On the k-independence number in graphs*

Ahmed Bouchou
University of Médéa
Algeria
bouchou.ahmed@yahoo.fr
Mostafa Blidia
Department of Mathematics
University of Blida
Algeria
m_blidia@yahoo.fr

Abstract

For an integer $k \geq 1$ and a graph $G=(V, E)$, a subset S of V is k independent if every vertex in S has at most $k-1$ neighbors in S. The k-independent number $\beta_{k}(G)$ is the maximum cardinality of a k independent set of G. In this work, we study relations between $\beta_{k}(G)$, $\beta_{j}(G)$ and the domination number $\gamma(G)$ in a graph G where $1 \leq j<k$. Also we give some characterizations of extremal graphs.

1 Introduction

We consider simple graphs $G=(V(G), E(G))$ of order $|V(G)|=|V|=n(G)$ and size $|E(G)|=m(G)$. The neighborhood of a vertex $v \in V$ is $N_{G}(v)=\{u \in V \mid u v \in E\}$. The closed neighborhood of v is $N_{G}[v]=N_{G}(v) \cup\{v\}$. If S is a subset of vertices, its neighborhood is $N_{G}(S)=\cup_{v \in S} N_{G}(v)$. The closed neighborhood of v and S are $N_{G}[v]=N_{G}(v) \cup\{v\}$ and $N_{G}[S]=N_{G}(S) \cup S$, respectively. The degree of a vertex v of G is $d_{G}(v)=\left|N_{G}(v)\right|$. The maximum degree of G is $\Delta(G)=\max \left\{d_{G}(v) \mid v \in V\right\}$ and the minimum degree of G is $\delta(G)=\min \left\{d_{G}(v) \mid v \in V\right\}$. The subgraph induced in G by a subset of vertices S is denoted by $G[S]$. The degree of vertex v in the subgraph induced in G by $S \subseteq V$ is denoted by $d_{S}(v)=\left|N_{G}(v) \cap S\right|=\left|N_{S}(v)\right|$. A graph is bipartite if its vertex set can be partitioned in two independent sets. A matching in a graph G is a subset of pairwise non-adjacent edges. A d-regular graph is a graph with a degree d for each vertex of G. The subdivision graph of a graph G

[^0]is the graph obtained from G by replacing each edge $u v$ of G by a vertex w and edges $u w$ and $v w$. The corona of a graph $G=(V, E)$, denoted by $G \circ K_{1}$, is the graph that is obtained by attaching a leaf to each vertex $v \in V$. A tree is a connected graph with no cycle. The path (the cycle, the clique, the star, respectively) of order n is denoted by $P_{n}\left(C_{n}, K_{n}, K_{1, n-1}\right.$, respectively).

An independent set S is a set of vertices whose induced subgraph has no edge, equivalently $\Delta(G[S])=0$. A dominating set S is a set of vertices such that every vertex in $V-S$ has at least one neighbor in S, equivalently $N[S]=V$. In $[7,8]$ Fink and Jacobson defined a generalization of the concepts of independence and domination. For an integer $k \geq 1$ and a graph G, a subset S of V is k-independent if $\Delta(G[S])<k$ and k-dominating if every vertex in $V-S$ has at least k neighbors in S. We denote by $\beta_{k}(G)$ the maximum order of a k-independent set, this parameter is called the k-independence number and we denote by $\gamma_{k}(G)$ the minimum order of a k-dominating set and it is called the k-domination number. A k-independence set S with cardinality $\beta_{k}(G)$ is called a $\beta_{k}(G)$-set. Thus for $k=1$, the 1 -independent and 1-dominating sets are the classical independent and dominating sets. However, $\beta_{1}(G)=\beta(G)$ is the independence number and $\gamma_{1}(G)=\gamma(G)$ is the domination number.

More details and results on k-domination and k-independence can be found in $[4,7,8]$.

In this paper we present relations between $\beta_{k}(G), \beta_{j}(G)$ and $\gamma(G)$ in a graph G where $1 \leq j<k$. Also we give some characterizations of extremal graphs.

First, we recall some known results of k-domination and k-independence that will be useful here.

Theorem 1 (Favaron [5]) For any graph G and positive integer k, every k-independent set D such that $\varphi_{k}(D)=k|D|-|E(G[D])|$ is maximum, is a k-dominating set of G.

Corollary 1 (Favaron [5]) For any graph G and positive integer $k, \gamma_{k}(G) \leq \beta_{k}(G)$.
Theorem 2 (Jacobson et al. [11]) If G is a graph of order n, then $\gamma_{k}(G)+\beta_{j}(G)$ $\leq n$ for $\delta(G)=k+j-1$.

Theorem 3 (Favaron [6]) If G is a graph of order n, then $\gamma_{k}(G)+\beta_{j}(G) \geq n$ for $\Delta(G)=k+j-1$.

If moreover G is d-regular with $d=k+j-1$, then $\gamma_{k}(G)+\beta_{j}(G)=n$.
It is well-known (see Ore [12]) that every graph G of order n without isolated vertices satisfies $\gamma(G) \leq \frac{n}{2}$. Extremal graphs achieving equality in Ore's bound have been given independently by Walikar et al. [14], Payan and Xuong [13] and by Fink et al. [9].

Theorem 4 (Fink et al. [9], Payan and Xuong [13], Walikar [14]) Let G be a graph of even order n without isolated vertices. Then $\gamma(G)=\frac{n}{2}$ if and only if each component of G is either a cycle C_{4} of length four or the corona $J \circ K_{1}$ of some connected graph J.

