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Abstract

For an integer k ≥ 1 and a graph G = (V, E), a subset S of V is k-
independent if every vertex in S has at most k − 1 neighbors in S.
The k-independent number βk(G) is the maximum cardinality of a k-
independent set of G. In this work, we study relations between βk(G),
βj(G) and the domination number γ(G) in a graph G where 1 ≤ j < k.
Also we give some characterizations of extremal graphs.

1 Introduction

We consider simple graphs G = (V (G), E(G)) of order |V (G)| = |V | = n(G) and size
|E(G)| = m(G). The neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V | uv ∈ E}.
The closed neighborhood of v is NG[v] = NG(v) ∪ {v}. If S is a subset of vertices,
its neighborhood is NG(S) = ∪v∈SNG(v). The closed neighborhood of v and S are
NG[v] = NG(v)∪{v} and NG [S] = NG(S)∪S, respectively. The degree of a vertex v
of G is dG(v) = |NG(v)|. The maximum degree of G is Δ(G) = max{dG(v) | v ∈ V }
and the minimum degree of G is δ(G) = min{dG(v) | v ∈ V }. The subgraph induced
in G by a subset of vertices S is denoted by G[S]. The degree of vertex v in the
subgraph induced in G by S ⊆ V is denoted by dS(v) = |NG(v) ∩ S| = |NS(v)|.
A graph is bipartite if its vertex set can be partitioned in two independent sets. A
matching in a graph G is a subset of pairwise non-adjacent edges. A d-regular graph
is a graph with a degree d for each vertex of G. The subdivision graph of a graph G
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is the graph obtained from G by replacing each edge uv of G by a vertex w and edges
uw and vw. The corona of a graph G = (V, E), denoted by G◦K1, is the graph that
is obtained by attaching a leaf to each vertex v ∈ V . A tree is a connected graph
with no cycle. The path (the cycle, the clique, the star, respectively) of order n is
denoted by Pn (Cn, Kn, K1,n−1, respectively).

An independent set S is a set of vertices whose induced subgraph has no edge,
equivalently Δ(G [S]) = 0. A dominating set S is a set of vertices such that every
vertex in V − S has at least one neighbor in S, equivalently N [S] = V . In [7, 8]
Fink and Jacobson defined a generalization of the concepts of independence and
domination. For an integer k ≥ 1 and a graph G, a subset S of V is k-independent if
Δ(G [S]) < k and k-dominating if every vertex in V − S has at least k neighbors in
S. We denote by βk (G) the maximum order of a k-independent set, this parameter
is called the k-independence number and we denote by γk (G) the minimum order of
a k-dominating set and it is called the k-domination number. A k-independence set
S with cardinality βk (G) is called a βk (G)-set. Thus for k = 1, the 1-independent
and 1-dominating sets are the classical independent and dominating sets. However,
β1(G) = β(G) is the independence number and γ1(G) = γ(G) is the domination
number.

More details and results on k-domination and k-independence can be found in
[4, 7, 8].

In this paper we present relations between βk(G), βj(G) and γ(G) in a graph G
where 1 ≤ j < k. Also we give some characterizations of extremal graphs.

First, we recall some known results of k-domination and k-independence that will
be useful here.

Theorem 1 (Favaron [5]) For any graph G and positive integer k, every k-indep-
endent set D such that ϕk(D) = k |D| − |E(G[D])| is maximum, is a k-dominating
set of G.

Corollary 1 (Favaron [5])For any graph G and positive integer k, γk(G) ≤ βk(G).

Theorem 2 (Jacobson et al. [11]) If G is a graph of order n, then γk(G)+βj(G)
≤ n for δ (G) = k + j − 1.

Theorem 3 (Favaron [6]) If G is a graph of order n, then γk(G) + βj(G) ≥ n for
Δ (G) = k + j − 1.

If moreover G is d-regular with d = k + j − 1, then γk(G) + βj(G) = n.

