 to s points in group 11, t points in group 12 and zero weight to the
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rest. In group 13, give points weight 0, 2, 4, 6, 8, 10 or 12 so that the total weight
is u − 4. Now apply Construction 13 with these weightings, using HSOLSSOMs
of types 4ya1 with y ∈ {10, 11, 12} and a ∈ {0, 2, 4, 6, 8, 10, 12}; this gives an
HSOLSSOM((4m)10(4s)1(4t)1(u − 4)1). We now add four infinite points and apply
Construction 10, forming HSOLSSOMs of types 4x with x ∈ {m + 1, s + 1, t + 1}
on each of the first 12 holes plus the infinite points, giving an HSOLSSOM of type
410m+s+tu1 as required.

Lemma 33. If a TD(10, m) exists, then an HSOLSSOM(4nu1) exists for n ∈ [7m +
4, 9m], u even and 4 ≤ u ≤ 8m + 4. In particular, if n ∈ [7m + 4, 8m + 4], this
HSOLSSOM exists whenever u is even and 4 ≤ u ≤ n.

Proof. Let n = 7m+s+ t where s, t are either zero or in the range [4, m]. Start with
a TD(10, m), and give all points in the first 7 groups weight 4; in groups 8 and 9, give
weight 4 to s points in group 8, t points in group 9 and zero weight to the rest. In
group 10, give points weight 0, 2, 4, 6 or 8 so that the total weight is u−4. Now apply
Construction 13, with these weightings, using HSOLSSOMs of types 4ya1 with y ∈
{7, 8, 9} and a ∈ {0, 2, 4, 6, 8}; this gives an HSOLSSOM((4m)7(4s)1(4t)1(u− 4)1).
We now add four infinite points and apply Construction 10, forming an HSOLSSOM
of type 4x with x ∈ {m + 1, s + 1, t + 1} on each of the first 9 holes plus the infinite
points, giving an HSOLSSOM of type 47m+s+tu1 as required.

Lemma 34. Suppose 67 ≤ n ≤ 140. Then an HSOLSSOM of type 4nu1 exists for u
even and 4 ≤ u ≤ n.

Proof. For 67 ≤ n ≤ 140, and n not in one of the ranges [77, 80], [93, 94] or [109, 115],
these HSOLSSOMs can all be obtained by Lemma 33. Table 3 gives the values of m
used in this lemma; for each m, it also gives the ranges [7m + 4, 8m + 4] for n for
which this lemma works for all even u, 4 ≤ u ≤ n.

Table 3: Values of m used when applying Lemma 33 for 67 ≤ n ≤ 140.

m Range for n m Range for n
9 [67, 76] 16 [116, 132]
11 [81, 92] 17 [121, 140]
13 [95, 108]

Now we have to handle the case where n is in one of the ranges [77, 80], [93, 94]
or [109, 115]. For n ∈ [77, 80], apply Lemma 33 with m = 9 when 4 ≤ u ≤ 76, and
Lemma 24 with m = 17, 5 ≤ x ≤ 8 when 68 ≤ u ≤ n. For n ∈ [93, 94], apply
Lemma 33 with m = 11 when 4 ≤ u ≤ 92, and Lemma 16 when n = u = 94. For
n ∈ [109, 115], apply Lemma 33 with m = 13 for 4 ≤ u ≤ 104; for 104 ≤ u ≤ n,
apply Lemma 24 with m = 25, 13 ≤ x ≤ 16 if 109 ≤ n ≤ 112, or with m = 27,
20 ≤ x ≤ 22 if 113 ≤ n ≤ 115.
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Lemma 35. Suppose n ≥ 134. Then an HSOLSSOM of type 4nu1 exists for u even,
and 4 ≤ u ≤ n.

Proof. For 157 ≤ n ≤ 163, we can apply Lemma 33 with m = 19 when 4 ≤ u ≤ 152,
and Lemma 24 with m = 38, 27 ≤ x ≤ 33 when 152 ≤ u ≤ n.

For 229 ≤ n ≤ 233, we can apply Lemma 33 with m = 31 when 4 ≤ u ≤ n.
For 134 ≤ n ≤ 1164, n /∈ [157, 163] or [229, 233], apply Lemma 32 using the

values of m in Table 4. We indicate the range for n covered by each value of m, that
is, [10m + 4, 12m]. In all cases, the given construction works for 4 ≤ u ≤ 12m + 4
and hence for 4 ≤ u ≤ n.

