On extending the Bose construction for triple systems to decompositions of complete multipartite graphs into 2-regular graphs of odd order

U. Jongthawonwuth
Department of Mathematics and Computer Science
Chulalongkorn University
Bangkok 10330
Thailand
S. I. El-Zanati*
Department of Mathematics
Illinois State University
Normal, IL 61790-4520
U.S.A.
C. Uiyyasathian
Department of Mathematics and Computer Science
Chulalongkorn University
Bangkok 10330
Thailand

Abstract

For integers $r \geq 2$ and $s \geq 1$, let $K_{r \times s}$ denote the complete multipartite graph with r partite sets of order s. Let G be a 2-regular graph of odd order n. If G contains exactly one odd cycle, it is known that there exists a G-decomposition of $K_{2 k n+1}$, of $K_{(2 k+1) \times n}$, and of $K_{k^{\prime} \times 2 n}$ for all positive integers k and $k^{\prime} \geq 3$. If G consists of three vertex-disjoint odd cycles, then the only known general result is a G-decomposition of $K_{2 n+1}$. We use a novel extension of the Bose construction for triple systems to show that in the three odd cycles case, there exists a G-decomposition of $K_{(2 k+1) \times n}$ for every positive integer k. We also show that there exists a G-decomposition of $K_{k \times 2 n}$ as well as of $K_{2 k n+1}$ for every integer $k \geq 3$.

[^0]
1 Introduction

Let \mathbb{Z}_{n} be the group of integers modulo n. For integers a and b with $a \leq b$, we denote the set $\{a, a+1, \ldots, b\}$ by $[a, b]$ (if $a>b$, then $[a, b]=\varnothing$). For a graph G, let $V(G)$ and $E(G)$ denote the vertex set of G and the edge set of G, respectively. The order and the size of a graph G are $|V(G)|$ and $|E(G)|$, respectively. We will denote the complete multipartite graph with r partite sets of order s by $K_{r \times s}$. The vertex-disjoint union of r copies of a graph G will be denoted by $r G$. A non-bipartite graph G is almost-bipartite if for some $e \in E(G)$, the graph $G-e$ is bipartite.

A decomposition of a graph K is a set $\Delta=\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ of subgraphs of K such that the edge sets of the graphs G_{i} form a partition of the edge set of K. If each G_{i} is isomorphic to a fixed graph G, such a decomposition is called a G decomposition of K or (K, G)-design. In this case, we may say G decomposes K or K is decomposable by G. A $\left(K_{v}, G\right)$-design is also known as a G-design of order v. For recent surveys on G-designs, we direct to the reader to [2] and [12].

One of the better studied problems in G-designs is the case when G is a cycle. Necessary and sufficient conditions for the existence of C_{n}-designs of order v were found about a decade ago by Alspach and Gavlas [6] and by Šajna [20]. Necessary and sufficient conditions for the existence of a G-design of order v are found in [3] when G is a 2 -regular graph of order at most 10 . For an arbitrary 2-regular graph G of order n, the problem of finding necessary and sufficient conditions for the existence of a G-design of order v is far from settled. It is expected however that for such a G, there will exist a G-design of order v for all $v \equiv 1(\bmod 2 n)$. This has been confirmed when G is bipartite (see [16] and [8]), when G is almost-bipartite [14], when G is $r C_{m}$ where m is odd [17], and when G has two components (see [1], [9] and [13]). If in addition n is odd and $(G, v) \notin\left\{\left(C_{4} \cup C_{5}, 9\right),\left(C_{3} \cup C_{3} \cup C_{5}, 11\right)\right\}$, then a G-design of order v for all $v \equiv n(\bmod 2 n)$ is likely to exist. This is confirmed in [15] when G consists of one even and one odd cycle.

A well-known problem on decompositions of complete graphs into 2-regular graphs is the Oberwolfach Problem. Let G be a 2-regular graph of odd order n. The problem of determining whether there exists a G-decomposition of K_{n} is known as the Oberwolfach Problem. This problem was settled in 1989 by Alspach, Schellenberg, Stinson, and Wagner [7] in the case when all the components of G are isomorphic to the same cycle. More recently, Traetta [21] settled the case when G consists of two components. The general problem however is far from settled. For example, very little is known when G consists of three components (see [11] for some known results).

It is easy to see that $K_{2 k n+n}$ can be decomposed into $(2 k+1) K_{n}$ and $K_{(2 k+1) \times n}$. Thus if there is a G-decomposition of K_{n} and a G-decomposition of $K_{(2 k+1) \times n}$, then there is a G-decomposition of $K_{2 k n+n}$. In [15], an extension of the Bose construction for triple systems is used to show that if G of order n is the vertex-disjoint union of an even cycle and an odd cycle, then G decomposes $K_{(2 k+1) \times n}$ for every positive integer k. This is then combined with Traetta's result [21] on the Oberwolfach problem with two components to show that there is a G-decomposition of $K_{2 k n+n}$. In [15], it is also shown that there exists a G-decomposition of $K_{k^{\prime} \times 2 n}$ for every integer $k^{\prime} \geq 3$. The
results on G-decompositions of $K_{(2 k+1) \times n}$ and of $K_{k^{\prime} \times 2 n}$ are extended to all 2-regular almost-bipartite graphs G in [18].

In this article, we use a further extension of the Bose construction for triple systems to show that if G of order n is the vertex-disjoint union of three odd cycles, then there exists a G-decomposition of $K_{(2 k+1) \times n}$ for every positive integer k. We also show that there exists a G-decomposition of $K_{k \times 2 n}$ as well as of $K_{2 n k+1}$ for every integer $k \geq 3$. As with the Bose construction, these decompositions make use of commutative quasigroups.

2 Quasigroups and the Bose Construction

A quasigroup of order q is a pair (Q, \circ) where Q is a set of size q, say $Q=[1, q]$, and \circ is a binary operation on Q such that for every pair of elements $a, b \in Q$, the equations $a \circ x=b$ and $y \circ a=b$ have unique solutions. The quasigroup is idempotent if $i \circ i=i$ for every $i \in Q$ and it is commutative if $i \circ j=j \circ i$ for all $i, j \in Q$. It is known that an idempotent commutative quasigroup of order q exists if and only if q is odd (see [19]).

Let $Q=[1,2 k]$ and let $H=\{\{1,2\},\{3,4\}, \ldots,\{2 k-1,2 k\}\}$. In what follows, the two element subsets $\{2 i-1,2 i\} \in H$ are called holes. A quasigroup with holes H is a quasigroup (Q, \circ) of order $2 k$ in which for each $h \in H$, we have (h, \circ) is a subquasigroup of (Q, \circ). It is known that for every integer $k \geq 3$, there exists a commutative quasigroup (Q, \circ) of order $2 k$ with holes H (see [19]). Commutative quasigroups of order $2 k$ with holes H are used to construct C_{3}-decompositions of $K_{k \times 6}$ for every integer $k \geq 3$.

