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Abstract

A hypercube Qn is a graph in which the vertices are all binary vectors of
length n, and two vertices are adjacent if and only if their components
differ in exactly one place. A galaxy or a star forest is a union of vertex
disjoint stars. The star arboricity of a graph G, sa(G), is the minimum
number of galaxies which partition the edge set of G. In this paper
among other results, we determine the exact values of sa(Qn) for n ∈
{2k − 3, 2k + 1, 2k + 2, 2i + 2j − 4}, i ≥ j ≥ 2. We also improve the last
known upper bound of sa(Qn) and show the relation between sa(G) and
square coloring.

1 Introduction and preliminaries

Hypercubes have numerous applications in computer science such as studying net-
works. Their architecture has played an important role in the development of parallel
processing and is still quite popular and influential [10]. An n-cube or n-dimensional
hypercube, Qn, is a graph in which the vertices are all binary vectors of length n,
and two vertices are adjacent if and only if the Hamming distance between them is
1, i.e. their components differ in 1 place. Qn is also defined recursively in terms of
the cartesian product of two graphs as follows:

Q1 = K2

Qn = Qn−1�K2,

where � stands for the cartesian product.

A galaxy or a star forest is a union of vertex disjoint stars. The star arboricity of a
graph G, denoted by sa(G), is the minimum number of galaxies which partition the
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edge set of G. The study of decomposing graphs into galaxies is naturally suggested
by the analysis of certain communication networks such as radio networks. As an
example, suppose that we need to transmit once along every edge, in order to check
that there is indeed a connection between each adjacent pair. It is explained in [2]
that the minimum number of steps in which we can finish all the required transmis-
sions is precisely sa(G). Star arboricity was introduced by Akiyama and Kano in
1982 [1]. They called it star decomposition index. In other literature some authors
have used concepts and notations such as galactic number, gal(G), and star number,
st(G) or s(G).

Star arboricity is closely related to arboricity, the minimum number of forests which
partition the edges of a graph G and is denoted by arb(G). But unlike arboricity
which is easy, even determining whether the star arboricity of an arbitrary graph is at
most 2, is shown to be an NP-complete problem [4], also see [6]. Clearly, by definition
arb(G) ≤ sa(G). Furthermore, it is easy to see that any tree can be covered by two
star forests, thus sa(G) ≤ 2arb(G). Alon et al. [3] showed that for each k, there
exists a graph Gk with arb(Gk) = k and sa(Gk) = 2k. They also showed that for
any graph G, sa(G) ≤ arb(G) + O(log2 Δ(G)), where Δ(G) is the maximum degree
of G.

In [4] and [11] the star arboricity of Qn is studied and it is shown that sa(Q2n−2) =
2n−1 and sa(Q2n−1) = 2n−1 + 1. Here by extending earlier results, we find exact
values of sa(Qn) for n ∈ {2k − 4, 2k − 3, 2k, 2k + 1, 2k + 2, 2k + 4, 2k + 2j − 4}. Also
we introduce a new upper bound and show a relation between sa(G) and square
coloring.

2 Some earlier results

In this section we mention some earlier results about the star arboricity of general
graphs which are used in the next section.

In the following theorem Akiyama and Kano found an exact value for the star ar-
boricity of complete graphs Kn.

Theorem A. ([1]) Let n ≥ 4. Then the star arboricity of the complete graph of
order n is �n

2
� + 1, i.e. sa(Kn) = �n

2
� + 1.

In the next lemma an upper bound for the star arboricity of product of two graphs
is given.

Lemma 1. ([4]) The star arboricity of the cartesian product of two graphs satisfies
sa(G�H) ≤ sa(G) + sa(H).

Next we state some of Truszczyński’s results [11] which will be used in this paper.

Theorem B. ([11]) Let G be an n-regular graph, n ≥ 2. Then sa(G) ≥ �n
2
� + 1.

