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Abstract

In recent years there has been much interest in certain subcubes of hyper-
cubes, namely Fibonacci cubes and Lucas cubes (and their generalized
versions). In this article we consider off-line routing of linear permu-
tations on these cubes. The model of routing we use regards edges as
bi-directional, and we do not allow queues of length greater than one.
Messages start out at different vertices, and in movements synchronized
with a clock, move to an adjacent vertex or remain where they are, so
that at the next stage there is still exactly one message per vertex. This
is the routing model we defined in an earlier paper and used in two later
ones.

1 Introduction

It is well-known that the n-dimensional hypercube Qn is the graph whose vertices
are all binary strings of length n, and whose edges join those pairs of vertices which
differ in exactly one position. The Fibonacci cube of dimension n, introduced in [1],
which we shall denote by Fn is the subgraph consisting of those strings with no two
adjacent ones. It is easy to see that | V (Fn) | = fn, the nth Fibonacci number. For a
comprehensive survey of the structure of Fibonacci cubes, see [2]. The Lucas cube
of dimension n, which we shall denote by Ln is defined analogously, except that now
the first and last positions, x1 and xn of the string (x1, x2, . . . , xn) are considered
adjacent, and so may not both be 1. | V (Ln) | = ln, the nth Lucas number.

Notation We use �x to mean a row vector of the vector space Z
n
2 over the field Z2 of

two elements, 0 and 1, and �xT (where T denotes transpose) to be the corresponding
vector considered as a column vector.

In [3] the automorphism group of Fn is computed (it is Z2) and in [4] that of Ln (it
is the dihedral group D2n). In the next section we determine the linear permutations
of Fn and Ln, i.e. the n × n 0–1 matrices A such that for all x ∈ Fn (respectively
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Ln), AxT ∈ Fn (respectively Ln), and identify the groups they form. In Section 3
we give routings for these permutations, presented as products of permutations of
Fn (respectovely Ln), that move messages to adjacent vertices or leave them fixed,
following the protocol and method of [5]. We later [6], [7], used this method to route
certain classes of permutations on the hypercube.

2 Identifying the linear permutations of Fn and of Ln

2.1 The linear permutations of Fn

Let A be an n × n invertible binary matrix. We say that A is Fn-good (respectively
Ln-good) if A(Fn) ⊆ Fn (respectively A(Ln) ⊆ Ln).

We first determine the Fn-good matrices. From now on, assume that A is an
n × n invertible binary matrix, and assume that An is Fn-good. Ai,j denotes the
entry in row i, column j, Ai the i th row, and A(j) the j th column.

Lemma 1 Suppose A is Fn-good and has a 1 in row i, column j. Then a 1 in row
i − 1 or row i + 1 can only occur in columns j − 1 or j + 1.

Proof. Suppose row i + 1 has a 1 in column k. By definition of Fn, if �ej denotes
the jth standard basis vector of Z

n
2 , then A�eT

j = A(j) does not have adjacent 1’s and
so Ai−1,j = 0 = Ai+1,j. Suppose k < j − 1 or k > j + 1 and Ai−1,k or Ai+1,k = 1.
If either Ai−1,k = 1 or Ai+1,k = 1 then Ai,k = 0. In either case, A(�eT

j + �eT
k ) =

A�eT
j + A�eT

k = A(j) + A(k) has two adjacent ones, contradicting the fact that A is
Fn-good unless | k − j | = 1, in which case �ej + �ek /∈ Fn. So k = j − 1 or j + 1. �

Lemma 2 Suppose A is Fn-good, where n ≥ 3. If row i of A has two 1’s, occurring
in columns j and k, with j < k, then k = j + 2 and i = 1 or n.