2 Bounds on β_{k} and its relation with other parameters

We give a relation between β_{k} and β_{j} for $1 \leq j<k \leq \Delta(G)+1$.
Note that the same relation is given independently by Caro and Hansberg in [3] by using the bound $\beta_{j}(G) \geq \frac{n}{1+\left\lfloor\frac{\Delta(G)}{j}\right\rfloor}$ due to Hopkins and Staton [10].

Here, we give a new proof which is useful for some of the following characterizations.

Theorem 5 Let G be a graph of order n and maximum degree $\Delta(G)$, and let j, k be integers with $1 \leq j<k \leq \Delta(G)+1$. Then

$$
\begin{equation*}
\beta_{k}(G) \leq\left\lceil\frac{k}{j}\right\rceil \beta_{j}(G) \tag{1}
\end{equation*}
$$

Proof. Let I be a $\beta_{k}(G)$-set of G. Let S_{1} be a j-independent and j-dominating set of $G[I]$. In view of Theorem 1 , such a set exists. Then every vertex of $I-S_{1}$ has at least j neighbors in S_{1} and thus, $\Delta\left(G\left[I-S_{1}\right]\right) \leq k-j-1$. Let S_{2} be a j-independent and j-dominating set of $G\left[I-S_{1}\right]$. Then every vertex of $I-\left(S_{1} \cup S_{2}\right)$ has at least j neighbors in S_{1} and j neighbors in S_{2} and thus, $\Delta\left(G\left[I-\left(S_{1} \cup S_{2}\right)\right]\right) \leq k-2 j-1$. We continue the process until the choice of a j-independent and j-dominating set S_{p-1} of $G\left[I-\bigcup_{i=1}^{p-2} S_{i}\right]$ such that the set $S_{p}=I-\bigcup_{i=1}^{p-1} S_{i}$ is j-independent. Hence, $\Delta\left(G\left[I-\bigcup_{i=1}^{p-1} S_{i}\right]\right) \leq k-(p-1) j-1$. Therefore $\left|S_{i}\right| \leq \beta_{j}(G)$ for $1 \leq i \leq p$. Hence

$$
\beta_{k}(G)=|I|=\sum_{i=1}^{p}\left|S_{i}\right| \leq p \beta_{j}(G) .
$$

Now we show that $p \leq\left[\frac{k}{j}\right]$. Let x be a vertex of S_{p}. Since $\Delta(G[I]) \leq k-1$ and $d_{S_{i}}(x) \geq j$ for $1 \leq i \leq p-1$, then $j(p-1) \leq d_{I}(x) \leq k-1$, which means that $p \leq\left\lfloor\frac{k-1}{j}\right\rfloor+1=\left\lceil\frac{k}{j}\right\rceil$. Consequently $\beta_{k}(G) \leq\left\lceil\frac{k}{j}\right\rceil \beta_{j}(G)$.

Setting $k=\Delta(G)+1(j=1$, respectively $)$ in Theorem 5 , the following known bound of Hopkins and Staton [10] (Blidia et al. [2], respectively) follows.

Corollary 2 (Hopkins, Staton [10]) If G is a graph of order n, maximum degree $\Delta(G)$ and $j \geq 1$ an integer, then $\beta_{j}(G) \geq \frac{n}{1+\left\lfloor\frac{\Delta(G)}{j}\right\rfloor}$.

Corollary 3 (Blidia et al. [2]) If G is a graph and k a positive integer, then $\beta_{k}(G) \leq k \beta(G)$.

Now we give a necessary condition for the equality $\beta_{k}(G)=\left\lceil\frac{k}{j}\right\rceil \beta_{j}(G)$ when $j=k-1$.

Theorem 6 For every graph G of order n and for every integer $k \geq 2$,

$$
\begin{equation*}
\beta_{k}(G) \leq 2 \beta_{k-1}(G) \tag{2}
\end{equation*}
$$

Also if equality holds, then every component of any $\beta_{k}(G)$-set I is either a clique K_{2} and $k=2$ or a cycle C_{4} and $k=3$.

Proof. Replacing j by $k-1$ in (1), we deduce that $\left\lceil\frac{k}{k-1}\right\rceil=2$, so we obtain the desired inequality.

Now assume that $\beta_{k}(G)=2 \beta_{k-1}(G)$. Following the notation used in the proof of Theorem 5, Since I is k-independent, $d_{S_{2}}(x) \leq k-1$ for every $x \in S_{1}$, and since S_{1} is a $(k-1)$-dominating set of $G[I], d_{S_{1}}(y) \geq k-1$ for every $y \in S_{2}$. Hence the number $m\left(S_{1}, S_{2}\right)$ of edges of G between S_{1} and S_{2} satisfies $(k-1)\left|S_{2}\right| \leq m\left(S_{1}, S_{2}\right) \leq$ $(k-1)\left|S_{1}\right|$ and so $\left|S_{2}\right| \leq\left|S_{1}\right|$. Since $2 \beta_{k-1}(G)=\beta_{k}(G)=|I|=\left|S_{1}\right|+\left|S_{2}\right| \leq 2\left|S_{1}\right| \leq$ $2 \beta_{k-1}(G),\left|S_{1}\right|=\left|S_{2}\right|$ and so we obtain that $(k-1)\left|S_{2}\right|=m\left(S_{1}, S_{2}\right)=(k-1)\left|S_{1}\right|$. Therefore $G[I]$ is a $(k-1)$-regular bipartite graph and $\beta_{k-1}(G)=\frac{|I|}{2}$. Now applying Theorem 3 for the subgraph $G[I]$, we obtain $\gamma(G[I])=|I|-\beta_{k-1}(G[I])=\frac{|I|}{2}$, since $G[I]$ is $(k-1)$-regular, and Theorem 4 shows that the only connected regular bipartite graphs with $\gamma(G[I])=\frac{|I|}{2}$ are K_{2} or C_{4}, so each component of $G[I]$ either is a clique K_{2} and $k=2$ or a cycle C_{4} and $k=3$.