We give a brief description of Bose's construction for Steiner triple triple systems of order $6 k+3$. We direct the reader to the book by Lindner and Rodger [19] for detailed information on quasigroups and triple systems.

We will define a Steiner triple system of order v to be a C_{3}-decomposition of K_{v}. It has long been known that a Steiner triple system of order v exists if and only if $v \equiv 1$ or $3(\bmod 6)$. In 1939 , Bose [10] used the existence of an idempotent commutative quasigroup of order $2 k+1$ to construct a C_{3}-decomposition of $K_{6 k+3}$ for every positive integer k. One can view $K_{6 k+3}$ as $(2 k+1) K_{3} \bigcup K_{(2 k+1) \times 3}$. Thus to construct a C_{3}-decomposition of $K_{6 k+3}$, it suffices to construct a C_{3}-decomposition of $K_{(2 k+1) \times 3}$. Let $\langle a, b, c\rangle$ denote the C_{3} with vertex set $\{a, b, c\}$.

Let (Q, \circ) be an idempotent commutative quasigroup of order $2 k+1$ where $Q=$ $[1,2 k+1]$ and let $V\left(K_{(2 k+1) \times 3}\right)=\mathbb{Z}_{3} \times Q$ with the obvious vertex partition. Let $T=\{\langle(0, i),(0, j),(1, i \circ j)\rangle,\langle(1, i),(1, j),(2, i \circ j)\rangle,\langle(2, i),(2, j),(0, i \circ j)\rangle: 1 \leq i<$ $j \leq 2 k+1\}$. Then the C_{3} 's in T form a C_{3}-decomposition of $K_{(2 k+1) \times 3}$.

Figure 1 shows an idempotent commutative quasigroup of order 5 and one triple from the Bose construction of a Steiner triple system of order 15.

Alternatively, let $k \geq 3$ be an integer and for $i \in[1, k]$, let $h_{i}=\{2 i-1,2 i\}$ and $g_{i}=\mathbb{Z}_{3} \times h_{i}$. Let $Q=[1,2 k]$ and $H=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$. Let (Q, \circ) be a commutative quasigroup of order $2 k$ with holes H. Let $V\left(K_{k \times 6}\right)=\mathbb{Z}_{3} \times Q$ with the vertexset partition $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$. Let $T=\{\langle(0, i),(0, j),(1, i \circ j)\rangle,\langle(1, i),(1, j),(2, i \circ$

\bigcirc	1	2	3	4	5
1	1	5	2	3	4
2	5	2	4	1	3
3	2	4	3	5	1
4	3	1	5	4	2
5	4	3	1	2	5

Figure 1: An idempotent commutative quasigroup of order 5 and one triple from the Bose construction of a Steiner triple system of order 15.
$j)\rangle,\langle((2, i),(2, j),(0, i \circ j)\rangle: 1 \leq i<j \leq 2 k,\{i, j\} \notin H\}$. Then the C_{3} 's in T form a C_{3}-decomposition of $K_{k \times 6}$. This process is part of what is known as the quasigroups with holes construction for triple systems (see [19]). Figure 2 shows a commutative quasigroup of order 6 with holes and one triple from the corresponding C_{3}-decomposition of $K_{3 \times 6}$.

\bigcirc	1	2	3	4	5	6
1	1	2	5	6	3	4
2	2	1	6	5	4	3
3	5	6	3	4	1	2
4	6	5	4	3	2	1
5	3	4	1	2	5	6
6	4	3	2	1	6	5

Figure 2: A commutative quasigroup of order 6 with holes and one triple from the corresponding C_{3}-decomposition of $K_{3 \times 6}$.

3 Some notation

We denote the directed path with vertices $x_{0}, x_{1}, \ldots, x_{k}$, where x_{i} is adjacent to $x_{i+1}, 0 \leq i \leq k-1$, by $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$. The first vertex of this path is x_{0}, the second vertex is x_{1}, and the last vertex is x_{k}. If $G_{1}=\left(x_{0}, x_{1}, \ldots, x_{j}\right)$ and $G_{2}=$ $\left(y_{0}, y_{1}, \ldots, y_{k}\right)$ are directed paths with $x_{j}=y_{0}$, then by $G_{1}+G_{2}$ we mean the path $\left(x_{0}, x_{1}, \ldots, x_{j}, y_{1}, y_{2}, \ldots, y_{k}\right)$.

For the remainder of this section, we consider only subgraphs of a complete bipartite graph $K_{m, m}$ with vertex set $[0, m-1] \times[1,2]$ and the obvious vertex bipartition. Furthermore, if m, n, and i are integers with $m \leq n$, we denote $\{(m, i),(m+$ $1, i), \ldots,(n, i)\}$ by $[(m, i),(n, i)]$. Define the length of an edge $\{(i, 1),(j, 2)\}$ to be $j-i$ if $j \geq i$; otherwise the edge length is $n+j-i$.

Let $P(k)$ be the path with k edges and $k+1$ vertices given by $((0,1),(k, 2),(1,1)$, $(k-1,2),(2,1),(k-2,2), \ldots,(\lceil k / 2\rceil,\lceil k / 2\rceil-\lfloor k / 2\rfloor)+1)$. Note that the set of vertices of this graph is $A \cup B$, where $A=[(0,1),(\lfloor k / 2\rfloor, 1)], B=[(\lfloor k / 2\rfloor+1,2),(k, 2)]$,
and every edge joins a vertex of A to one of B. Furthermore, the set of lengths of the edges of $P(k)$ is $[1, k]$.

Now let a be a nonnegative integer and b be an integer such that $|b| \leq\lfloor k / 2\rfloor+1$, and let us add $(a, 0)$ to all the vertices of A and $(b, 0)$ to all the vertices of B. We denote the resulting graph by $P(a, b, k)$. Note that this graph has the following properties.

P1 $P(a, b, k)$ is a path with first vertex $(a, 1)$ and second vertex $(b+k, 2)$. Its last vertex is $(a+k / 2,1)$ if k is even and $(b+(k+1) / 2,2)$ if k is odd.
P2 Each edge of $P(a, b, k)$ joins a vertex of $A^{\prime}=[(a, 1),(\lfloor k / 2\rfloor+a, 1)]$ to a vertex of $B^{\prime}=[(\lfloor k / 2\rfloor+1+b, 2),(k+b, 2)]$.
P3 The set of edge lengths of $P(a, b, k)$ is $[b-a+1, b-a+k]$.
Now consider the directed path $Q(k)$ obtained from $P(k)$ by replacing each vertex (i, j) with $(k-i, 3-j)$. The new graph is the path $((k, 2),(0,1),(k-$ $1,2),(1,1), \ldots,(\lfloor k / 2\rfloor,\lfloor k / 2\rfloor-\lceil k / 2\rceil+2))$. The set of vertices of $Q(k)$ is $A \cup B$, where $A=[(0,1),(\lceil k / 2\rceil-1,1)]$ and $B=[(\lceil k / 2\rceil, 2),(k, 2)]$, and every edge joins a vertex of A to one of B. The set of edge lengths is still $[1, k]$. We again add ($a, 0$) to the vertices of A and $(b, 0)$ to vertices of B, where a is nonnegative integer and b is an integer with $|b| \leq\lceil k / 2\rceil$. We denote the resulting graph by $Q(a, b, k)$. Note that this graph has the following properties.