It is well-known (see Ore [12]) that every graph G of order n without isolated
vertices satisfies γ (G) ≤ n

2
. Extremal graphs achieving equality in Ore’s bound have

been given independently by Walikar et al. [14], Payan and Xuong [13] and by Fink
et al. [9].
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Theorem 4 (Fink et al. [9], Payan and Xuong [13], Walikar [14]) Let G be
a graph of even order n without isolated vertices. Then γ(G) = n

2
if and only if each

component of G is either a cycle C4 of length four or the corona J ◦ K1 of some
connected graph J .

2 Bounds on βk and its relation with other parameters

We give a relation between βk and βj for 1 ≤ j < k ≤ Δ(G) + 1.

Note that the same relation is given independently by Caro and Hansberg in [3]
by using the bound βj(G) ≥ n

1+
Δ(G)
j � due to Hopkins and Staton [10].

Here, we give a new proof which is useful for some of the following characteriza-
tions.

Theorem 5 Let G be a graph of order n and maximum degree Δ(G), and let j, k be
integers with 1 ≤ j < k ≤ Δ(G) + 1. Then

βk(G) ≤
⌈

k

j

⌉
βj(G). (1)

Proof. Let I be a βk(G)-set of G. Let S1 be a j-independent and j-dominating
set of G [I]. In view of Theorem 1, such a set exists. Then every vertex of I−S1 has at
least j neighbors in S1 and thus, Δ (G[I − S1]) ≤ k−j−1. Let S2 be a j-independent
and j-dominating set of G [I − S1]. Then every vertex of I − (S1 ∪ S2) has at least j
neighbors in S1 and j neighbors in S2 and thus, Δ (G[I − (S1 ∪ S2)]) ≤ k − 2j − 1.
We continue the process until the choice of a j-independent and j-dominating set
Sp−1 of G

[
I −

⋃p−2
i=1 Si

]
such that the set Sp = I −

⋃p−1
i=1 Si is j-independent. Hence,

Δ
(
G[I −

⋃p−1
i=1 Si]

)
≤ k − (p − 1) j − 1. Therefore |Si| ≤ βj(G) for 1 ≤ i ≤ p. Hence

βk(G) = |I| =
∑p

i=1
|Si| ≤ pβj(G).

Now we show that p ≤
⌈

k
j

⌉
. Let x be a vertex of Sp. Since Δ (G[I]) ≤ k − 1 and

dSi
(x) ≥ j for 1 ≤ i ≤ p − 1, then j (p − 1) ≤ dI (x) ≤ k − 1, which means that

p ≤
⌊

k−1
j

⌋
+ 1 =

⌈
k
j

⌉
. Consequently βk(G) ≤

⌈
k
j

⌉
βj(G).

Setting k = Δ(G) + 1 (j = 1, respectively) in Theorem 5, the following known
bound of Hopkins and Staton [10] (Blidia et al. [2], respectively) follows.

Corollary 2 (Hopkins, Staton [10]) If G is a graph of order n, maximum degree

Δ(G) and j ≥ 1 an integer, then βj(G) ≥ n

1 +
⌊

Δ(G)
j

⌋ .

Corollary 3 (Blidia et al. [2]) If G is a graph and k a positive integer, then
βk(G) ≤ kβ(G).
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Now we give a necessary condition for the equality βk(G) =
⌈

k
j

⌉
βj(G) when

j = k − 1.

Theorem 6 For every graph G of order n and for every integer k ≥ 2,

βk(G) ≤ 2βk−1(G). (2)

Also if equality holds, then every component of any βk(G)-set I is either a clique K2

and k = 2 or a cycle C4 and k = 3.

Proof. Replacing j by k − 1 in (1), we deduce that
⌈

k
k−1

⌉
= 2, so we obtain the

desired inequality.