The converse of Theorem 6 is not true, as shown by the following examples.
Let P_{5} be the path on five vertices, labeled in order $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$. Let F be the graph obtained from P_{5} by adding new edges $x_{1} x_{4}$ and $x_{2} x_{5}$.

For $k=2$: Let G_{1} consist of the disjoint union of $2 p$ copies of P_{5} plus a path through the central vertices of these copies. It is clear that $n\left(G_{1}\right)=10 p, \beta_{2}\left(G_{1}\right)=$ $8 p, \beta\left(G_{1}\right)=5 p$ and each component of any $\beta_{2}\left(G_{1}\right)$-set is a clique K_{2}, but $\beta_{2}\left(G_{2}\right) \neq$ $2 \beta\left(G_{1}\right)$.

For $k=3$: Let G_{2} consist of the disjoint union of $3 p$ copies of F plus a path through x_{3} of these copies. It is clear that $n\left(G_{2}\right)=15 p, \beta_{3}\left(G_{2}\right)=12 p, \beta_{2}\left(G_{2}\right)=8 p$ and each component of any $\beta_{3}(G)$-set is a cycle C_{4}, but $\beta_{3}\left(G_{2}\right) \neq 2 \beta_{2}\left(G_{2}\right)$.

From Theorem 6 and since $\beta_{\Delta+1}(G)=n$, we obtain the following.
Corollary 4 If G is a graph of order n and maximum degree $\Delta(G) \geq 1$, then $\beta_{\Delta}(G) \geq\left\lceil\frac{n}{2}\right\rceil$.

By Corollary 3, we have $\beta_{k}(G) \leq k \beta(G)$; this inequality cannot be improved to $\beta_{k}(G) \leq k \gamma(G)$, even for trees, as shown by the star $K_{1, p}$ with $p \geq k+1$. However the next theorem improves it in the class of graphs with at most one cycle for $k=2$. We denote by $\lambda(G)=m(G)-n(G)+1$ the cyclomatic number of a connected graph G.

Theorem 7 Let G be a connected graph of order $n \geq 3$. Then

$$
\beta_{2}(G) \leq \beta(G)+\gamma(G)+\lambda(G)-1
$$

Proof. Let I be a $\beta_{2}(G)$-set and S be a maximal independent set of $G[I]$. If $G[I]$ is independent, then $\beta_{2}(G)=\beta(G)$ and so $\beta_{2}(G) \leq \beta(G)+\gamma(G)+\lambda(G)-1$. If $G[I]$ is not independent, then the edges of $G[I]$ form an induced matching M between $A=I-S$ and a subset A^{\prime} of S. Let D be a $\gamma(G)$-set, M_{1} the edges of M with no endvertex in D, and $A_{1}\left(A_{1}^{\prime}\right.$ respectively) the set of the endvertices of the edges of M_{1} in A (A^{\prime} respectively). If $\left|M_{1}\right| \neq 0$ and $\gamma(G) \leq|M|-\lambda(G)$, then the vertices of $A_{1} \cup A_{1}^{\prime}$ cannot be dominated by vertices in $D \cap I$, since M is induced. Hence the set $W=D-I$ is not empty and dominates $A_{1} \cup A_{1}^{\prime}$. Therefore the induced subgraph $G\left[W \cup A_{1} \cup A_{1}^{\prime}\right]$ of order $|W|+2\left|M_{1}\right|$ contains at least $3\left|M_{1}\right|$ edges. Moreover, since D contains at least one endvertex of each edge in $M-M_{1},|W| \leq$ $|D|-\left|M-M_{1}\right|=(\gamma(G)-|M|)+\left|M_{1}\right|<\left|M_{1}\right|-\lambda(G)+1$. So, the connected subgraph G^{\prime} induced by $W \cup A_{1} \cup A_{1}^{\prime}$ satisfies $\left|E\left(G^{\prime}\right)\right| \geq 3\left|M_{1}\right|>2\left|M_{1}\right|+|W|+\lambda(G)-1 \geq$ $2\left|M_{1}\right|+|W|+\lambda\left(G^{\prime}\right)-1$, thus $\lambda\left(G^{\prime}\right)=m\left(G^{\prime}\right)-n\left(G^{\prime}\right)+1<\left|E\left(G^{\prime}\right)\right|-\left(2\left|M_{1}\right|+|W|\right)+1$, a contradiction. Thus $\gamma(G) \geq|M|-\lambda(G)+1$ or $\left|M_{1}\right|=0$. If $\gamma(G) \geq|M|-\lambda(G)+1$, then $\gamma(G) \geq|A|-\lambda(G)+1$ and $\beta_{2}(G)=|S|+|A| \leq \beta(G)+\gamma(G)+\lambda(G)-1$. If $\gamma(G) \leq|M|-\lambda(G)$ and $\left|M_{1}\right|=0$, then $\lambda(G)=0$, since $|M| \leq \gamma(G)$ and so $\gamma(G)=|M|=|A|, S-A^{\prime}=\emptyset$ and G is a tree. Hence, we must have $V-I \neq \emptyset$. Let x be a vertex of $V-I$. For any edge e of M, x is adjacent to at most one endvertex of e. Without loss of generality, suppose that the vertices adjacent to x are in A. Then $A^{\prime} \cup\{x\}$ is an independent set. So, $\beta(G) \geq|A|+1$ and $\beta_{2}(G)=$ $2|A| \leq \beta(G)+\gamma(G)-1=\beta(G)+\gamma(G)+\lambda(G)-1$, and the proof is complete.