Q1 $Q(a, b, k)$ is a path with first vertex $(k+b, 2)$. Its last vertex is $(b+k / 2,2)$ if k is even and $(a+(k-1) / 2,1)$ if k is odd.
Q2 Each edge of $Q(a, b, k)$ joins a vertex of $A^{\prime}=[(a, 1),(a+\lceil k / 2\rceil-1,1)]$ to a vertex of $B^{\prime}=[(b+\lceil k / 2\rceil, 2),(b+k, 2)]$.
Q3 The set of edge lengths of $Q(a, b, k)$ is $[b-a+1, b-a+k]$.

$(11,2)(10,2)(9,2)$

$$
P(4,5,6)
$$

Figure 3: Examples of the $P(a, b, k)$ and $Q(a, b, k)$ notation.

$4 \quad G$-decompositions of $K_{(2 k+1) \times n}$ and of $K_{k \times 2 n}$

Let $n \geq 3$ be an odd integer and let k be a positive integer. Let $K_{(2 k+1) \times n}$ have vertex set $\mathbb{Z}_{n} \times[1,2 k+1]$ with the obvious vertex partition. As before, we define the length of an edge $\{(i, r),(j, s)\}$ where $r<s$, to be $j-i$ if $j \geq i$; otherwise the edge length is $n+j-i$. Thus, between any two parts, there are edges of lengths
$0,1, \ldots, n-1$. We will often write $-j$ for edge length $n-j$ when n is understood. Therefore, between any two parts, there are edges of lengths $0, \pm 1, \pm 2, \ldots, \pm \frac{(n-1)}{2}$. For ease of notation, we henceforth use i_{r} and i_{s} to denote the vertices (i, r) and (i, s), respectively.

We first prove a lemma that shows the existence of paths with certain edge lengths in $K_{n, n}$.

Lemma 1. Let $n \geq 3$ be an odd integer and let $m \leq(n-1) / 2$ be a positive integer. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times\{1,2\}$ with the obvious vertex partition. Let $d_{1}, d_{2}, \ldots, d_{m-1}$ be an increasing sequence of consecutive positive integers with $d_{m-1} \leq(n-1) / 2$. There exists a path P in $K_{n, n}$ of length $2 m-1$ whose edges have lengths $0, \pm d_{1}, \pm d_{2}, \ldots, \pm d_{m-1}$ with endpoints 0_{1} and 0_{2}. Furthermore, $V(P) \subseteq$ $\left(\left[0,\left\lceil\frac{m}{2}\right\rceil-1\right] \cup\left[d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1, d_{m-1}\right]\right) \times[1,2]$.
Proof. If $m=1$, let P be the path consisting of the edge $\left\{0_{1}, 0_{2}\right\}$. Otherwise, for $k \in[1, m-1]$, define $e_{k}=\sum_{i=0}^{k-1}(-1)^{i} d_{m-1-i}$. Note that since $d_{i+1}-d_{i}=1$, we have $e_{2 j}=j$ and $e_{2 j+1}=d_{m-1}-j$. Thus, $e_{m-1}=\left\lceil\frac{m}{2}\right\rceil-1$ if $m-1$ is even and $e_{m-1}=d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1$ if $m-1$ is odd. Similarly, $e_{m-2}=\left\lceil\frac{m}{2}\right\rceil-1$ or $d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1$ if $m-1$ is odd or even, respectively.

Consider the path of length $m-1$ given by $P^{\prime}: 0_{1},\left(e_{1}\right)_{2},\left(e_{2}\right)_{1},\left(e_{3}\right)_{2}, \ldots$ where P^{\prime} ends with $\left(e_{m-1}\right)_{2}$ if $m-1$ is odd or $\left(e_{m-1}\right)_{1}$ if $m-1$ is even. Thus, $V\left(P^{\prime}\right) \subseteq$ $\left(\left[0,\left\lceil\frac{m}{2}\right\rceil-1\right] \cup\left[d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1, d_{m-1}\right]\right) \times[1,2]$. Also, observe that the lengths of the edges of P^{\prime}, in the order encountered, are $d_{m-1}, d_{m-2}, \ldots, d_{1}$.

Next consider the path $P^{\prime \prime}: 0_{2},\left(e_{1}\right)_{1},\left(e_{2}\right)_{2},\left(e_{3}\right)_{1}, \ldots$ where $P^{\prime \prime}$ ends with $\left(e_{m-1}\right)_{1}$ if $m-1$ is odd or $\left(e_{m-1}\right)_{2}$ if $m-1$ is even, and observe that the edges of $P^{\prime \prime}$, in the order encountered, are $-d_{m-1},-d_{m-2}, \ldots,-d_{1}$. Since $P^{\prime \prime}$ is constructed in the same way as P^{\prime} with the corresponding vertices lying in the opposite parts of $V\left(K_{n, n}\right)$, we have $V\left(P^{\prime \prime}\right) \subseteq\left(\left[0,\left\lceil\frac{m}{2}\right\rceil-1\right] \cup\left[d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1, d_{m-1}\right]\right) \times[1,2]$, and $V\left(P^{\prime}\right) \cap V\left(P^{\prime \prime}\right)=\varnothing$.

Construct the path P from the paths P^{\prime} and $P^{\prime \prime}$ by adding the edge from $\left(e_{m-1}\right)_{1}$ to $\left(e_{m-1}\right)_{2}$. Note that P has length $2 m-1$, the edges of P have lengths $0, \pm d_{1}, \pm d_{2}, \ldots, \pm d_{m-1}$, and $V(P) \subseteq\left(\left[0,\left\lceil\frac{m}{2}\right\rceil-1\right] \cup\left[d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1, d_{m-1}\right]\right) \times[1,2]$.

Let K be a subgraph of a graph with vertex set $\mathbb{Z}_{n} \times[1, q]$. For a positive integer ℓ, the graph $K+\ell$ has vertex set $\left\{(i+\ell)_{z}: i_{z} \in V(K)\right\}$ and edge set $\left\{\left\{(i+\ell)_{r},(j+\right.\right.$ $\left.\left.\ell)_{s}\right\}:\left\{i_{r}, j_{s}\right\} \in E(K)\right\}$.
Theorem 2. Let G be a 2-regular graph of order n consisting of exactly three odd cycles. For every positive integer k, there exists a G-decomposition of $K_{(2 k+1) \times n}$.