Now assume that βk(G) = 2βk−1(G). Following the notation used in the proof
of Theorem 5, Since I is k-independent, dS2(x) ≤ k − 1 for every x ∈ S1, and since
S1 is a (k − 1)-dominating set of G [I], dS1(y) ≥ k − 1 for every y ∈ S2. Hence the
number m(S1, S2) of edges of G between S1 and S2 satisfies (k−1) |S2| ≤ m(S1, S2) ≤
(k − 1) |S1| and so |S2| ≤ |S1|. Since 2βk−1(G) = βk(G) = |I| = |S1|+ |S2| ≤ 2 |S1| ≤
2βk−1(G), |S1| = |S2| and so we obtain that (k − 1) |S2| = m(S1, S2) = (k − 1) |S1|.
Therefore G [I] is a (k − 1)-regular bipartite graph and βk−1(G) = |I|

2
. Now applying

Theorem 3 for the subgraph G[I], we obtain γ (G[I]) = |I| − βk−1(G[I]) = |I|
2

,
since G[I] is (k − 1)-regular, and Theorem 4 shows that the only connected regular

bipartite graphs with γ (G[I]) = |I|
2

are K2 or C4, so each component of G[I] either
is a clique K2 and k = 2 or a cycle C4 and k = 3.

The converse of Theorem 6 is not true, as shown by the following examples.

Let P5 be the path on five vertices, labeled in order x1, x2, x3, x4, x5. Let F be
the graph obtained from P5 by adding new edges x1x4 and x2x5.

For k = 2: Let G1 consist of the disjoint union of 2p copies of P5 plus a path
through the central vertices of these copies. It is clear that n (G1) = 10p, β2(G1) =
8p, β(G1) = 5p and each component of any β2(G1)-set is a clique K2, but β2(G2) �=
2β(G1).

For k = 3: Let G2 consist of the disjoint union of 3p copies of F plus a path
through x3 of these copies. It is clear that n (G2) = 15p, β3(G2) = 12p, β2(G2) = 8p
and each component of any β3(G)-set is a cycle C4, but β3(G2) �= 2β2(G2).

From Theorem 6 and since βΔ+1(G) = n, we obtain the following.

Corollary 4 If G is a graph of order n and maximum degree Δ(G) ≥ 1, then
βΔ(G) ≥

⌈
n
2

⌉
.

By Corollary 3, we have βk(G) ≤ kβ(G); this inequality cannot be improved to
βk(G) ≤ kγ(G), even for trees, as shown by the star K1,p with p ≥ k+1. However the
next theorem improves it in the class of graphs with at most one cycle for k = 2. We
denote by λ(G) = m(G)− n(G) + 1 the cyclomatic number of a connected graph G.
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Theorem 7 Let G be a connected graph of order n ≥ 3. Then

β2(G) ≤ β(G) + γ(G) + λ(G) − 1.

Proof. Let I be a β2(G)-set and S be a maximal independent set of G [I]. If
G [I] is independent, then β2(G) = β(G) and so β2(G) ≤ β(G) + γ(G) + λ(G) − 1.
If G [I] is not independent, then the edges of G[I] form an induced matching M
between A = I − S and a subset A′ of S. Let D be a γ(G)-set, M1 the edges
of M with no endvertex in D, and A1 (A′

1 respectively) the set of the endvertices
of the edges of M1 in A (A′ respectively). If |M1| �= 0 and γ(G) ≤ |M | − λ(G),
then the vertices of A1 ∪ A′

1 cannot be dominated by vertices in D ∩ I, since M is
induced. Hence the set W = D−I is not empty and dominates A1∪A′

1. Therefore the
induced subgraph G[W ∪A1∪A′

1] of order |W |+2 |M1| contains at least 3 |M1| edges.
Moreover, since D contains at least one endvertex of each edge in M − M1, |W | ≤
|D|−|M − M1| = (γ(G) − |M |)+|M1| < |M1|−λ(G)+1. So, the connected subgraph
G′ induced by W ∪ A1 ∪ A′