Lemma 2. ([11]) Let G be an n-regular graph, where n is an even number. If
χ(G) > n

2
+ 1 or if n

2
+ 1 does not divide |V (G)|, then sa(G) ≥ n

2
+ 2.
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The following question is also raised about the upper bound for sa(G).

Problem 1. ([11]) Is it true that for every n-regular graph G,
⌈n

2

⌉
+ 1 ≤ sa(G) ≤

⌈n

2

⌉
+ 2 ?

Lemma 3. ([11]) If k ≥ 2, then there is a partition A = {A1, A2, . . . , A2k−1} of
V (Q2k−2) such that

(i) for every i, 1 ≤ i ≤ 2k−1, Ai is independent,

(ii) for every i, j, 1 ≤ i < j ≤ 2k−1, the subgraph of Q2k−2 induced by Ai ∪ Aj, is
2-regular.

Proof of Lemma 3 in [11] is constructive and as an example a decomposition of Q6

into 4 sets is presented in Table 1. This will be used in the next section.

Table 1: A vertex decomposition of Q6 by Lemma 3.

In the earlier results the star arboricity of Qn was determined in just two cases.

Theorem C. ([11]) sa(Q2k−2) = 2k−1 for k ≥ 2.

By Theorem B, Lemma 2 and Theorem C we have,

Corollary 1. sa(Qn) ≥ 	n
2

 + 2, except for n = 2a − 2, a ≥ 2.

For n = 2a − 2, we have sa(Q2a−2) = 	n
2

 + 1 = 2a−1.

Corollary 2. (Also in [4].) sa(Q2k−1) = 2k−1 + 1, k ≥ 2.

Proof. sa(Q2k−1) ≥ 2k−1 + 1 by Corollary 1, and sa(Q2k−1) ≤ sa(Q2k−2) + 1 =
2k−1 + 1.

The following bounds also are given in [11].

Theorem D. ([11]) �n+1
2
� + 1 ≤ sa(Qn) ≤ �n

2
� + log2 n, for every n ≥ 3, (except

for n = 2a − 2 and a ≥ 2).

In the next section we introduce more exact values of star arboricity of some Qn.
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3 Hypercubes

In this section we focus on the star arboricity of hypercubes and extend earlier results.

Based on the results, we conjecture that:

Conjecture 1. For n �= 2a −2, sa(Qn) = 	n
2

+2, and for n = 2a −2, sa(Q2a−2) =

	n
2

 + 1 = 2a−1, a ≥ 2.

Note that the second part of Conjecture 1 is known to be true (Theorem C).

Theorem 1. If Conjecture 1 holds for an odd integer n, then it holds for n− 1 and
n + 1.

Proof. If n − 1 = 2a − 2 or n + 1 = 2a − 2 for some a, then the statement follows.
Otherwise let n = 2k + 1. For n − 1 = 2k, we have sa(Q2k) ≤ sa(Q2k+1) = k + 2;
the statement follows by Corollary 1. For n + 1 = 2k + 2, we have sa(Q2k+2) ≤
sa(Q2k+1) + 1 = k + 3 and again by Corollary 1 the statement follows.

By Theorem 1, one only needs to show Conjecture 1 for odd numbers.

3.1 Exact values

Proposition 1. sa(Q2k+2j−4) = 2k−1 + 2j−1, for k ≥ j ≥ 2.

Proof. By Lemma 1 and Theorem C, we have sa(Q2k+2j−4) ≤ sa(Q2k−2)+sa(Q2j−2) =
2k−1 + 2j−1. Also by Corollary 1, sa(Q2k+2j−4) ≥ 2k−1 + 2j−1. So sa(Q2k+2j−4) =
2k−1 + 2j−1.

The following lemma is a useful tool for the next theorem.

Lemma 4. If a graph G satisfies the following conditions then sa(G) = 2.

1. G is tripartite with V (G) = V1 ∪ V2 ∪ V3.

2. Each vertex in V1 or V2 has degree 4 and each vertex in V3 has degree 2.

3. Each vertex in V1 or V2 has exactly 2 neighbours in V3 and each vertex in V3

is adjacent to both V1 and V2.