Proof. Let $G=C_{2 x+1} \cup C_{2 y+1} \cup C_{2 z+1}$ where x, y, and z are positive integers and let $n=2 x+2 y+2 z+3$. Let $k \geq 1$ be an integer. Label the vertex set of $K_{(2 k+1) \times n}$ with the elements of the group $\mathbb{Z}_{n} \times[1,2 k+1]$ with the obvious vertex partition. Let (Q, \circ) be an idempotent commutative quasigroup of order $2 k+1$, where $Q=[1,2 k+1]$.

Fix r and s with $1 \leq r<s \leq 2 k+1$. We will construct a graph $G_{r, s}$ consisting of the vertex disjoint union of the following three cycles: $C_{r, s}$ of length $2 x+1, C_{r, s}^{\prime}$ of length $2 y+1$, and $C_{r, s}^{\prime \prime}$ of length $2 z+1$. We will consider two cases.

Case 1: G has at least two cycles of length 3 . Without loss of generality, we may assume that $x=y=1$. Then the vertex sets of $C_{r, s}$ and $C_{r, s}^{\prime}$ can be given by $\left\{0_{r}, 1_{s}, 3_{r o s}\right\}$ and $\left\{3_{r}, 2_{s}, 5_{r o s}\right\}$, respectively. If $z=1$, then the vertex set of $C_{r, s}^{\prime \prime}$ can be given by $\left\{4_{r}, 4_{s}, 8_{\text {ros }}\right\}$. Suppose that $z \geq 2$. By Lemma 1 , there exists a path $P_{r, s}^{*}$ of length $2 z-1$, between parts r and s, whose edges have lengths $\{0\} \cup \pm[5, z+3]$. In the lemma, we would use $d_{1}=5, d_{2}=6, \ldots, d_{z-1}=z+3$, so $V\left(P_{r, s}^{*}\right) \subseteq[0, z+3] \times\{r, s\}$ with endpoints 0_{r} and 0_{s}. Let $P_{r, s}^{\prime \prime}=P_{r, s}^{*}+4$. Thus $P_{r, s}^{\prime \prime}$ has endpoints 4_{r} and 4_{s}. Then $V\left(P_{r, s}^{\prime \prime}\right) \subseteq[4, z+7] \times\{r, s\}$. Thus, $P_{r, s}^{\prime \prime}$ is vertex disjoint from $C_{r, s}$ and $C_{r, s}^{\prime}$. Construct the cycle $C_{r, s}^{\prime \prime}$ of length $2 z+1$ from the path $P_{r, s}^{\prime \prime}$ by adding the edges $\left\{4_{r}, 8_{\text {ros }}\right\}$ and $\left\{4_{s}, 8_{\text {ros }}\right\}$. Note that in the induced subgraph of $K_{(2 k+1) \times n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}, G_{r, s}$ contains one edge of each length $i \in[-1,1] \cup \pm[5, z+3]$ (if $z=1$, then $G_{r, s}$ contains one edge of each length $\left.i \in[-1,1]\right)$. Moreover, the three edges of $G_{r, s}$ that are incident only with vertices in $\mathbb{Z}_{n} \times\{r, r \circ s\}$ are all of different lengths. In fact, the edges $\left\{0_{r}, 3_{r o s}\right\}$ in $C_{r, s},\left\{3_{r}, 5_{r o s}\right\}$ in $C_{r, s}^{\prime}$, and $\left\{4_{r}, 8_{r o s}\right\}$ in $C_{r, s}^{\prime \prime}$, have lengths 3,2 , and 4 , respectively, if $r<r \circ s$, and lengths $-3,-2$, and -4 , respectively, otherwise. Similarly, the three edges of $G_{r, s}$ that are incident only with vertices in $\mathbb{Z}_{n} \times\{s, r \circ s\}$ are all of different lengths. In fact, the edges $\left\{1_{s}, 3_{r o s}\right\}$ in $C_{r, s},\left\{2_{s}, 5_{r o s}\right\}$ in $C_{r, s}^{\prime}$, and $\left\{4_{s}, 8_{r o s}\right\}$ in $C_{r, s}^{\prime \prime}$, have lengths 2 , 3 , and 4, respectively, if $s<r \circ s$, and lengths $-2,-3$, and -4 , respectively, otherwise. Figure 4 shows an example of $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=y=1$ and $z=4$.

Next, let $G_{r, s}^{*}=\left\{G_{r, s}+\ell: 0 \leq \ell<n-1\right\}$. Thus $G_{r, s}^{*}$ contains n distinct copies of G. Moreover, in the induced subgraph of $K_{(2 k+1) \times n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}$, G^{*} contains all edges of length i for all $i \in[-(n-1) / 2,(n-1) / 2] \backslash \pm[2,4]$. Let $\mathcal{C}=\left\{G_{r, s}+\ell: 1 \leq r<s \leq 2 k+1,0 \leq \ell \leq n-1\right\}$ and note that \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G. We will show that every edge of $K_{(2 k+1) \times n}$ appears in some copy of G in \mathcal{C}. Let $e=\left\{i_{r}, j_{s}\right\}$ with $r<s$ be an arbitrary edge of $K_{(2 k+1) \times n}$. Let t^{\prime} be the unique solution to $r \circ t^{\prime}=s$ and let $\alpha^{\prime}=\min \left\{r, t^{\prime}\right\}$ and $\beta^{\prime}=\max \left\{r, t^{\prime}\right\}$. Let $t^{\prime \prime}$ be the unique solution to $s \circ t^{\prime \prime}=r$ and let $\alpha^{\prime \prime}=\min \left\{s, t^{\prime \prime}\right\}$ and $\beta^{\prime \prime}=\max \left\{s, t^{\prime \prime}\right\}$. If $j-i \in[-(n-1) / 2,(n-2) / 2] \backslash \pm[2,4]$ then e belongs to $G_{r, s}+\ell$ where $0 \leq \ell \leq n-1$.

Note that if $j-i=2$, then e belongs to the triple $\left\{(i, r),\left(i-1, t^{\prime}\right),(j, s)\right\}$ which is a copy of $C_{t^{\prime}, r}$ if $t^{\prime}<r$, or a copy of $C_{r, t^{\prime}}^{\prime}$ if $r<t^{\prime}$. If $j-i=3$, then e belongs to the triple $\left\{(i, r),\left(i+1, t^{\prime}\right),(j, s)\right\}$ which is a copy of $C_{t^{\prime}, r}^{\prime}$ if $t^{\prime}<r$, and a copy of $C_{r, t^{\prime}}$ if $r<t^{\prime}$. Also, if $j-i=4$, then e belongs to some copy of $C_{\alpha^{\prime}, \beta^{\prime}}^{\prime \prime}$. Thus, if $j-i \in[2,4]$, then e belongs to $G_{\alpha^{\prime}, \beta^{\prime}}+\ell$ where $0 \leq \ell \leq n-1$.