In general, the bounds of Theorem 6 with $k=2$ and Theorem 7 are not comparable for $\lambda(G) \geq 2$. Indeed, if G is the graph obtained from $G^{\prime}=p K_{2}+q K_{1}$ by joining all vertices of G^{\prime} to a new vertex x, then $\beta_{2}(G)=2 p+q, \beta(G)=p+q$, $\lambda(G)=p$ and $\gamma(G)=1$. If $p=0$ and $q \geq 2$, then G is a star and $\beta_{2}(G)=$ $\beta(G)+\gamma(G)-1=2 \beta(G)$. If $p \geq 1$ and $q \geq 0$, then G is a graph with p triangles and $\beta_{2}(G)=\beta(G)+\gamma(G)+p-1<2 \beta(G)$. However, if G is the graph obtained by joining each vertex of p copies of K_{3} to a new vertex x, then $\beta_{2}(G)=2 p, \beta(G)=p$, $\gamma(G)=1, \lambda(G)=3 p$ and $\beta_{2}(G) \leq 2 \beta(G)=2 p<\beta(G)+\gamma(G)+\lambda(G)-1=4 p+1$.

3 Characterizations of some special graphs

In this section we give some characterizations of special graphs for inequality $\beta_{k}(G) \leq$ $\left\lceil\frac{k}{j}\right\rceil \beta_{j}(G)$.

We begin by giving a characterization of extremal graphs attaining the bound in Corollary 4. We need the following known result.

Theorem 8 (Fink, Jacobson [7]) If G is a graph with $\Delta(G) \geq k \geq 2$, then $\gamma_{k}(G) \geq \gamma(G)+k-2$.

Theorem 9 Let G be a connected graph of order n and maximum degree $\Delta(G) \geq 1$. Then

$$
\beta_{\Delta}(G)=\left\lceil\frac{n}{2}\right\rceil
$$

if and only if $G \in\left\{P_{2}, P_{3}, C_{3}, C_{4}, C_{5}, C_{7}\right\}$.
Proof. It is easy to see that $\beta_{\Delta}(G)=\left\lceil\frac{n}{2}\right\rceil$ for $G \in\left\{P_{2}, P_{3}, C_{3}, C_{4}, C_{5}, C_{7}\right\}$.
Now, assume that $\beta_{\Delta}(G)=\left\lceil\frac{n}{2}\right\rceil$. If n is even, then from Theorem 6 , we have G is a P_{2} or a C_{4}. If n is odd, then $n=2 \beta_{\Delta}(G)-1 \geq 3$ and $\Delta(G) \geq 2$. Now applying Theorem 3, we obtain $\gamma(G) \geq n-\beta_{\Delta}(G)=\frac{n-1}{2}$ and by Ore's bound [12], we deduce that $\gamma(G)=\frac{n-1}{2}$, on the other hand, from Corollary 1, we have $\gamma_{\Delta}(G) \leq \beta_{\Delta}(G)$, so $\gamma_{\Delta}(G)-\gamma(G) \leq \beta_{\Delta}(G)-\gamma(G)=1$ which is only possible when $\Delta(G) \leq 3$, since $\gamma_{p}(G) \geq \gamma(G)+p-2$ for any $2 \leq p \leq \Delta(G)$ (see Theorem 8). We distinguish between two cases :

Case 1. $\Delta(G)=2$.
Then G is a path or a cycle. If G is a path with $n \geq 5$ or a cycle with $n \geq 9$, then $\beta_{2}\left(P_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil>\frac{n+1}{2}$ and $\beta_{2}\left(C_{n}\right)=\left\lfloor\frac{2 n}{3}\right\rfloor>\frac{n+1}{2}$.

Case 2. $\Delta(G)=3$.
Then $1 \leq \delta(G) \leq 3$. As in the proof of Theorem $5, I=V, S_{1}$ is a 3 -independent and a 3 -dominating set of G and S_{2} is independent. Hence $3\left|S_{2}\right|=m\left(S_{1}, S_{2}\right) \leq 3\left|S_{1}\right|$. So, $\left|S_{2}\right| \leq\left|S_{1}\right|-1$, since $n=\left|S_{1}\right|+\left|S_{2}\right|$ is odd. Then $2 \beta_{3}(G)-1=\left|S_{1}\right|+\left|S_{2}\right| \leq$ $2\left|S_{1}\right|-1 \leq 2 \beta_{3}(G)-1$, we deduce that $\beta_{3}(G)=\left|S_{1}\right|=\left|S_{2}\right|+1=\frac{n+1}{2}$ and $m\left(S_{1}, S_{2}\right)=$ $3\left|S_{2}\right|=3\left|S_{1}\right|-3$. So the subgraph induced by S_{2} has at most one edge. We have to examine three possibilities:

Subcase 2.1. S_{1} has a vertex x with $d_{S_{2}}(x)=0$. Then every vertex v of $S_{1}-\{x\}$ satisfies $d_{S_{2}}(v)=3$ and S_{1} is independent, and so $d_{G}(x)=0$, contradicting $\delta(G) \geq 1$.