Proof. We decompose the edges of G into two galaxies in such a way that all of the
stars are K1,3. The induced subgraph on H = 〈V1 ∪ V2〉 is a bipartite graph. This
bipartite graph must be a disjoint union of some even cycles. So we can partition
edges of H into the sets M1 and M2, such that each of them is a perfect matching
in H . Now we partition the edges of G into two galaxies G1 and G2: the first one,
G1, is the union of M1 with an induced subgraph of 〈V1 ∪ V3〉. In a similar way, G2

is the union of M2 with an induced subgraph of 〈V2 ∪ V3〉.
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Theorem 2. sa(Q2k+1) = 2k−1 + 2, for k ≥ 2.

Proof. By Corollary 1, sa(Q2k+1) ≥ 2k−1 + 2. So it suffices to partition the edges of
Q2k+1 into 2k−1 + 2 galaxies. We know that Q2k+1 = Q2k−2�Q3. Also by Lemma 3
the vertices of Q2k−2 can be partitioned into 2k−1 sets, A = {A1, A2, . . . , A2k−1},
such that an induced subgraph between each two sets is a 2-regular subgraph. Now
we need some conventions and notation. For a fixed 3-bit codeword c from Q3, we
extend each set Ai, 1 ≤ i ≤ 2k−1, to a set Ai(c), which has codewords of length
2k + 1, such that for each codeword c′ ∈ Ai, we append c to the end of c′ in Ai(c).
Therefore for each pair i and j, the induced subgraph on Ai(c) ∪ Aj(c) in Q2k+1 is
a 2-regular graph which can be decomposed into two perfect matchings. We denote
them by Ai(c) → Aj(c) and Aj(c) → Ai(c). Also for any two 3-bit codewords c1 and
c2 which are different in only one bit, the induced subgraph of two sets Ai(c1) and
Ai(c2) is a perfect matching between those sets and we denote it by Ai(c1) ‖ Ai(c2).
Also for any 3-bit codeword c, we denote by ci the 3-bit codeword which is different
from c in exactly the i-th bit, and by c, the complement of c that differs from c in
all bits. Also the set of all 3-bit codewords with even weights is denoted by Ec, i.e.
Ec = {000, 011, 110, 101}. Now we are ready to introduce our 2k−1 galaxies. For each
i, 1 ≤ i ≤ 2k−1, define Gi as follows:

Gi =
⋃

c∈Ec

{[ ∪
j �=i

(
Ai(c) → Aj(c)

)
] ∪ [Ai(c) ‖ Ai(c

1)] ∪ [ ∪
k �=i,i+1

(
Ai+1(c

1) → Ak(c
1)

)
]},

1 ≤ j, k ≤ 2k−1.

Note that in the above formula the indices i, j, k are considered modulo 2k−1.

Next we prove that the following statements hold for Gi:

Statement 1. Every Gi is a galaxy.

Statement 2. The remaining edges satisfy the conditions of Lemma 4.

By using these two statements, we derive sa(Q2k+1) ≤ 2k−1 + 2; therefore the state-
ment of the theorem will hold.

Before proving these statements, as an example, we illustrate our construction in the
case of Q9. We have Q9 = Q6�Q3. Previously in Table 1 a decomposition of Q6 into
4 sets as in Lemma 3 is presented. In Figure 1:(a), we have shown a Q3 and a figure
in which each of these partitioned sets is a vertex of 2K4, where each edge stands for
a perfect matching between two corresponding sets. In Figure 1:(b) the galaxy G1

is represented, where again each edge represents a perfect matching. To illustrate
more, we have also shown G3 in Figure 1:(c). Figure 1:(d) is for the last two galaxies
obtained from the remaining edges. Each of these presented galaxies can be mapped
to a galaxy of Q9 by a blow up.