Observe that if $j-i=-2$, then e belongs to the cycle $\left\langle(j, s),\left(j-1, t^{\prime \prime}\right),(i, r)\right\rangle$ which is a copy of $C_{t^{\prime \prime}, s}$ if $t^{\prime \prime}<s$, or a copy of $C_{s, t^{\prime \prime}}^{\prime}$ if $s<t^{\prime \prime}$. If $j-i=-3$, then e belongs to the cycle $\left\langle(j, s),\left(j+1, t^{\prime \prime}\right),(i, r)\right\rangle$ which is a copy of $C_{t^{\prime \prime}, s}^{\prime}$ if $t^{\prime \prime}<s$, or a copy of $C_{s, t^{\prime \prime}}$ if $s<t^{\prime \prime}$. Also, if $j-i=-4$, then e belongs to some copy of $C_{\alpha^{\prime \prime}, \beta^{\prime \prime}}^{\prime \prime}$. Thus, if $j-i \in[-4,-2]$, then e belongs to $G_{\alpha^{\prime \prime}, \beta^{\prime \prime}}+\ell$ where $0 \leq \ell \leq n-1$. Since every edge of $K_{(2 k+1) \times n}$ appears in some copy of G in \mathcal{C} and since \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G, it follows that \mathcal{C} is a decomposition of $K_{(2 k+1) \times n}$ into copies of G.

Case 2: G has at most one cycle of length 3 . Suppose $y \geq 2$ and $z \geq 2$. By Lemma 1, there exists a path $P_{r, s}$ of length $2 x-1$ using the edge lengths in $\{0\} \cup$

Figure 4: $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=y=1$ and $z=4$.
$\pm[y+z+3, x+y+z+1]$ with endpoints 0_{r} and 0_{s}. In the lemma, we would use $d_{1}=y+z+3, d_{2}=y+z+4, \ldots, d_{x-1}=x+y+z+1$, so $V\left(P_{r, s}\right) \subseteq$ $\left(\left[0,\left\lceil\frac{x}{2}\right\rceil-1\right] \cup\left[\left\lceil\frac{x}{2}\right\rceil+y+z+2, x+y+z+1\right]\right) \times\{r, s\}$. We construct the cycle $C_{r, s}$ of length $2 x+1$ from $P_{r, s}$ by adding the edges $\left\{0_{r},(y+z)_{r o s}\right\}$ and $\left\{0_{s},(y+z)_{r o s}\right\}$.

Next, we will construct the cycle $C_{r, s}^{\prime}$ of length $2 y+1$. Let $P_{r, s}^{\prime}=G_{1}^{\prime}+G_{2}^{\prime}+G_{3}^{\prime}$ where

$$
\begin{aligned}
& G_{1}^{\prime}=P\left(\left\lceil\frac{x}{2}\right\rceil,\left\lceil\frac{x}{2}\right\rceil+3, y-2\right) \\
& G_{2}^{\prime}= \begin{cases}\left.\left(\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{s},\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+1}{2}\right)_{r},\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-1}{2}\right)_{s},\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{r}\right), & \text { if } y-2 \text { odd; } \\
\left.\left(\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{r},\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+2}{2}\right)_{s},\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+4}{2}\right)_{r},\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{s}\right), & \text { if } y-2 \text { even, }\end{cases} \\
& G_{3}^{\prime}= \begin{cases}P\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2},\left\lceil\frac{x}{2}\right\rceil-\frac{y-1}{2}, y-2\right), & \text { if } y-2 \text { odd } ; \\
Q\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+6}{2},\left\lceil\frac{x}{2}\right\rceil-\frac{y-2}{2}, y-2\right), & \text { if } y-2 \text { even. }\end{cases}
\end{aligned}
$$

If $y=2$, then $P_{r, s}^{\prime}=G_{2}^{\prime}=\left(\left\lceil\frac{x}{2}\right\rceil_{r},\left(\left\lceil\frac{x}{2}\right\rceil+2\right)_{s},\left(\left\lceil\frac{x}{2}\right\rceil+3\right)_{r},\left\lceil\frac{x}{2}\right\rceil_{s}\right)$.
Note that by P1, the first vertex of G_{1}^{\prime} is $\left\lceil\frac{x}{2}\right\rceil_{r}$, and the last vertex is $\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{s}$ if $y-2$ is odd and $\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{r}$ if $y-2$ is even; the first vertex of G_{3}^{\prime} is $\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{r}$ and the last vertex is $\left\lceil\frac{x}{2}\right\rceil_{s}$ if $y-2$ is odd. By Q1, the first vertex of G_{3}^{\prime} is $\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{s}$ and the last vertex is $\left\lceil\frac{x}{2}\right\rceil_{s}$ if $y-2$ is even.

For $i=1$ or 3 , let A_{i}^{\prime} and B_{i}^{\prime} denote the sets labeled A^{\prime} and B^{\prime} in $\mathbf{P} 2$ and Q2 corresponding to the graph G_{i}. Then using P2 and Q2, we compute

$$
\begin{aligned}
& A_{1}^{\prime}=\left[\left\lceil\frac{x}{2}\right\rceil_{r},\left(\left\lceil\frac{x}{2}\right\rceil+\left\lfloor\frac{y-2}{2}\right\rfloor\right)_{r}\right], \\
& B_{1}^{\prime}=\left[\left(\left\lceil\frac{x}{2}\right\rceil+\left\lceil\frac{y+5}{2}\right\rceil\right)_{s},\left(\left\lceil\frac{x}{2}\right\rceil+y+1\right)_{s}\right], \\
& A_{3}^{\prime}=\left[\left(\left\lceil\frac{x}{2}\right\rceil+\left\lceil\frac{y+5}{2}\right\rceil\right)_{r},\left(\left\lceil\frac{x}{2}\right\rceil+y+1\right)_{r}\right], \\
& B_{3}^{\prime}=\left[\left\lceil\frac{x}{2}\right\rceil_{s},\left(\left\lceil\frac{x}{2}\right\rceil+\left\lfloor\frac{y-2}{2}\right\rfloor\right)_{s}\right] .
\end{aligned}
$$