Subcase 2.2. S_{1} has two vertices x and x^{\prime} with $d_{S_{2}}(x)=2$ and $d_{S_{2}}\left(x^{\prime}\right)=1$. Then every vertex v of $S_{1}-\left\{x, x^{\prime}\right\}$ satisfies $d_{S_{2}}(v)=3$. Let $y, y^{\prime} \in N_{S_{2}}(x)$. Then $S^{\prime}=\left(S_{1}-\{x\}\right) \cup\left\{y, y^{\prime}\right\}$ is 3-independent with $\left|S^{\prime}\right|=\left|S_{1}\right|+1$, a contradiction.

Subcase 2.3. S_{1} has three vertices $x, x^{\prime}, x^{\prime \prime}$ with $d_{S_{2}}(x)=d_{S_{2}}\left(x^{\prime}\right)=d_{S_{2}}\left(x^{\prime \prime}\right)=2$. Then every vertex v of $S_{1}-\left\{x, x^{\prime}, x^{\prime \prime}\right\}$ satisfies $d_{S_{2}}(v)=3$. Let $y, y^{\prime} \in N_{S_{2}}(x)$. If S_{1} is independent, then $S^{\prime}=\left(S_{1}-\{x\}\right) \cup\left\{y, y^{\prime}\right\}$ is 3-independent with $\left|S^{\prime}\right|=\left|S_{1}\right|+1$, a contradiction. If S_{1} is not independent, then $G\left[S_{1}\right]$ has exactly one edge e. Since $\Delta(G)=3$, without loss of generality, let $e=x x^{\prime}$ and $y, y^{\prime} \in N_{S_{2}}(x)$, then $S^{\prime}=$ $\left(S_{1}-\{x\}\right) \cup\left\{y, y^{\prime}\right\}$ is 3 -independent with $\left|S^{\prime}\right|=\left|S_{1}\right|+1$, a contradiction too. Thus $\beta_{\Delta}(G)=\frac{n+1}{2}$ is not possible in this case.

Now, we give a characterization of extremal graphs attaining the bound in Theorem 6 for $k=\Delta(G)$. Moreover, we improve this upper bound and characterize all graphs attaining the new bound. We recall that $K_{4}-e$ is the graph obtained from K_{4} by deleting one edge of K_{4}. Let H be the graph obtained from C_{5} by joining three nonconsecutive vertices of C_{5} to a new vertex.

Theorem 10 Let G be a connected graph with maximum degree $\Delta(G) \geq 2$ and $\epsilon \in\{0,1\}$. Then

$$
\beta_{\Delta}(G)=2 \beta_{\Delta-1}(G)-\epsilon
$$

if and only if G is C_{3} and $\epsilon=0$, or $G \in\left\{K_{4}, K_{4}-e, H\right\}$ and $\epsilon=1$.
Proof. It is clear that $\beta_{\Delta}\left(C_{3}\right)=2 \beta_{\Delta-1}\left(C_{3}\right)$ and $\beta_{\Delta}(G)=2 \beta_{\Delta-1}(G)-1$ when $G \in\left\{K_{4}, K_{4}-e, H\right\}$.

For the converse, assume that $\beta_{\Delta}(G)=2 \beta_{\Delta-1}(G)-\epsilon$. As in the proof of Theorem 6, I is Δ-independent and S_{1} is a $(\Delta-1)$-independent and $(\Delta-1)$-dominating set of $G[I]$. Now applying Theorem 9 for the subgraph $G[I]$, we obtain that each component of $G[I]$ is $P_{2}, P_{3}, C_{3}, C_{4}, C_{5}$ or C_{7} and $\Delta(G) \leq 3$.

Case 1. $\beta_{\Delta}(G)=2 \beta_{\Delta-1}(G)$.
Then each component of $G[I]$ is P_{2} and $\Delta(G)=2$, or $G[I]=C_{4}$ and $\Delta(G)=3$. If $\Delta(G)=2$, then G is a path or a cycle. If G is a path with $n \geq 3$ or a cycle with $n \neq 3$, then $\beta_{2}\left(P_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil<2\left\lceil\frac{n}{2}\right\rceil=2 \beta\left(P_{n}\right)$ and $\beta_{2}\left(C_{n}\right)=\left\lfloor\frac{2 n}{3}\right\rfloor<2\left\lfloor\frac{n}{2}\right\rfloor=2 \beta\left(C_{n}\right)$. If $\Delta(G)=3$, then every vertex of $V-I$ is adjacent to at most three vertices of C_{4}, and we can easily find a 2 -independent set S with $|S|=\left|S_{1}\right|+1$ a contradiction. Thus $\beta_{3}(G)=2 \beta_{2}(G)$ is not possible in this case.

Case 2. $\beta_{\Delta}(G)=2 \beta_{\Delta-1}(G)-1$.
Then $G[I]$ consists of P_{3}, C_{3}, C_{5} or C_{7} and so $\Delta(G)=3$. If $G[I]$ is P_{3}, then every vertex of $V-I$ is adjacent to each vertex of P_{3}, for otherwise we can find a 2-independent set S with $|S|>\left|S_{1}\right|$. Since $\Delta(G)=3, V-I$ contains exactly one vertex, and so G is $K_{4}-e$. If $G[I]$ is C_{3}, then, by the same argument above, $V-I$ has exactly one vertex which is adjacent to at least two vertices of C_{3} and so G is $K_{4}-e$ or K_{4}. If $G[I]$ is C_{5}, then $V-I$ consists of one vertex which is adjacent to three nonconsecutive vertices of C_{5} and so G is the graph H. Finally, if $G[I]$ is C_{7}, then for every vertex v of $V-I$, we can find a 2-independent set S containing v with $|S|=\left|S_{1}\right|+1$ contradicting $\beta_{2}(G)=\left|S_{1}\right|$. Thus $\beta_{3}(G)=2 \beta_{2}(G)-1$ is not possible in this case.