Table 4: Values of m used when applying Lemma 32 for 134 ≤ n ≤ 1164.

m Range for n m Range for n m Range for n
13 [134, 156] 27 [274, 324] 53 [534, 636]
16 [164, 192] 32 [324, 384] 61 [614, 732]
17 [174, 204] 37 [374, 444] 71 [714, 852]
19 [194, 228] 43 [434, 516] 83 [834, 996]
23 [234, 276] 47 [474, 564] 97 [974, 1164]

For n ≥ 1164, we first note that for any set of 9 consecutive odd integers m, at
most three are divisible by 3, two by 5, two by 7 and one by 11. Therefore there
is always at least one integer m in the set not divisible by 3, 5, 7 or 11, and a
TD(13, m) exists for this value of m. Also, for m ≥ 97, the intervals [10m + 4, 12m]
and [10(m + 18) + 4, 12(m + 18)] overlap; hence for any n ≥ 12 · 97 = 1164, there is
always at least one value of m for which n = 10m + s + t, with m, s, t satisfying the
conditions in Lemma 32. Thus for any n ≥ 1164, Lemma 32 can be used to obtain
all HSOLSSOMs of type 4nu1 with u even and 4 ≤ u ≤ n.

Summarizing the results of the last three sections, we have proved our main result,
Theorem 4, which we restate for convenience. The proof of this theorem follows from
Lemmas 18, 19, 20, 21, 23, 25, 31, 34 and 35.

Theorem 36. Necessary conditions for existence of an HSOLSSOM of type 4nu1

with u > 0 are (1) u even, and (2) u ≤ (4n − 4)/3, and either (n, u) = (4, 4) or
n ≥ 5. These conditions are sufficient, except possibly in the following cases:

1. For 36 pairs (n, u) with n ≤ 37 listed in Table 2.

2. When n > 37, n is odd, and n < u ≤ (4n − 4)/3.

3. When n > 37, n is even, and n + 14 < u ≤ (4n − 4)/3.

Concluding Remark 37. As indicated earlier in Theorem 11, the necessary con-
ditions for existence of an idempotent ISOLSSOM(n + u, u), or equivalently, an
HSOLSSOM(1nu1) (i.e. n is even, u is odd and n ≥ 3u + 1) are sufficient when
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u ≤ 15, except for (n, u) = (10, 3). For larger u, if n = 4t, then several idempotent
ISOLSSOM(n + u, u)s can be obtained from the results in Theorem 36, since by fill-
ing in the holes of an HSOLSSOM(4t(u − 1)1) with one extra point, an idempotent
ISOLSSOM(4t + u, u) is obtained. However, a more complete investigation of the
existence of ISOLSSOM(n + u, u)s with u > 15 is yet to be carried out.
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Appendix: Direct constructions for HSOLSSOM(4nu1)

To ease the notation for these HSOLSSOMs of type hnu1 (obtained by Lemma 5),
we shall always take G = Zhn having a subgroup H of order h (here, except for
one example of type 15431, we have h = 4). If u is even, let u = 2t and X =
{x1, ..., xt, y1, ..., yt}, and if u is odd, let u = 2t + 1 and X = {x, x1, ..., xt, y1, ..., yt}.
In both cases, we choose xi and yi so that they form a pair satisfying condition 5
in Lemma 5 for 1 ≤ i ≤ t. According to the conditions 4 and 5 in Lemma 5, to
construct an HSOLSSOM(hnu1) we may record half the 5-tuples instead of listing
all of them. That is, only one of the two 5-tuples (b1, b2, b3, b4, x) and (b2, b1, b4, b3, y)
is recorded if either (1) x = y and x ∈ G or (2) x and y belong to X. In order to
save space, we write half of 5-tuples of B vertically as columns of an array.

For the last two examples, 417201 and 419201, only one quarter of the 5-tuples
are given as columns; here each given 5-tuple (b1, b2, b3, b4, z1) generates four 5-tuples
of the form (b1, b2, b3, b4, z1), (b2, b1, b4, b3, z2), (b3, b4, b1, b2, z3) and (b4, b3, b2, b1, z4).
Here either z1 ∈ G and z1 = z2 = z3 = z4, or z1, z2, z3, z4 are distinct elements of X.