Proof of Statement 1. By the definitions, it is obvious that for each Gi and
for each c ∈ Ec, the independent sets Ai(c), Aj(c), Ai(c

1), Ai+1(c
1) and Ak(c

1),
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Figure 1: (a) Q6�Q3, (b) G1, (c) G3, (d) Galaxies obtained in Statement 2.
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1 ≤ j, k ≤ 2k−1, j �= i, k �= i, i + 1, are mutually disjoint. By construction, every
component is a star, and [∪j �=i

(
Ai(c) → Aj(c)

)
] ∪ [Ai(c) ‖ Ai(c

1)] is a union of stars
with centers at the vertices in Ai(c), and similarly ∪k �=i,i+1

(
Ai+1(c

1) → Ak(c
1)

)
is a

union of stars with centers at the vertices in Ai+1(c
1). Since here every c1 corresponds

to exactly one c, it follows that these stars have no overlaps.

Proof of Statement 2. We must prove that the remaining edges make a new graph
which satisfies conditions of Lemma 4. Let

V1 =
⋃

1≤s≤2k−2

(
A2s(001) ∪ A2s(100) ∪ A2s−1(010) ∪ A2s−1(111)

)
,

V2 =
⋃

1≤s≤2k−2

(
A2s−1(001) ∪ A2s−1(100) ∪ A2s(010) ∪ A2s(111)

)
,

V3 =
⋃

c∈Ec

( ∪1≤i≤2k−1 Ai(c)
)
.

First, we show that in the graph of remaining edges, V3 is a set of vertices with
degree 2. By construction, each vertex in V3, i.e. Ai(c), c ∈ Ec, is a center with
degree 2k−1 − 1 + 1 in a star of Gi, and is a leaf in any other Gj , j �= i, 1 ≤
i, j ≤ 2k−1. So each vertex in Ai(c) is covered in the given galaxies by totally
(2k−1 − 1 + 1) + (2k−1 − 1) × 1 = 2k − 1 adjacent edges. Since Q2k+1, is (2k + 1)-
regular graph, so in the remaining graph the degree of each vertex in Ai(c) is 2. Next
we show that each of the remaining vertices which are in V1 ∪V2 =

⋃
c∈Ec

(∪i Ai(c)
)
,

1 ≤ i ≤ 2k−1, has degree 4. For each vertex v in Ai(c), it is clear that the galaxy
Gi−1 covers 2k−1 − 2 edges of v and each of the other galaxies, Gj , j �= i − 1, covers
1 edge of v. So (2k−1 − 2) + (2k−1 − 1) × 1 = 2k − 3 edges of each vertex in Ai(c) is
covered by all Gj , 1 ≤ j ≤ 2k−1. Thus each vertex in Ai(c) has 4 uncovered edges.
Therefore each of the vertices in V1 ∪ V2 has degree 4 and the vertices in V3 have
degree 2, hence Condition (2) is satisfied.

For Condition (3), by the given construction we note that in the first 2k−1 galaxies
each vertex of V3, i.e. Ai(c) (i fixed and c ∈ Ec) is adjacent just to one of the vertices
of V1 ∪V2, i.e. Ai(c

1). So in the remaining graph each vertex in V3, which has degree
2, is adjacent to both a vertex with degree 4 in Ai(c

2), and another vertex with
degree 4 in Ai(c

3). Since Ai(c
2)∪Ai(c

3) ⊆ V1 ∪V2, so vertices of V3 are independent.
Since c2 and c3 are different in the last two bits, so Ai(c

2) and Ai(c
3) can not be in

the same Vj , j ∈ {1, 2}. Also each vertex in Ai(c), which is in V1 or V2, is adjacent
to a vertex with degree 2 in Ai(c

2) and another vertex with degree 2 in Ai(c
3). Thus

each vertex in V1 and V2 has exactly 2 neighbors in V3. Hence Condition (3) holds.