Note that $V\left(G_{1}^{\prime}\right) \cap V\left(G_{2}^{\prime}\right)=\left\{\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{s}\right\}$ if $y-2$ is odd and $V\left(G_{1}^{\prime}\right) \cap V\left(G_{2}^{\prime}\right)=$ $\left\{\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{r}\right\}$ if $y-2$ is even and, $V\left(G_{2}^{\prime}\right) \cap V\left(G_{3}^{\prime}\right)=\left\{\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{r}\right\}$ if $y-2$ is odd and $V\left(G_{2}^{\prime}\right) \cap V\left(G_{3}^{\prime}\right)=\left\{\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{s}\right\}$ if $y-2$ is even; otherwise, $G_{1}^{\prime}, G_{2}^{\prime}$ and G_{3}^{\prime} are vertex disjoint. Therefore, $G_{1}^{\prime}+G_{2}^{\prime}+G_{3}^{\prime}$ is a path of length $2 y-1$ with the endpoints $\left\lceil\frac{x}{2}\right\rceil_{r}$ and $\left\lceil\frac{x}{2}\right\rceil_{s}$. Since $V\left(P_{r, s}^{\prime}\right) \subseteq\left\lceil\left\lceil\frac{x}{2}\right\rceil,\left\lceil\frac{x}{2}\right\rceil+y+1\right] \times\{r, s\}, P_{r, s}^{\prime}$ is vertex-disjoint from
$P_{r, s}$.
Next, let E_{i}^{\prime} denote the set of edge lengths in G_{i}^{\prime} for $i=1$ or 3 . By P3 and Q3, we have edge lengths

$$
\begin{aligned}
& E_{1}^{\prime}=[4, y+1], \\
& E_{3}^{\prime}=[-(y+1),-4] .
\end{aligned}
$$

Notice that the set of edge lengths in G_{2}^{\prime} is $\{2,-1,-3\}$. Then construct the cycle $C_{r, s}^{\prime}$ of length $2 y+1$ from the path $P_{r, s}^{\prime}$ by adding the edges $\left\{\left\lceil\frac{x}{2}\right\rceil_{r},\left(\left\lceil\frac{x}{2}\right\rceil+y+z+1\right)_{r o s}\right\}$ and $\left\{\left\lceil\frac{x}{2}\right\rceil_{s},\left(\left\lceil\frac{x}{2}\right\rceil+y+z+1\right)_{\text {ros }}\right\}$.

Finally we will construct the cycle $C_{r, s}^{\prime \prime}$ of length $2 z+1$. Let $P_{r, s}^{\prime \prime}=G_{1}^{\prime \prime}+G_{2}^{\prime \prime}+G_{3}^{\prime \prime}$ where

$$
\begin{aligned}
& G_{1}^{\prime \prime}=P(x+y+z+2, x+2 y+z+3, z-2), \\
& G_{2}^{\prime \prime}= \begin{cases}\left(\left(\frac{2 x+4 y+3 z+5}{2}\right)_{s},\left(\frac{2 x+4 y+3 z-1}{2}\right)_{r},\left(\frac{2 x+4 y+3 z+1}{2}\right)_{s},\left(\frac{2 x+4 y+3 z+5}{2}\right)_{r}\right), & \text { if } z-2 \text { odd } ; \\
\left(\left(\frac{2 x+2 y+3 z+2}{2}\right)_{r},\left(\frac{2 x+2 y+3 z+8}{2}\right)_{s},\left(\frac{2 x+2 y+3 z+6}{2}\right)_{r},\left(\frac{2 x+2 y+3 z+2}{2}\right)_{s}\right), & \text { if } z-2 \text { even },\end{cases} \\
& G_{3}^{\prime \prime}= \begin{cases}P\left(\frac{2 x+4 y+3 z+5}{2}, \frac{2 x+2 y+z+5}{2}, z-2\right), & \text { if } z-2 \text { odd } ; \\
Q\left(\frac{2 x+4 y+3 z+6}{2}, \frac{2 x+2 y+z+6}{2}, z-2\right), & \text { if } z-2 \text { even. }\end{cases}
\end{aligned}
$$

If $z=2$, then $P_{r, s}^{\prime \prime}=G_{2}^{\prime \prime}=\left((x+y+4)_{r},(x+y+7)_{s},(x+y+6)_{r},(x+y+4)_{s}\right)$.
Note that by P1, the first vertex of $G_{1}^{\prime \prime}$ is $(x+y+z+2)_{r}$, and the last vertex is $\left(\frac{2 x+4 y+3 z+5}{2}\right)_{s}$ if $z-2$ is odd and $\left(\frac{2 x+2 y+3 z+2}{2}\right)_{r}$ if $z-2$ is even; the first vertex of $G_{3}^{\prime \prime}$ is $\left(\frac{2 x+4 y+3 z+5}{2}\right)_{r}$ and the last vertex is $(x+y+z+2)_{s}$ if $z-2$ is odd. By Q1, the first vertex of $G_{3}^{\prime \prime}$ is $\left(\frac{2 x+2 y+3 z+2}{2}\right)_{s}$ and the last vertex is $(x+y+z+2)_{s}$ if $z-2$ is even.

For $i=1$ or 3 , let $A_{i}^{\prime \prime}$ and $B_{i}^{\prime \prime}$ denote the sets labeled A^{\prime} and B^{\prime} in P2 and Q2 corresponding to the graph $G_{i}^{\prime \prime}$. Then using $\mathbf{P 2}$ and $\mathbf{Q 2}$, we compute

$$
\begin{aligned}
& A_{1}^{\prime \prime}=\left[(x+y+z+2)_{r},\left(x+y+\left\lfloor\frac{3 z}{2}\right\rfloor+1\right)_{r}\right], \\
& B_{1}^{\prime \prime}=\left[\left(x+2 y+\left\lceil\frac{3 z+5}{2}\right\rceil\right)_{s},(x+2 y+2 z+1)_{s}\right], \\
& A_{3}^{\prime \prime}=\left[\left(x+2 y+\left\lceil\frac{3 z+5}{2}\right\rceil\right)_{r},(x+2 y+2 z+1)_{r}\right], \\
& B_{3}^{\prime \prime}=\left[(x+y+z+2)_{s},\left(x+y+\left\lfloor\frac{3 z}{2}\right\rfloor+1\right)_{s}\right] .
\end{aligned}
$$

Note that $V\left(G_{1}^{\prime \prime}\right) \cap V\left(G_{2}^{\prime \prime}\right)=\left\{\left(x+2 y+\left\lceil\frac{3 z+5}{2}\right\rceil\right)_{s}\right\}$ if $z-2$ is odd and $V\left(G_{1}^{\prime \prime}\right) \cap V\left(G_{2}^{\prime \prime}\right)=$ $\left\{\left(x+y+\left\lfloor\frac{3 z}{2}\right\rfloor+1\right)_{r}\right\}$ if $z-2$ is even and, $V\left(G_{2}^{\prime \prime}\right) \cap V\left(G_{3}^{\prime \prime}\right)=\left\{\left(x+2 y+\left\lceil\frac{3 z+5}{2}\right\rceil\right)_{r}\right\}$ if $z-2$ is odd and $V\left(G_{2}^{\prime \prime}\right) \cap V\left(G_{3}^{\prime \prime}\right)=\left\{\left(x+y+\left\lfloor\frac{3 z}{2}\right\rfloor+1\right)_{s}\right\}$ if $z-2$ is even; otherwise, $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}$ and $G_{3}^{\prime \prime}$ are vertex disjoint. Therefore, $G_{1}^{\prime \prime}+G_{2}^{\prime \prime}+G_{3}^{\prime \prime}$ is a path of length $2 z-1$ with the endpoints $(x+y+z+2)_{r}$ and $(x+y+z+2)_{s}$. Since $V\left(P_{r, s}^{\prime \prime}\right) \subseteq$ $[x+y+z+2, x+2 y+2 z+1] \times\{r, s\}, P_{r, s}^{\prime \prime}$ is vertex disjoint from $P_{r, s}$ and $P_{r, s}^{\prime}$.