Corollary 5 If T is a tree of order $n \geq 3$, then

$$
\beta_{\Delta}(T) \leq 2 \beta_{\Delta-1}(G)-2
$$

Now, we give a characterization of extremal bipartite graphs which reach the bound (1) in Theorem 5, when j divides $k-1$ (i.e.: $\left\lceil\frac{k}{j}\right\rceil=\frac{k+j-1}{j}$).

Proposition 11 Let G be a bipartite graph of order n and j, k integers with $1 \leq$ $j<k \leq \Delta(G)+1$. Then

$$
\beta_{k}(G)=\frac{k+j-1}{j} \beta_{j}(G),
$$

if and only if G is $\frac{n}{2} K_{2}$, with $j=1$ and $k=2$, or G is $\frac{n}{4} C_{4}$, with $j=2$ and $k=3$.

Proof. Assume that $\beta_{k}(G)=\frac{k+j-1}{j} \beta_{j}(G)$. We have $\beta_{j}(G) \geq \frac{n}{2}$ for bipartite graphs and $\beta_{k}(G) \leq n$ for any graph G. Thus

$$
n \geq \beta_{k}(G)=\frac{k+j-1}{j} \beta_{j}(G) \geq \frac{k+j-1}{j} \frac{n}{2} \geq n,
$$

so we have equality throughout the previous inequality chain. In particular, $\beta_{k}(G)=$ $n, j=k-1$ and $\beta_{j}(G)=\frac{n}{2}$. It follows that $k=\Delta(G)+1$ and $j=\Delta(G)$, and so by Theorem $9, G$ is $\frac{n}{2} K_{2}$ or $\frac{n}{4} C_{4}$.

The converse is obvious.
As a consequence of Proposition 11, we deduce the following result which provides a sufficient condition in Theorem 6.

Corollary 6 If G is a bipartite graph of order n and $2 \leq k \leq \Delta(G)+1$ is an integer, then $\beta_{k}(G)=2 \beta_{k-1}(G)$ if and only if G is $\frac{n}{2} K_{2}$ and $k=2$ or G is $\frac{n}{4} C_{4}$ and $k=3$.

From Proposition 11 we deduce that $\beta_{k}(G) \leq \frac{k+j-1}{j} \beta_{j}(G)-1$ for trees of order $n \geq 3$. However, we improve this upper bound for $k \geq 3$. Also we characterize all trees attaining this bound. We need an observation for the equality $\beta_{k}(G)=n-1$, and a constructive characterization of trees T for which $\beta_{j}(T)=\frac{j n}{j+1}$ due to Blidia et al. [1].

Observation 12 Let G be a graph of order n and k a positive integer. Then $\beta_{k}(G)=$ $n-1$ if and only if G has a vertex w such that every neighbor of w has degree at most k, at least w or one of its neighbors has degree k or more, and every vertex in $V(G)-N[w]$, if any, has degree less than k in G.

We introduce the following operation.
Operation \mathcal{O} : For a positive integer j, let v be any vertex of the star $K_{1, j}$. The tree T_{i+1} is obtained from T_{i} by joining any vertex of T_{i} with the vertex v.

We now define the family \mathcal{T} as follows:
$T \in \mathcal{T}$ if and only if $T=K_{1, j}$ or T is obtained from $K_{1, j}$ by a finite sequence of the above operation.

Theorem 13 (Blidia et al. [1]) Let T be a tree of order n and maximum degree Δ. Then for every integer j with $1 \leq j \leq \Delta(G), \beta_{j}(G) \geq \frac{j n}{j+1}$, with equality if and only if $T \in \mathcal{T}$.

Theorem 14 Let T be a tree of order $n \geq 3$ and let k be a positive integer with $k \leq \Delta(G)$. Then

$$
\beta_{k}(T) \leq \frac{k+j-1}{j} \beta_{j}(T)-\frac{(k-2) n}{j+1}-1
$$

with equality if and only if
(i) $T \in \mathcal{T}$, and
(ii) T has a vertex w such that every neighbor of w has degree at most k, at least w or one of its neighbors has degree k or more, and every vertex in $V(T)-N[w]$, if any, has degree less than k in T.

Proof. We first prove the upper bound. Since $\beta_{k}(T) \leq n-1$ for $k \leq \Delta(T)$, and $\beta_{j}(T) \geq \frac{j n}{j+1}$ for trees (see Theorem 13), we deduce that $\beta_{k}(T)-\frac{k+j-1}{j} \beta_{j}(T) \leq$ $-(k-2) \frac{n}{j+1}-1$, and the bound is proved.

If $T \in \mathcal{T}$ and T satisfies Condition (ii), then by Theorem 13 and Observation 12, $\beta_{j}(T)=\frac{j n}{j+1}$ and $\beta_{k}(T)=n-1$, respectively. So $\beta_{k}(T)-\frac{k+j-1}{j} \beta_{j}(T)=-\frac{(k-2) n}{j+1}-1$.