1 satisfies |E(G′)| ≥ 3 |M1| > 2 |M1| + |W | + λ(G) − 1 ≥
2 |M1|+|W |+λ(G′)−1, thus λ(G′) = m(G′)−n(G′)+1 < |E(G′)|−(2 |M1|+|W |)+1,
a contradiction. Thus γ(G) ≥ |M |−λ(G)+1 or |M1| = 0. If γ(G) ≥ |M |−λ(G)+1,
then γ(G) ≥ |A| − λ(G) + 1 and β2(G) = |S| + |A| ≤ β(G) + γ(G) + λ(G) − 1.
If γ(G) ≤ |M | − λ(G) and |M1| = 0, then λ(G) = 0, since |M | ≤ γ(G) and so
γ(G) = |M | = |A|, S − A′ = ∅ and G is a tree. Hence, we must have V − I �= ∅.
Let x be a vertex of V − I. For any edge e of M , x is adjacent to at most one
endvertex of e. Without loss of generality, suppose that the vertices adjacent to x
are in A. Then A′ ∪ {x} is an independent set. So, β(G) ≥ |A| + 1 and β2(G) =
2 |A| ≤ β(G) + γ(G) − 1 = β(G) + γ(G) + λ(G) − 1, and the proof is complete.

In general, the bounds of Theorem 6 with k = 2 and Theorem 7 are not com-
parable for λ(G) ≥ 2. Indeed, if G is the graph obtained from G′ = pK2 + qK1 by
joining all vertices of G′ to a new vertex x, then β2(G) = 2p + q, β(G) = p + q,
λ(G) = p and γ(G) = 1. If p = 0 and q ≥ 2, then G is a star and β2(G) =
β(G) + γ(G) − 1 = 2β(G). If p ≥ 1 and q ≥ 0, then G is a graph with p triangles
and β2(G) = β(G) + γ(G) + p − 1 < 2β(G). However, if G is the graph obtained by
joining each vertex of p copies of K3 to a new vertex x, then β2(G) = 2p, β(G) = p,
γ(G) = 1, λ(G) = 3p and β2(G) ≤ 2β(G) = 2p < β(G) + γ(G) + λ(G) − 1 = 4p + 1.

3 Characterizations of some special graphs

In this section we give some characterizations of special graphs for inequality βk(G) ≤⌈
k
j

⌉
βj(G).

We begin by giving a characterization of extremal graphs attaining the bound in
Corollary 4. We need the following known result.

Theorem 8 (Fink, Jacobson [7]) If G is a graph with Δ(G) ≥ k ≥ 2, then
γk(G) ≥ γ(G) + k − 2.
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Theorem 9 Let G be a connected graph of order n and maximum degree Δ (G) ≥ 1.
Then

βΔ(G) =
⌈n

2

⌉

if and only if G ∈ {P2, P3, C3, C4, C5, C7}.

Proof. It is easy to see that βΔ(G) =
⌈

n
2

⌉
for G ∈ {P2, P3, C3, C4, C5, C7}.

Now, assume that βΔ(G) =
⌈

n
2

⌉
. If n is even, then from Theorem 6, we have G is

a P2 or a C4. If n is odd, then n = 2βΔ(G) − 1 ≥ 3 and Δ(G) ≥ 2. Now applying
Theorem 3, we obtain γ (G) ≥ n−βΔ(G) = n−1

2
and by Ore’s bound [12], we deduce

that γ (G) = n−1
2

, on the other hand, from Corollary 1, we have γΔ (G) ≤ βΔ (G), so
γΔ (G) − γ (G) ≤ βΔ (G) − γ (G) = 1 which is only possible when Δ(G) ≤ 3, since
γp (G) ≥ γ (G) + p − 2 for any 2 ≤ p ≤ Δ (G) (see Theorem 8). We distinguish
between two cases :

Case 1. Δ(G) = 2.

Then G is a path or a cycle. If G is a path with n ≥ 5 or a cycle with n ≥ 9,
then β2(Pn) =

⌈
2n
3

⌉
> n+1

2
and β2(Cn) =

⌊
2n
3

⌋
> n+1

2
.

Case 2. Δ(G) = 3.