Next, let $E_{i}^{\prime \prime}$ denote the set of edge lengths in $G_{i}^{\prime \prime}$ for $i=1$ or 3 . By P3 and Q3, we have edge lengths

$$
\begin{aligned}
& E_{1}^{\prime \prime}=[y+2, y+z-1] \\
& E_{3}^{\prime \prime}=[-(y+z-1),-(y+2)]
\end{aligned}
$$

Notice that the set of edge lengths in $G_{2}^{\prime \prime}$ is $\{3,1,-2\}$. Then, construct the cycle $C_{r, s}^{\prime \prime}$ of length $2 z+1$ from the path $P_{r, s}^{\prime \prime}$ by adding the edges $\left\{(x+y+z+2)_{r},(x+2 y+\right.$ $\left.2 z+4)_{r o s}\right\}$ and $\left\{(x+y+z+2)_{s},(x+2 y+2 z+4)_{r o s}\right\}$.

Since $(y+z)_{\text {ros }},\left(\left\lceil\frac{x}{2}\right\rceil+y+z+1\right)_{\text {ros }}$ and $(x+2 y+2 z+4)_{\text {ros }}$ are different vertices, and $P_{r, s}, P_{r, s}^{\prime}$ and $P_{r, s}^{\prime \prime}$ are vertex disjoint, we have $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ are also vertex disjoint. Figure 5 shows an example of $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=4, y=2$ and $z=5$.

Let $G_{r, s}^{*}=\left\{G_{r, s}+\ell: 0 \leq \ell \leq n-1\right\}$. Then $G_{r, s}^{*}$ contains n distinct copies of G and all the edges of each length $i \in[-(n-1) / 2,(n-1) / 2] \backslash \pm[y+z, y+z+2]$ in the induced subgraph of $K_{(2 k+1) \times n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}$. Let $\mathcal{C}=\left\{G_{r, s}+\ell\right.$: $1 \leq r<s \leq 2 k+1,0 \leq \ell \leq n-1\}$ and note that \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G. We will show that every edge of $K_{(2 k+1) \times n}$ appears in some copy of G in \mathcal{C}. Let $e=\left\{i_{r}, j_{s}\right\}$ with $r<s$ be an arbitrary edge of $K_{(2 k+1) \times n}$. Let t^{\prime} be the unique solution to $r \circ t^{\prime}=s$ and let $\alpha^{\prime}=\min \left\{r, t^{\prime}\right\}$ and $\beta^{\prime}=\max \left\{r, t^{\prime}\right\}$. Let $t^{\prime \prime}$ be the unique solution to $s \circ t^{\prime \prime}=r$ and let $\alpha^{\prime \prime}=\min \left\{s, t^{\prime \prime}\right\}$ and $\beta^{\prime \prime}=\max \left\{s, t^{\prime \prime}\right\}$. If $j-i \in[-(n-1) / 2,(n-1) / 2] \backslash \pm[y+z, y+z+2]$, then e belongs to $G_{r, s}+\ell$ for some ℓ with $0 \leq \ell \leq n-1$. If $j-i \in[y+z, y+z+2]$, then e belongs to $G_{\alpha^{\prime}, \beta^{\prime}}+\ell$ where $0 \leq \ell \leq n-1$. If $j-i \in[-(y+z+2),-(y+z)]$, then e belongs to $G_{\alpha^{\prime \prime}, \beta^{\prime \prime}}+\ell$ where $0 \leq \ell \leq n-1$. Since every edge of $K_{(2 k+1) \times n}$ appears in some copy of G in \mathcal{C} and since \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G, it follows that \mathcal{C} is a decomposition of $K_{(2 k+1) \times n}$ into copies of G.

Figure 5: $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=4, y=2$ and $z=5$.
In the proof of Theorem 2, if we replace idempotent symmetric quasigroups with symmetric quasigroups with holes, then we obtain a G-decomposition of $K_{k \times 2 n}$ for every integer $k \geq 3$.
Theorem 3. Let G be a 2-regular graph of order n consisting of exactly three odd cycles. For every integer $k \geq 3$, there exists a G-decomposition of $K_{k \times 2 n}$.

Proof. Let $G=C_{2 x+1} \cup C_{2 y+1} \cup C_{2 z+1}$, where $x, y, z \geq 1$. Let $k \geq 3$ be an integer and let $Q=[1,2 k]$. For $i \in[1, k]$, let $h_{i}=\{2 i-1,2 i\}$ and $g_{i}=\mathbb{Z}_{n} \times h_{i}$. Let
$n=2 x+2 y+2 z+3$ and let $V\left(K_{k \times 2 n}\right)=\mathbb{Z}_{n} \times[1,2 k]$ with the vertex-set partition $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$. Let (Q, \circ) be a commutative quasigroup of order $2 k$ with holes $H=\left\{h_{1}, h_{2}, \cdots, h_{k}\right\}$.

Fix r and s with $1 \leq r<s \leq 2 k$ and $\{r, s\} \notin H$. We proceed in the same fashion as in the proof of Theorem 2 producing the graph $G_{r, s}$ consisting of a cycle $C_{r, s}$ of length $2 x+1$, a cycle $C_{r, s}^{\prime}$ of length $2 y+1$, and a cycle $C_{r, s}^{\prime \prime}$ of length $2 z+1$ such that $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ are vertex disjoint.