Now assume that $\beta_{k}(T)=\frac{k+j-1}{j} \beta_{j}(T)-\frac{(k-2) n}{j+1}-1$. Then we have equality throughout the previous inequality chain. In particular, $\beta_{j}(T)=\frac{j n}{j+1}$ and $\beta_{k}(T)=$ $n-1$. From Theorem 13, the first equality implies that $T \in \mathcal{T}$, and by Observation 12, the second equality implies that T satisfies Condition (ii), and the proof is complete.

As a consequence of Theorem 14, we deduce the following result which improves bounds of Corollary 3 and Theorem 6 for trees.

Corollary 7 If T is a tree of order $n \geq 3$ and k is an integer with $2 \leq k \leq \Delta(G)$, then
(i) $\beta_{k}(T) \leq k \beta(T)-\frac{(k-2) n}{2}-1$.
(ii) $\beta_{k}(T) \leq 2 \beta_{k-1}(T)-\frac{(k-2) n}{k}-1$.

From Theorem 14 we deduce a descriptive characterization of the class of trees achieving the bound of Theorem 14 for $k=2$ and $j=1$.

Corollary 8 If T is a tree, then $\beta_{2}(T)=2 \beta(T)-1$ if and only if $T=K_{1}$, or T is a corona of a star.

Finally, we characterize the class of trees T achieving the bound of Theorem 7 . To this end, we give some more definitions. For a positive integer p, a tree obtained from a star $K_{1, t}, t \geq 1$ such that each of p edges is subdivided once is denoted by $S_{p}\left(K_{1, t}\right)$, a vertex of degree t will be called the center vertex. If $p=0$, then $S_{p}\left(K_{1, t}\right)$ is the star $K_{1, t}$. If $p=t$, then $S_{p}\left(K_{1, t}\right)$ is the healthy spider. If $1 \leq p \leq t-1$, then $S_{p}\left(K_{1, t}\right)$ is a wounded spider. For P_{2}, we will consider both vertices to be center vertices, and in the case of P_{4}, we will consider both endvertices as leaves and both interior vertices as center vertices.

Let \mathcal{F}^{\prime} be a family of trees obtained from two healthy spiders by joining their centre vertices, $\mathcal{F}^{\prime \prime}\left(\mathcal{F}^{\prime \prime \prime}\right.$, respectively) be a family of trees obtained from two healthy spiders (one healthy spider and K_{1}, respectively) and one edge $x y$ by joining x to the

Figure 1: Example of a graph in \mathcal{F}
centre of the first healthy spider and y to the centre of the second healthy spider (by joining x to the centre of the healthy spider and y to the centre of K_{1}, respectively).

Let F_{i} be a tree obtained from the wounded spider $S_{p_{i}}\left(K_{1, t_{i}}\right)$ and $q_{i} \leq p_{i}$ healthy spiders by identifying q_{i} leaves of the wounded spider $S_{p_{i}}\left(K_{1, t_{i}}\right)$ which are nonadjacent to its center with the centers of these q_{i} healthy spiders. Let H be a tree obtained by connecting an induced matching M^{\prime} of size $h-1$ with an independent set $S^{\prime}=$ $\left\{x_{1}, x_{2}, \ldots, x_{h}\right\}$ such that every endvertex of edges of M^{\prime} has exactly one neighbor in S^{\prime}. Now, define \mathcal{F} as the family of trees obtained from $F_{1}, F_{2}, \ldots, F_{h}$ and H by identifying a vertex x_{i} of S^{\prime} with the center of F_{i} for $i \in\{1,2, \ldots, h\}$. For a tree $F \in \mathcal{F}$, let L_{F} and S_{F} be the sets of leaves and support vertices of F, respectively, and let A_{F} be the set of vertices of F adjacent to $\sum_{i=1}^{h} q_{i}$ selected leaves in $\bigcup_{i=1}^{h} S_{p_{i}}\left(K_{1, t_{i}}\right)$ (see Figure 1).

Now, we are ready to characterize trees T such that $\beta_{2}(T)=\beta(T)+\gamma(T)-1$.
Theorem 15 Let T be a tree of order $n \geq 3$. Then

$$
\beta_{2}(T)=\beta(T)+\gamma(T)-1
$$

if and only if T is a star, a healthy spider, a wounded spider or $T \in \mathcal{F}^{\prime} \cup \mathcal{F}^{\prime \prime} \cup \mathcal{F}^{\prime \prime \prime} \cup \mathcal{F}$.
Proof. It is a simple mater to check that if T is a star, a healthy spider, a wounded spider, or $T \in \mathcal{F}^{\prime} \cup \mathcal{F}^{\prime \prime} \cup \mathcal{F}^{\prime \prime \prime}$, then $\beta_{2}(T)=\beta(T)+\gamma(T)-1$. If $T \in \mathcal{F}$, then it is easy to see that $\gamma(T)=\left|S_{F}\right|, \beta(T)=\left|L_{F} \cup A_{F}\right|+\left|M^{\prime}\right|=\left|L_{F}\right|+\left|A_{F}\right|+h-1$ and

$$
\beta_{2}(T)=\left|\left(S_{F}-S^{\prime}\right) \cup L_{F} \cup A_{F}\right|+2\left|M^{\prime}\right|=\left|S_{F}\right|+\left|L_{F}\right|+\left|A_{F}\right|+h-2 .
$$

Hence, $\beta_{2}(T)=\beta(T)+\gamma(T)-1$.