Proof. By Lemma 1, because of the 1 in row i, column j, a 1 in row i − 1 (if
i ≥ 2) must occur in either column j − 1 or column j + 1, and because of the 1 in
row i, column k, any 1 in row i−1 must also occur in either column k−1 or column
k+1. To satisfy both of these conditions, since j < k we must have j +1 = k−1, i.e.
k = j+2. If i ≤ n−1, the same argument holds for row i+1. So if 2 ≤ i ≤ n−1, row
Ai−1 = �ej+1 = row Ai+1, contradicting the assumption that A is invertible. Hence
i = 1 or n. �

Corollary 1 Suppose A is Fn-good. Then
(1) Any 1 in column 1 must occur in row 1 or row n. Similarly, a 1 in column n
must occur in row 1 or row n.
(2) A2, A3, . . . , An−1 is a permutation of n − 2 of the rows of the identity matrix In.
(3) Each of A1 and An has either one or two 1’s.
(4) In row 1 there must be a 1 in either column 1 or column n. The same is true for
row n. A second 1 (if there is one) in rows A1 or An must occur in column A(3) or
A(n−2).
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Proof. (1) Suppose Ai,1 = 1, and 2 ≤ i ≤ n − 1. Then since A(1) ∈ Fn, Ai−1,1 =
Ai+1,1 = 0. By Lemma 1, the only 1 in Ai−1 and the only 1 in Ai+1 both occur in
column A(2). Hence Ai−1 = �e2 = Ai+1, contradicting the invertibility of A. Thus for
2 ≤ i ≤ n − 1, Ai,1 = 0. Since A(1) �= �0T , either A1,1 = 1 or An,1 = 1. The argument
for column A(n) is analogous.

(2) By Lemma 2, for 2 ≤ i ≤ n − 1, Ai has exactly one 1, and two rows Ai1 and
Ai2 are equal if their 1’s occur in the same column. Since A is invertible, this cannot
happen. Thus A2, A3, . . . , An−1 is a permutation of n − 2 of the rows of the identity
matrix In.

(3) This is part of Lemma 2, since for integers j, k, and l with j < k < l not all
3 of their differences can be 2.

(4) By (1), either A1,1 = 1 or A1,n = 1. By Lemma 2, if both are 1, then
n = 1 + 2 = 3. If n ≥ 4, then either A1 = �e1, or A1 = �e1 + �e3, or A1 = �en or
A1 = �en−2 + �en. The same statements hold for An, for analogous reasons, except
that A1 �= An. �

Corollary 2 If A1,1 = 1, then for 2 ≤ i ≤ n − 1, Ai = �ei.
If A1,n = 1, then for 2 ≤ i ≤ n − 1, Ai = �en−i+1.

Proof. Suppose A1,1 = 1. Then A2,1 = 0. By Lemma 1, A2 = �e2. Let 2 ≤ i ≤ n−2
and assume, inductively, that Ai = �ei. Then again by Lemma 1, Ai+1 = �ei+1. So by
induction, for 2 ≤ i ≤ n − 1, Ai = �ei.
The argument when A1,n = 1 is entirely analogous. �

Next, we shall exhibit the group of Fn-good linear permutations.

Theorem 1 For n > 3, there are precisely 8 Fn-good linear permutations and they
form the dihedral group D4. For n = 3, F3 has exactly 6 F3-good linear permutations,
and they form the permutation group S3.

Proof. Denote by Ei,j the n × n matrix whose single non-zero entry is a 1 in the
(i, j) th position. Let C denote the matrix such that for 1 ≤ i ≤ n, Ci,n−i+1 = 1 and
for 1 ≤ j ≤ n, Ci,j = 0 if i + j �= n + 1. Suppose that n �= 3. We claim that the
following set of 8 matrices constitutes the set of Fn-good matrices:

{I, I + E1,3, I + En,n−2, I + E1,3 + En,n−2}
⋃

{C, C + En,3, C + E1,n−2, C + E1,n−2 + En,3}.
From the previous corollary we see that any Fn-good matrix must be one of these 8.
We claim that each is Fn-good. We shall demonstrate this for three representative
A’s. Let �x = (x1, x2, . . . , xn). C�xT = (xn, xn−1, . . . , x2, x1)