Then 1 ≤ δ (G) ≤ 3. As in the proof of Theorem 5, I = V , S1 is a 3-independent
and a 3-dominating set of G and S2 is independent. Hence 3 |S2| = m(S1, S2) ≤ 3 |S1|.
So, |S2| ≤ |S1| − 1, since n = |S1| + |S2| is odd. Then 2β3(G) − 1 = |S1| + |S2| ≤
2 |S1|−1 ≤ 2β3(G)−1, we deduce that β3(G) = |S1| = |S2|+1 = n+1

2
and m(S1, S2) =

3 |S2| = 3 |S1| − 3. So the subgraph induced by S2 has at most one edge. We have
to examine three possibilities:

Subcase 2.1. S1 has a vertex x with dS2 (x) = 0. Then every vertex v of S1 −{x}
satisfies dS2 (v) = 3 and S1 is independent, and so dG (x) = 0, contradicting δ (G) ≥ 1.

Subcase 2.2. S1 has two vertices x and x′with dS2 (x) = 2 and dS2 (x′) = 1.
Then every vertex v of S1 − {x, x′} satisfies dS2 (v) = 3. Let y, y′ ∈ NS2 (x). Then
S ′ = (S1 − {x}) ∪ {y, y′} is 3-independent with |S ′| = |S1| + 1, a contradiction.

Subcase 2.3. S1 has three vertices x, x′, x′′ with dS2 (x) = dS2 (x′) = dS2 (x′′) = 2.
Then every vertex v of S1 −{x, x′, x′′} satisfies dS2 (v) = 3. Let y, y′ ∈ NS2 (x). If S1

is independent, then S ′ = (S1 − {x}) ∪ {y, y′} is 3-independent with |S ′| = |S1| + 1,
a contradiction. If S1 is not independent, then G [S1] has exactly one edge e. Since
Δ(G) = 3, without loss of generality, let e = xx′ and y, y′ ∈ NS2 (x), then S ′ =
(S1 − {x}) ∪ {y, y′} is 3-independent with |S ′| = |S1| + 1, a contradiction too. Thus
βΔ(G) = n+1

2
is not possible in this case.

Now, we give a characterization of extremal graphs attaining the bound in The-
orem 6 for k = Δ(G). Moreover, we improve this upper bound and characterize all
graphs attaining the new bound. We recall that K4 − e is the graph obtained from
K4 by deleting one edge of K4. Let H be the graph obtained from C5 by joining
three nonconsecutive vertices of C5 to a new vertex.
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Theorem 10 Let G be a connected graph with maximum degree Δ (G) ≥ 2 and
ε ∈ {0, 1}. Then

βΔ(G) = 2βΔ−1(G) − ε

if and only if G is C3 and ε = 0, or G ∈ {K4, K4 − e, H} and ε = 1.

Proof. It is clear that βΔ(C3) = 2βΔ−1(C3) and βΔ(G) = 2βΔ−1(G) − 1 when
G ∈ {K4, K4 − e, H}.

For the converse, assume that βΔ(G) = 2βΔ−1(G) − ε. As in the proof of Theo-
rem 6, I is Δ-independent and S1 is a (Δ − 1)-independent and (Δ − 1)-dominating
set of G [I]. Now applying Theorem 9 for the subgraph G[I], we obtain that each
component of G [I] is P2, P3, C3, C4, C5 or C7 and Δ (G) ≤ 3.

Case 1. βΔ(G) = 2βΔ−1(G).

Then each component of G [I] is P2 and Δ (G) = 2, or G [I] = C4 and Δ (G) = 3.
If Δ (G) = 2, then G is a path or a cycle. If G is a path with n ≥ 3 or a cycle with
n �= 3, then β2(Pn) =

⌈
2n
3

⌉
< 2

⌈
n
2

⌉
= 2β(Pn) and β2(Cn) =

⌊
2n
3

⌋
< 2

⌊
n
2

⌋
= 2β(Cn).

If Δ (G) = 3, then every vertex of V − I is adjacent to at most three vertices of C4,
and we can easily find a 2-independent set S with |S| = |S1| + 1 a contradiction.
Thus β3(G) = 2β2(G) is not possible in this case.