15431:

0 0 x x1 y1 52 11 48 7 47 18 34 6 53 25
27 19 29 24 26 5 42 30 13 10 51 44 9 12 1
1 29 37 21 25 43 9 35 39 13 49 40 16 47 14

28 22 8 31 51 x x1 y1 36 26 1 3 18 33 15
x x1 0 0 0 0 0 0 0 0 0 0 0 0 0

32 46 15 37 19 23 2 33 8 14 40 36 21 20 38
3 50 43 49 27 45 17 22 28 16 31 41 35 4 39

44 45 52 19 41 34 53 28 32 48 42 12 29 5 2
20 11 17 30 46 38 22 10 24 6 4 27 7 50 23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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4621:

0 x1 y1 9 16 15 4 2 1 10 8 13
11 20 17 19 23 7 5 21 3 14 11 22
3 11 19 20 13 5 14 1 16 17 4 21

20 22 15 x1 y1 2 9 10 8 7 3 23
x1 0 0 0 0 0 0 0 0 0 0 0

4821:

0 x1 y1 31 10 9 15 19 26 1 18 20 28 14 2 12
11 29 4 13 17 11 21 22 7 5 30 25 6 23 3 27
9 4 6 22 27 30 25 21 19 20 1 14 26 13 29 23

14 3 18 x1 y1 15 28 10 12 2 11 5 7 9 31 17
x1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49101:

0 0 0 0 0 x1 x2 x3 x4 x5 y1 y2 y3

13 7 3 15 17 34 26 25 3 11 14 4 20
1 20 5 32 29 32 30 31 11 25 33 35 10

16 33 10 3 32 8 13 17 19 23 3 15 6
x1 x2 x3 x4 x5 0 0 0 0 0 0 0 0

y4 y5 29 16 31 2 22 19 10 35 13 24 33
15 1 7 21 5 6 28 17 30 23 12 32 8
4 24 28 22 12 21 20 16 5 7 34 26 1

29 14 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 2
0 0 0 0 0 0 0 0 0 0 0 0 0

411121:

0 0 0 0 0 0 x1 x2 x3 x4 x5 x6 y1 y2 y3 y4

19 13 5 21 15 7 3 2 40 19 31 14 4 25 12 9
31 23 29 26 40 2 43 5 10 23 39 6 20 2 13 35
34 32 30 19 35 17 27 41 24 36 19 18 16 8 15 1
x1 x2 x3 x4 x5 x6 0 0 0 0 0 0 0 0 0 0

y5 y6 28 1 23 20 27 10 36 26 6 7 21 24 35 17
5 34 32 13 37 29 43 30 42 16 8 15 39 41 38 18

32 3 34 42 30 38 40 9 26 31 7 21 37 17 12 25
14 28 x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 y6 29 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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41221:

0 x1 y1 30 20 34 1 40 35 23 26 5
33 16 25 38 39 45 2 47 44 41 28 27
31 38 27 3 26 11 29 19 5 8 34 45
38 20 18 x1 y1 42 32 21 31 9 47 16
x1 0 0 0 0 0 0 0 0 0 0 0

17 15 10 32 21 4 13 14 46 29 6 3
37 11 33 42 8 7 18 31 19 43 22 9
40 28 1 41 2 30 15 13 44 23 17 35
6 7 43 37 22 14 4 46 39 33 25 10
0 0 0 0 0 0 0 0 0 0 0 0

413141:

0 0 0 0 0 0 0 x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y4 y5

19 17 5 37 3 9 1 25 36 5 7 35 9 32 29 30 49 47 42
5 21 37 44 24 14 30 7 51 22 47 27 15 50 5 14 42 48 36

48 42 14 25 9 11 37 11 1 23 19 33 4 28 37 9 17 38 24
x1 x2 x3 x4 x5 x6 x7 0 0 0 0 0 0 0 0 0 0 0 0

y6 y7 51 40 6 21 19 17 34 16 14 3 11 38 45 12 33 4 2
18 15 1 50 27 37 23 24 46 48 43 28 41 10 31 20 44 22 8
41 34 44 10 29 18 2 21 45 31 46 6 30 32 3 40 8 20 35
25 16 x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y4 y5 y6 y7 43 12 49
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41461:

0 0 0 x1 x2 x3 y1 y2 y3 39 26 43 40 41 15 49
3 15 7 19 4 45 34 3 8 23 44 37 18 9 17 16

33 39 22 15 39 50 52 53 37 31 21 2 30 29 40 38
38 16 31 45 17 43 25 55 5 x1 x2 x3 y1 y2 y3 46
x1 x2 x3 0 0 0 0 0 0 0 0 0 0 0 0 0