Conversely, assume that T is a tree of order $n \geq 3$ with $\beta_{2}(T)=\beta(T)+\gamma(T)-1$. We follow the notation used in the proof of Theorem 7. If $G[I]$ is independent, then $\beta_{2}(T)=\beta(T)$ and so $\gamma(T)=1$. Therefore T is a star. If $G[I]$ is not independent, then $\gamma(T) \geq|A|=|M|$, since T is a tree, we have to distinguish two cases :

Case 1. $\gamma(T)=|M|=|A|$.
Then $S-A^{\prime}=\emptyset$ and so $M_{1}=\emptyset$, since T is a tree. Therefore, $\beta_{2}(T)=2|A|=$ $2 \gamma(T)=\beta(T)+\gamma(T)-1$, which means that $\beta(T)=|A|+1$. Since T is connected with $n \geq 3$, we must have $|V-I| \in\{1,2\}$, for otherwise we have $\beta(T)>|A|+1$. If $|V-I|=1$, let $\{w\}=V-I$, then w is adjacent to exactly one endvertex of each edge of M, since T is a tree. Therefore, T is a healthy spider of center w. If $|V-I|=2$, let $\{u, v\}=V-I$, then we have to examine possibilities for T depending on whether the edge $u v$ exists or not. If $u v \in E(T)$, then u is adjacent to exactly one endvertex of each edge of a matching $M_{u} \subset M$ with $M_{u} \neq \emptyset$, and v is adjacent to exactly one endvertex of each edge of $M_{v}=M-M_{u}$ with $M_{v} \neq \emptyset$, since T is a tree and $M_{1}=\emptyset$. Therefore, $T \in \mathcal{F}^{\prime}$. If $u v \notin E(T)$, then u and v have exactly one common neighbor in M, or u is adjacent to an endvertex of an edge of M and v is adjacent to the other endvertex, otherwise we have a cycle or T is not connected. Since $\beta(T)=|A|+1$, the first situation cannot occur. The second situation leads to the tree $T \in \mathcal{F}^{\prime \prime} \cup \mathcal{F}^{\prime \prime \prime}$.

Case 2. $\gamma(T) \geq|M|+1=|A|+1$.
Then $\beta_{2}(T)=|S|+|A|=\beta(T)+\gamma(T)-1 \geq|S|+|A|$ and so $\gamma(T)=|A|+1$ and $\beta(T)=|S|$. Thus $S-A^{\prime} \neq \emptyset$ and $\left|S-A^{\prime}\right| \geq|V-I|$, since $\beta(T) \geq \frac{n}{2}$ for trees. Without loss of generality we can suppose that $A-A_{1} \subset D$ and so $|D \cap(V-I)|=$ $\left|M_{1}\right|+1$ and the vertices of $S-A^{\prime}$ are dominated by $D \cap(V-I)$. Since $\gamma(T)=|A|+1$, $|V-I| \geq 1$. Each vertex of $V-I$ is adjacent to exactly one vertex of $S-A^{\prime}$, since $D \cap(V-I)$ dominates $\left(S-A^{\prime}\right) \cup A_{1} \cup A_{1}^{\prime}$, for otherwise we have a cycle or $\beta(T)>|S|$. Also, with the same argument, the subset $V-I$ is independent and for any two vertices x and y of $V-I, x$ is adjacent to endvertices of edges of $M_{x} \subseteq M$ and y is adjacent to endvertices of edges of $M_{y} \subseteq M-M_{x}$ and the vertices of $(V-I)-D$ are dominated by the vertices of $M-M_{1}$. Thus $T \in \mathcal{F}$. Note that if $|(V-I) \cap D|=1$, then T is the tree F_{1} and if $|V-I|=1$, then T which is the tree F_{1} is a wounded spider.

References

[1] M. Blidia, M. Chellali, O. Favaron and N. Meddah, On k-independence in graphs with emphasis on trees, Discrete Math. 307 (2007), 2209-2216.
[2] M. Blidia, M. Chellali, O. Favaron and N. Meddah, Maximal k-independent sets in graphs, Discuss. Math. Graph Theory 28 (2008), 151-163.
[3] Y. Caro and A. Hansberg. New approach to the k-independence number of a graph, arXiv: 1208. 4734v1 [math.CO]. 23 Aug 2012.
[4] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-Domination and k-Independence in Graphs: A Survey, Graphs Combin. 28 (2012), 1-55.
[5] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependene, J. Combin. Theory Ser. B 39 (1) (1985), 101-102.
[6] O. Favaron, Graduate course, University of Blida, Algeria (2005).
[7] J. F. Fink and M. S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer, John Wiley and Sons, New York (1985), 283-300.
[8] J.F. Fink and M. S. Jacobson, n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer, John Wiley and Sons, New York (1985), 301-311.
[9] J.F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985), 287-293.
[10] G. Hopkins and W. Staton, Vertex partitions and k-small subsets of graphs, Ars Combin. 22 (1986), 19-24.
[11] M. S. Jacobson, K. Peters and D. F. Rall, On n-irredundance and n-domination, Ars Combin. 29 B (1990), 151-160.
[12] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38 (1962).
[13] C. Payan and N. H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982), 23-32.
[14] H. B.Walikar, B. D. Acharya and E. Sampathkumar, Recent developments in the theory of domination in graphs, in: MRI Lec. Notes in Math., Mahta Research Institute, Allahabad, vol. 1 (1979).

[^0]: * This work was supported by Programmes Nationaux de Recherche: Code 8/u09/510.