Case 2. βΔ(G) = 2βΔ−1(G) − 1.

Then G [I] consists of P3, C3, C5 or C7 and so Δ (G) = 3. If G [I] is P3, then
every vertex of V − I is adjacent to each vertex of P3, for otherwise we can find a
2-independent set S with |S| > |S1|. Since Δ (G) = 3, V − I contains exactly one
vertex, and so G is K4 − e. If G [I] is C3, then, by the same argument above, V − I
has exactly one vertex which is adjacent to at least two vertices of C3 and so G is
K4 − e or K4. If G [I] is C5, then V − I consists of one vertex which is adjacent to
three nonconsecutive vertices of C5 and so G is the graph H . Finally, if G [I] is C7,
then for every vertex v of V −I, we can find a 2-independent set S containing v with
|S| = |S1| + 1 contradicting β2(G) = |S1|. Thus β3(G) = 2β2(G) − 1 is not possible
in this case.

Corollary 5 If T is a tree of order n ≥ 3, then

βΔ(T ) ≤ 2βΔ−1(G) − 2.

Now, we give a characterization of extremal bipartite graphs which reach the

bound (1) in Theorem 5, when j divides k − 1 (i.e.:
⌈

k
j

⌉
= k+j−1

j
).

Proposition 11 Let G be a bipartite graph of order n and j, k integers with 1 ≤
j < k ≤ Δ (G) + 1. Then

βk(G) =
k + j − 1

j
βj(G),

if and only if G is n
2
K2, with j = 1 and k = 2, or G is n

4
C4, with j = 2 and k = 3.
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Proof. Assume that βk(G) = k+j−1
j

βj(G). We have βj(G) ≥ n
2

for bipartite

graphs and βk(G) ≤ n for any graph G. Thus

n ≥ βk(G) =
k + j − 1

j
βj(G) ≥ k + j − 1

j

n

2
≥ n,

so we have equality throughout the previous inequality chain. In particular, βk(G) =
n, j = k− 1 and βj(G) = n

2
. It follows that k = Δ (G) + 1 and j = Δ (G), and so by

Theorem 9, G is n
2
K2 or n

4
C4.

The converse is obvious.

As a consequence of Proposition 11, we deduce the following result which provides
a sufficient condition in Theorem 6.

Corollary 6 If G is a bipartite graph of order n and 2 ≤ k ≤ Δ (G)+1 is an integer,
then βk(G) = 2βk−1(G) if and only if G is n

2
K2 and k = 2 or G is n

4
C4 and k = 3.

From Proposition 11 we deduce that βk(G) ≤ k+j−1
j

βj(G) − 1 for trees of order
n ≥ 3. However, we improve this upper bound for k ≥ 3. Also we characterize all
trees attaining this bound. We need an observation for the equality βk(G) = n − 1,
and a constructive characterization of trees T for which βj(T ) = jn

j+1
due to Blidia

et al. [1].

Observation 12 Let G be a graph of order n and k a positive integer. Then βk(G) =
n − 1 if and only if G has a vertex w such that every neighbor of w has degree at
most k, at least w or one of its neighbors has degree k or more, and every vertex in
V (G) − N [w], if any, has degree less than k in G.

We introduce the following operation.

Operation O: For a positive integer j, let v be any vertex of the star K1,j . The
tree Ti+1 is obtained from Ti by joining any vertex of Ti with the vertex v.

We now define the family T as follows:

T ∈ T if and only if T = K1,j or T is obtained from K1,j by a finite sequence of
the above operation.

Theorem 13 (Blidia et al. [1]) Let T be a tree of order n and maximum degree

Δ. Then for every integer j with 1 ≤ j ≤ Δ (G), βj(G) ≥ jn

j + 1
, with equality if and

only if T ∈ T .