We treat first the case where G contains at most one cycle of length 3 (thus we assume $y \geq 3$ and $z \geq 3$ as in Case 2 in Theorem 2). Note that for fixed r and s with $1 \leq r<s \leq 2 k$ and with $\{r, s\} \notin H$, the set $\left\{G_{r, s}+\ell: 0 \leq \ell \leq n-1\right\}$ contains n distinct copies of G and all the edges of lengths $i \in[-(n-1) / 2,(n-$ 1) $/ 2] \backslash \pm[y+z, y+z+2]$ in the induced subgraph of $K_{k \times 2 n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}$. Let $\mathcal{C}=\left\{G_{r, s}+\ell: 1 \leq r<s \leq 2 k,\{r, s\} \notin H, 0 \leq \ell \leq n-1\right\}$ and note that \mathcal{C} contains $2 k(k-1) n$ distinct copies of G. We wish to show that every edge of $K_{k \times 2 n}$ appears in some copy of G in \mathcal{C}. Let $e=\left\{i_{r}, j_{s}\right\}$ where $r<s$ be an arbitrary edge of $K_{k \times 2 n}$. Let t^{\prime} be the unique solution to $r \circ t^{\prime}=s$ and let $\alpha^{\prime}=\min \left\{r, t^{\prime}\right\}$ and $\beta^{\prime}=\max \left\{r, t^{\prime}\right\}$. Let $t^{\prime \prime}$ be the unique solution to $s \circ t^{\prime \prime}=r$ and let $\alpha^{\prime \prime}=\min \left\{s, t^{\prime \prime}\right\}$ and $\beta^{\prime \prime}=\max \left\{s, t^{\prime \prime}\right\}$. If $j-i \in[-(n-1) / 2,(n-1) / 2] \backslash \pm[y+z, y+z+2]$, then e belongs to $G_{r, s}+\ell$ for some ℓ with $0 \leq \ell \leq n-1$. If $j-i=[y+z, y+z+2]$, then e belongs to $G_{\alpha^{\prime}, \beta^{\prime}}+\ell$ where $0 \leq \ell \leq n-1$. If $j-i=[-(y+z+2),-(y+z)]$, then e belongs to $G_{\alpha^{\prime \prime}, \beta^{\prime \prime}}+\ell$ where $0 \leq \ell \leq n-1$. Since every edge of $K_{k \times 2 n}$ appears in some copy of G in \mathcal{C} and since \mathcal{C} contains $2 k(k-1) n$ distinct copies of G, it follows that \mathcal{C} is a decomposition of $K_{k \times 2 n}$ into copies of G.

An argument similar to the one above can be used to treat the case where G contains at least two cycles of length 3 (corresponding to Case 1 in Theorem 2).

$5 \quad G$-decompositions of $K_{2 k n+1}$

Let G of order n be the vertex-disjoint union of three odd cycles. It is shown in [5] and [4] that there exists a G-decomposition of $K_{2 n+1}$. It was not known whether a G-decomposition of $K_{2 k n+1}$ exists for every positive integer k. Using the G-decomposition of $K_{2 n+1}$ and the result from Theorem 3, we can answer this question in the affirmative for $k \geq 3$.

Theorem 4. Let G of order n be the vertex-disjoint union of three odd cycles. There exists a G-decomposition of $K_{2 k n+1}$ for every positive integer $k \neq 2$.

Proof. Since there exists a G-decomposition of $K_{2 n+1}$, we can assume that $k \geq 3$. For $i \in[1, k]$, let S_{i} be a set with $2 n$ elements and let H_{i} be a complete graph of order $2 n+1$ with vertex set $S_{i} \cup\{\infty\}$. Let $V\left(K_{2 k n+1}\right)=S_{1} \cup S_{2} \cup \ldots \cup S_{k} \cup\{\infty\}$. Thus, $K_{2 k n+1}=H_{1} \cup H_{2} \cup \ldots \cup H_{k} \cup K_{k \times 2 n}$. Since there is a G-decomposition of H_{i} for $i \in[1, k]$ and there is a G-decomposition of $K_{k \times 2 n}$, the result follows.

If a G-decomposition of K_{n} exists (i.e., if the Oberwolfach problem has a solution in this case), then a G-decomposition of $K_{2 k n+n}$ will also exist.

Theorem 5. Let G of order n be the vertex-disjoint union of three odd cycles. If a G-decomposition of K_{n} exists, then there exists a G-decomposition of $K_{2 k n+n}$ for every positive integer k.

Proof. Observe that $K_{2 k n+n}=(2 k+1) K_{n} \cup K_{(2 k+1) \times n}$. Since a G-decomposition of K_{n} exists, a G-decomposition of $(2 k+1) K_{n}$ will also exist. By Theorem 2, there exists a G-decomposition of $K_{(2 k+1) \times n}$. The result follows.

References

[1] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996), 3-15.
[2] P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008), 373-410.
[3] P. Adams, D. Bryant and H. Gavlas, Decompositions of the complete graph into small 2-regular graphs, J. Combin. Math. Combin. Comput. 43 (2002), 135-146.
[4] A. Aguado, S. I. El-Zanati, H. Hake, J. Stob, and H. Yayla, On ρ-labeling the union of three cycles, Australas. J. Combin. 37 (2007), 155-170.
[5] A. Aguado and S. I. El-Zanati, On σ-labeling the union of three cycles, J. Combin. Math. Combin. Comput. 64 (2008), 33-48.
[6] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and of $K_{n}-I$, J. Combin. Theory Ser. 881 (2001), 77-99.
[7] B. Alspach, P. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A 52 (1989), 20-43.
[8] A. Blinco and S. I. El-Zanati, A note on the cyclic decomposition of complete graphs into bipartite graphs, Bull. Inst. Combin. Appl. 40 (2004), 77-82.
[9] A. Blinco, S. I. El-Zanati and C. Vanden Eynden, On the decomposition of complete graphs into almost-bipartite graphs, Discrete Math. 284 (2004), 7181.
[10] R. C. Bose, On the construction of balanced incomplete block designs, Ann. Eugenics 9 (1939), 353-399.
[11] D. Bryant and S. El-Zanati, "Graph decompositions," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Eds.), 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007, pp. 477-485.
[12] D. Bryant and C. Rodger, "Cycle decompositions," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Eds.), 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007, pp. 373-382.
[13] R. C. Bunge, A. Chantasartrassmee, S. I. El-Zanati and C. Vanden Eynden, On cyclic decompositions of complete graphs into tripartite graphs, J. Graph Theory 72 (2013), 90-111.
[14] R. C. Bunge, S.I. El-Zanati and C. Vanden Eynden, On cyclic decompositions of complete graphs into 2-regular almost-bipartite graphs, (preprint).
[15] S. I. El-Zanati, U. Jongthawonwuth, H. Jordon, and C.Vanden Eynden, On decomposing the complete graph into the union of two disjoint cycles, (submitted).
[16] S. I. El-Zanati, C. Vanden Eynden and N. Punnim, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209219.
[17] D. I. Gannon and S. I. El-Zanati, All 2-regular graphs with uniform odd components admit ρ-labelings, Australas. J. Combin. 53 (2012), 207-219.
[18] U. Jongthawonwuth, S. I. El-Zanati and R. C. Bunge, On decomposing complete multipartite graphs into 2-regular almost-bipartite graphs, (preprint).
[19] C. C. Lindner and C. A. Rodger, Design Theory, Second Ed., Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2009.
[20] M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27-78.
[21] T. Traetta, A complete solution to the two-table Oberwolfach problems, J. Combin. Theory Ser. A 120 (2013), 984-997.

[^0]: * Corresponding author.