To prove Condition (1), it remains to show that each of V1 and V2 is an independent
set. As we have seen each vertex in Ai(c) has degree 4 and two of its neighbors are
in V3. The other two neighbors are in the sets Ai+1(c) and Ai−1(c). By the definition
of V1 and V2, it is obvious that Ai(c) is not in the same Vj, j ∈ {1, 2}, as Ai+1(c) and
Ai−1(c) are.
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Lemma 5. sa(Qn) = 	n
2

 + 2 for n = 2k + 4 and 2k − 4 ≤ n ≤ 2k + 2 except for

2k − 2.

Proof. We can check that the statement holds for n ≤ 10, see Table 2.

n 1 2 3 4 5 6 7 8 9 10
sa(Qn) 1 2 3 4 4 4 5 6 6 7

Table 2: sa(Qn) for n ≤ 10.

So let k ≥ 3, other than previous mentioned cases in Theorem C, Theorem 2 and
Corollary 2, for the remaining cases the statement holds as follows:

• n = 2k + 4, (by Proposition 1 for j = 3),

• n = 2k + 2, (by Theorem 2 and Theorem 1 for n = 2k + 1),

• n = 2k, (by Proposition 1 for j = 2) and (by Theorem 2 and Theorem 1 for
n = 2k + 1),

• n = 2k − 3, (sa(Q2k−3) ≤ sa(Q2k−2) = 2k−1 and by Corollary 1 for n = 2k − 3),

• n = 2m − 4, (by Proposition 1 for k = j = m − 1) and (by Theorem 1 for
n = 2m − 3).

The value of sa(Q2k+3) is left open, but we know that 2k−1+3 ≤ sa(Q2k+3) ≤ 2k−1+4.
So the smallest unknown case is sa(Q11).

3.2 An upper bound

In the following theorem, we improve the known upper bound on sa(Qn) by a method
similar to the proof of Theorem D.

Theorem 3. Let n be an even integer. We can write n as n =
∑l

j=1(2
ij − 2) + r,

where r is in R = {2k + 2, 2s + 2t − 4}, s ≥ t ≥ 2, i1 > i2 > · · · > il and l is the
smallest number with this property. Also we have

sa(Qn) ≤ n

2
+ l + 2.

Proof. If n ∈ R then l = 0 and the statement holds by Lemma 5 or by Proposition 1.
Otherwise it is easy to see that n can be written as 2i1 −2+r1, where i1 is the largest
possible integer and r1 is the remainder. If r1 = 0 then the statement holds by
Theorem C, else 4 < r1 < 2i1 − 2. If r1 ∈ R then l = 1 and by Lemma 5 and
Proposition 1, sa(Qr1) = r1

2
+2 and sa(Qn) ≤ sa(Q2i1−2)+sa(Qr1) = 2i1−1 + r1

2
+2 =



N. KARISANI ET AL. /AUSTRALAS. J. COMBIN. 59 (2) (2014), 282–292 290

n
2

+ 3, and we are done. Else, again r1 can be written as 2i2 − 2 + r2, where i2 is the

largest possible integer and so on. Thus assume n =
∑l

j=1(2
ij − 2) + r, r ∈ R, then

sa(Qn) ≤ sa(Q2i1−2) + sa(Q2i2−2) + · · ·+ sa(Q2il−2) + sa(Qr)

= 2i1−1 + 2i2−1 + · · ·+ 2il−1 +
r

2
+ 2

=
2i1 − 2

2
+

2i2 − 2

2
+ · · · + 2il − 2

2
+ l +

r

2
+ 2

=
n − r

2
+ l +

r

2
+ 2

=
n

2
+ l + 2.

Corollary 3. Let n ≥ 1, then sa(Qn) ≤ �n
2
� + l + 2, where l is obtained for n or

n − 1 as in Theorem 3, whether n is even or odd, respectively.

Corollary 4. sa(Qn) ≤ �n
2
� + 	log2 n
 − 1 for n ≥ 5.