Theorem 14 Let T be a tree of order n ≥ 3 and let k be a positive integer with
k ≤ Δ (G). Then

βk(T ) ≤ k + j − 1

j
βj(T ) − (k − 2)n

j + 1
− 1

with equality if and only if
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(i) T ∈ T , and

(ii) T has a vertex w such that every neighbor of w has degree at most k, at least w
or one of its neighbors has degree k or more, and every vertex in V (T )−N [w],
if any, has degree less than k in T .

Proof. We first prove the upper bound. Since βk(T ) ≤ n − 1 for k ≤ Δ (T ),
and βj(T ) ≥ jn

j+1
for trees (see Theorem 13), we deduce that βk(T ) − k+j−1

j
βj(T ) ≤

− (k − 2) n
j+1

− 1, and the bound is proved.

If T ∈ T and T satisfies Condition (ii), then by Theorem 13 and Observation 12,

βj(T ) = jn
j+1

and βk(T ) = n− 1, respectively. So βk(T )− k+j−1
j

βj(T ) = − (k−2)n
j+1

− 1.

Now assume that βk(T ) = k+j−1
j

βj(T ) − (k−2)n
j+1

− 1. Then we have equality

throughout the previous inequality chain. In particular, βj(T ) = jn
j+1

and βk(T ) =
n−1. From Theorem 13, the first equality implies that T ∈ T , and by Observation 12,
the second equality implies that T satisfies Condition (ii), and the proof is complete.

As a consequence of Theorem 14, we deduce the following result which improves
bounds of Corollary 3 and Theorem 6 for trees.

Corollary 7 If T is a tree of order n ≥ 3 and k is an integer with 2 ≤ k ≤ Δ (G),
then

(i) βk(T ) ≤ kβ(T ) − (k−2)n
2

− 1.

(ii) βk(T ) ≤ 2βk−1(T ) − (k−2)n
k

− 1.

From Theorem 14 we deduce a descriptive characterization of the class of trees achiev-
ing the bound of Theorem 14 for k = 2 and j = 1.

Corollary 8 If T is a tree, then β2(T ) = 2β(T ) − 1 if and only if T = K1, or T is
a corona of a star.

Finally, we characterize the class of trees T achieving the bound of Theorem 7.
To this end, we give some more definitions. For a positive integer p, a tree obtained
from a star K1,t, t ≥ 1 such that each of p edges is subdivided once is denoted by
Sp(K1,t), a vertex of degree t will be called the center vertex. If p = 0, then Sp(K1,t)
is the star K1,t. If p = t, then Sp(K1,t) is the healthy spider. If 1 ≤ p ≤ t − 1, then
Sp(K1,t) is a wounded spider. For P2, we will consider both vertices to be center
vertices, and in the case of P4, we will consider both endvertices as leaves and both
interior vertices as center vertices.

Let F ′ be a family of trees obtained from two healthy spiders by joining their
centre vertices, F ′′ (F ′′′, respectively) be a family of trees obtained from two healthy
spiders (one healthy spider and K1, respectively) and one edge xy by joining x to the
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Figure 1: Example of a graph in F

centre of the first healthy spider and y to the centre of the second healthy spider (by
joining x to the centre of the healthy spider and y to the centre of K1, respectively).

Let Fi be a tree obtained from the wounded spider Spi
(K1,ti) and qi ≤ pi healthy

spiders by identifying qi leaves of the wounded spider Spi
(K1,ti) which are nonadjacent

to its center with the centers of these qi healthy spiders. Let H be a tree obtained
by connecting an induced matching M ′ of size h − 1 with an independent set S ′ =
{x1, x2, ..., xh} such that every endvertex of edges of M ′ has exactly one neighbor
in S ′. Now, define F as the family of trees obtained from F1, F2, ..., Fh and H by
identifying a vertex xi of S ′ with the center of Fi for i ∈ {1, 2, ..., h} . For a tree F ∈ F ,
let LF and SF be the sets of leaves and support vertices of F , respectively, and let
AF be the set of vertices of F adjacent to

∑h
i=1 qi selected leaves in

⋃h
i=1 Spi

(K1,ti)
(see Figure 1).