32 6 27 55 22 1 2 5 20 52 7 38 54 33 11 13
36 51 46 24 35 21 29 31 30 53 12 47 10 25 50 48
49 22 48 19 16 13 20 24 47 4 10 23 9 35 34 51
12 32 33 8 41 26 36 6 3 7 11 27 44 18 54 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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41481:

0 0 0 0 x1 x2 x3 x4 y1 y2 y3 y4 29 25 44 5 38
51 13 25 23 33 52 41 10 11 43 53 37 45 51 54 13 4
33 30 24 25 21 4 9 23 16 41 50 48 52 20 24 46 35
40 3 19 16 43 36 29 15 12 51 34 7 x1 x2 x3 x4 y1

x1 x2 x3 x4 0 0 0 0 0 0 0 0 0 0 0 0 0

50 39 31 49 55 40 26 8 3 2 1 17 48 36 23 22 15
18 27 34 30 6 19 35 46 9 47 16 21 12 7 24 20 32
54 37 30 8 10 6 18 11 32 40 22 13 1 27 25 38 47
y2 y3 y4 5 49 31 55 17 44 53 33 39 19 26 2 3 45
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

414101:

0 0 0 0 0 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 32 26 44
3 15 7 25 13 49 23 21 39 5 52 43 40 45 20 36 31 4

29 25 39 30 24 11 25 19 47 29 39 32 52 30 45 27 2 1
36 16 6 3 19 51 10 41 23 49 31 36 6 48 24 x1 x2 x3

x1 x2 x3 x4 x5 0 0 0 0 0 0 0 0 0 0 0 0 0

15 12 25 51 1 34 27 50 55 10 53 30 3 6 2 24 17 22
35 18 7 29 33 46 38 13 8 37 54 9 11 16 41 47 19 48
12 8 46 4 55 50 16 5 9 18 38 22 20 33 40 43 7 13
x4 x5 y1 y2 y3 y4 y5 44 34 17 35 3 26 21 53 54 37 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

415101:

0 0 0 0 0 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 49 43 53 14
29 17 19 51 27 47 26 54 9 27 25 12 42 41 20 3 22 35 34
5 21 27 34 22 19 28 4 55 33 44 37 54 16 49 40 39 56 23

18 14 38 1 53 7 51 26 21 13 42 5 36 59 58 x1 x2 x3 x4

x1 x2 x3 x4 x5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 51 52 4 31 7 6 59 58 32 1 57 33 5 11 2 37 46 24
38 39 16 36 18 8 29 10 23 28 56 19 17 13 21 55 40 48 50
20 2 47 52 6 48 10 32 22 24 43 3 41 18 34 46 8 14 1
x5 y1 y2 y3 y4 y5 9 53 25 29 35 17 31 12 50 11 27 38 57
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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417201:

0 0 0 0 0 14 x1 x2 x3 x4 x5 y1 y2

19 45 29 31 15 35 67 20 61 48 13 55 10
1 14 22 37 58 21 63 64 49 28 41 46 31

42 15 35 46 65 24 27 1 5 50 39 16 57
x1 x3 x5 x7 x9 0 0 0 0 0 0 0 0

y3 y4 y5 42 33 58 60 32 12 22 7 43 59
44 45 15 56 66 62 2 38 40 30 19 54 9
52 4 26 37 65 23 47 8 53 25 3 18 11
36 29 6 x6 x7 x8 x9 x10 y6 y7 y8 y9 y10

0 0 0 0 0 0 0 0 0 0 0 0 0

419201:

0 0 0 0 0 75 39 58 x1 x2 x3 x4 x5 y1

35 49 29 15 21 35 69 13 22 60 25 64 8 53
9 6 26 54 3 31 6 11 12 28 73 48 30 41

62 7 31 61 6 45 34 24 14 37 21 4 72 2
x1 x3 x5 x7 x9 0 0 0 0 0 0 0 0 0

y2 y3 y4 y5 49 10 52 36 71 46 16 3 26 42
56 63 65 47 61 43 62 40 1 68 32 20 51 50
67 23 18 74 44 66 7 15 9 59 33 55 27 70
17 5 29 54 x6 x7 x8 x9 x10 y6 y7 y8 y9 y10

0 0 0 0 0 0 0 0 0 0 0 0 0 0
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