Proof. For n = 5 or 6 it follows from Lemma 5. If the statement holds for an even
number n, then it holds for n + 1 as follows

sa(Qn+1) = sa(Qn�K2)
≤ sa(Qn) + 1

≤
⌈n

2

⌉
+ 	log2 n
 − 1 + 1

=
⌈n + 1

2

⌉
+ 	log2(n + 1)
 − 1

(since for even n, 	log2(n + 1)
 = 	log2 n
).
So it suffices to prove the corollary for an even number n.

It is easy to see that n can be represented as a sum of 	log2 n
 numbers of the
form 2k − 2, i.e. n =

∑m
j=1(2

ij − 2), m ≤ 	log2 n
. In Theorem 3, we represented

n =
∑l

j=1(2
ij − 2) + r. So l ≤ 	log2 n
 − 	log2 r
. As in Theorem 3, sa(Qn) ≤

n−r
2

+ 	log2 n
 − 	log2 r
 + sa(Qr), r ∈ R.

Now if r = 2k + 2, then we have

sa(Qn) ≤ n − 2k − 2

2
+ 	log2 n
 − k + 2k−1 + 3

=
n

2
− 2k−1 − 1 + 	log2 n
 − k + 2k−1 + 3

=
n

2
+ 	log2 n
 − k + 2.

If r = 2k + 2j − 4 and k ≥ j ≥ 2,
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sa(Qn) ≤ n − 2k − 2j + 4

2
+ 	log2 n
 − k + 2k−1 + 2j−1

=
n

2
− 2k−1 − 2j−1 + 2 + 	log2 n
 − k + 2k−1 + 2j−1

=
n

2
+ 	log2 n
 − k + 2.

As we have seen in both cases sa(Qn) ≤ n
2

+ 	log2 n
− k + 2. In both cases k can be
considered greater than or equal to 3. As an example for r = 2k+2j−4, assume k = 2,
then j = 2 and r = 4. Hence the last two numbers in

∑l
j=1(2

ij −2)+r, are 2il−2 and

r where il ≥ 3. So we have 2il − 2 + r = 2il − 2 + 4 = 2il + 2 which is a contradiction
the choice of r. Therefore sa(Qn) ≤ n

2
+ 	log2 n
 − k + 2 ≤ n

2
+ 	log2 n
 − 1.

4 Coloring and star arboricity

The connection of star arboricity with other colorings such as incidence coloring
and acyclic coloring are studied (see [7] and [8]). In this section we consider the
connection between square coloring and star arboricity of graphs.

Square of a graph G is a graph denoted by G2 with V(G) = V(G2) and two vertices
are adjacent if their distance in G is at most 2. A square-coloring of G is a proper
coloring of G2. Let χ(G2) be the minimum number of colors used in any square-
coloring of G.

Theorem 4. If χ(G2) ≤ k then sa(G) ≤ �k
2
� + 1, k ≥ 4.

Proof. Let c be a proper k-coloring of G2 with color classes C1, C2, . . . , Ck. We show
that the degree of vertices in any induced subgraph on each pair of color classes is at
most 1. Assume to the contrary that there are two classes Ci and Cj , 1 ≤ i, j ≤ k,
such that an induced subgraph on them has a vertex of degree at least 2. Without
loss of generality let v be a vertex in Ci with deg〈Ci∪Cj〉v = 2. So v has at least two

neighbors u and w in Cj. But in G2, u and w are adjacent, that is contradiction with
c being a proper coloring. Thus the vertices of G are partitioned into k independent
sets such that an induced subgraph on each pair of them is a matching.

Now using G we construct a graph H as follows. Each vertex of H corresponds to
a color class of G and two vertices are adjacent if there is an edge between their
corresponding color classes. Clearly H is a subgraph of Kk. Thus from Theorem A,
sa(H) ≤ �k

2
� + 1. By a blow up each galaxy of H can be mapped to a galaxy of

G.

Note that the result in the theorem can be sharp. As an example for Q2t−1, we have
χ(Q2

2t−1) = 2t (see [5] and [9]) which implies that sa(Q2t−1) ≤ 2t−1 + 1.
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