Now, we are ready to characterize trees T such that β2(T ) = β(T ) + γ(T ) − 1.

Theorem 15 Let T be a tree of order n ≥ 3. Then

β2(T ) = β(T ) + γ(T ) − 1

if and only if T is a star, a healthy spider, a wounded spider or T ∈ F ′∪F ′′∪F ′′′∪F .

Proof. It is a simple mater to check that if T is a star, a healthy spider, a
wounded spider, or T ∈ F ′∪F ′′∪F ′′′, then β2(T ) = β(T )+γ(T )−1. If T ∈ F , then
it is easy to see that γ(T ) = |SF |, β(T ) = |LF ∪ AF | + |M ′| = |LF | + |AF | + h − 1
and

β2(T ) = |(SF − S ′) ∪ LF ∪ AF | + 2 |M ′| = |SF | + |LF | + |AF | + h − 2.

Hence, β2(T ) = β(T ) + γ(T ) − 1.
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Conversely, assume that T is a tree of order n ≥ 3 with β2(T ) = β(T )+γ(T )−1.
We follow the notation used in the proof of Theorem 7. If G [I] is independent, then
β2(T ) = β(T ) and so γ(T ) = 1. Therefore T is a star. If G [I] is not independent,
then γ(T ) ≥ |A| = |M |, since T is a tree, we have to distinguish two cases :

Case 1. γ(T ) = |M | = |A|.
Then S − A′ = ∅ and so M1 = ∅, since T is a tree. Therefore, β2(T ) = 2 |A| =

2γ(T ) = β(T ) + γ(T ) − 1, which means that β(T ) = |A| + 1. Since T is connected
with n ≥ 3, we must have |V − I| ∈ {1, 2}, for otherwise we have β(T ) > |A| + 1.
If |V − I| = 1, let {w} = V − I, then w is adjacent to exactly one endvertex of
each edge of M , since T is a tree. Therefore, T is a healthy spider of center w. If
|V − I| = 2, let {u, v} = V −I, then we have to examine possibilities for T depending
on whether the edge uv exists or not. If uv ∈ E(T ), then u is adjacent to exactly
one endvertex of each edge of a matching Mu ⊂ M with Mu �= ∅, and v is adjacent
to exactly one endvertex of each edge of Mv = M − Mu with Mv �= ∅, since T is a
tree and M1 = ∅. Therefore, T ∈ F ′. If uv /∈ E(T ), then u and v have exactly one
common neighbor in M , or u is adjacent to an endvertex of an edge of M and v is
adjacent to the other endvertex, otherwise we have a cycle or T is not connected.
Since β(T ) = |A|+ 1, the first situation cannot occur. The second situation leads to
the tree T ∈ F ′′ ∪ F ′′′.

Case 2. γ(T ) ≥ |M | + 1 = |A| + 1.

Then β2(T ) = |S| + |A| = β(T ) + γ(T ) − 1 ≥ |S| + |A| and so γ(T ) = |A| + 1
and β(T ) = |S|. Thus S − A′ �= ∅ and |S − A′| ≥ |V − I|, since β(T ) ≥ n

2
for trees.

Without loss of generality we can suppose that A−A1 ⊂ D and so |D ∩ (V − I)| =
|M1|+1 and the vertices of S−A′ are dominated by D∩(V − I). Since γ(T ) = |A|+1,
|V − I| ≥ 1. Each vertex of V − I is adjacent to exactly one vertex of S − A′, since
D∩(V − I) dominates (S − A′)∪A1∪A′

1, for otherwise we have a cycle or β(T ) > |S|.
Also, with the same argument, the subset V − I is independent and for any two
vertices x and y of V − I, x is adjacent to endvertices of edges of Mx ⊆ M and y is
adjacent to endvertices of edges of My ⊆ M −Mx and the vertices of (V − I)−D are
dominated by the vertices of M −M1. Thus T ∈ F . Note that if |(V − I) ∩ D| = 1,
then T is the tree F1 and if |V − I| = 1, then T which is the tree F1 is a wounded
spider.
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