T . If C�xT /∈ Fn then
for some i with n ≥ i ≥ 2, xi and xi−1 are both 1. But then �x /∈ Fn. Thus C
is Fn-good. Next, consider A = I + E1,3. A�xT = (x1 + x3, x2, x3, x4, . . . , xn)T .
Since �xT ∈ Fn, if A�xT /∈ Fn then x1 + x3 = 1 and x2 = 1. For x1 + x3 to be
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1, exactly one of x1 and x3 is 1. Thus either x1 = x2 = 1 or x2 = x3 = 1,
either of which implies that �xT /∈ Fn. This contradiction shows that I + E1,3 is
Fn-good. We’ll demonstrate the proof for one more example: A = C +E1,n−2 +En,3.
A�xT = C�xT + E1,n−2�x

T + En,3�x
T = (xn + xn−2, xn−1, xn−2, . . . , x3, x2, x1 + x3)

T . If
A�xT /∈ Fn then either xn + xn−2 = xn−1 = 1 or x2 = x1 + x3 = 1. In the first case,
exactly one of xn and xn−2 is 1, and so together with xn−1 we have two adjacent 1’s
in �x, or, in the second case, exactly one of x1 and x3 is 1, and so together with x2 we
again have two adjacent 1’s in �x. In either case, �x /∈ Fn. Hence A must be Fn-good.

The following three identities are easily checked and will be quite useful.

(1) Ei,jEk,l =

{
Ei,l if j = k
0 if j �= k

(2) CEi,j = En−i+1,j

(3) Ei,jC = Ei,n−j+1

Using identities (1)-(3) we shall show that the 8 Fn-good matrices form the dihedral
group D4. To do so we will exhibit Fn-good matrices A and B such that A4 = B2 =
I, A2 �= I and BAB = A3.

Let A = C + E1,n−2 and B = I + E1,3. Since C2 = I and n �= 3, A2 = I +
CE1,n−2 + E1,n−2C. From (2) and (3) we have A2 = I + En,n−2 + E1,3 �= I. From (1)
and the assumption that n �= 3 (and thus n− 2 �= 1) we get A4 = I. Clearly B2 = I
since 1 + 1 = 0 in Z2.

Next, BAB = (I + E1,3) [(C + E1,n−2)(I + E1,3)]

= (I + E1,3)(C + E1,n−2 + CE1,3 + 0) = (I + E1,3)(C + E1,n−2 + En,3)

= C + E1,n−2 + E1,n−2 + En,3 = C + En,3.

On the other hand, A3 = AA2 = (C + E1,n−2)(I + En,n−2 + E1,3)

= C + E1,n−2 + CEn,n−2 + CE1,3 + E1,n−2E1,3 = C + E1,n−2 + E1,n−2 + En,3

= C + En,3.

Thus BAB = A3. It follows that for n > 3, Fn
∼= D4.

For n = 3, the first and third rows of I + E1,3 + E3,1 are equal and so the
matrix is not invertible. The same is true for C + En,3 + E1,n−2. Thus the order
of G3 is 6. Finally, G3 is non-abelian, since, for example, (I + E1,3)(I + E3,1) =
I +E1,3 +E3,1 +E1,1 �= I +E3,1 +E1,3 +E3,3 = (I +E3,1)(I +E1,3). Hence G3

∼= S3.
�

2.2 The linear permutations of Ln

In Ln entries in the first and last postions are considered adjacent, in addition to
those in positions i and i + 1, for 1 ≤ i ≤ n − 1. Thus �x ∈ Ln ⇐⇒ �x ∈ Fn and not
both x1 and xn are 1. Thus for an n × n binary matrix A that is invertible, A is
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Ln-good provided that for all �x ∈ Z
n
2 with no 1’s in adjacent positions, A�x also has

no 1’s in adjacent positions.
We will determine the Ln-good matrices A as we did for the Fn-good matrices.

Remark Unlike Fn, Ln has the property that if �x ∈ Ln and �y is obtained from �x by
a cyclic permutation of the coordinates of �x, then �y ∈ Ln.

Corollary 3 If A is an Ln-good matrix, then so is any matrix obtained from A by
a cyclic permutation of its rows. In particular, C is Ln-good.

Proof. Let B be the matrix such that for 1 ≤ i ≤ n−1, Bi = Ai+1, and Bn = A1.
Then B = A

(
�e2

T , �e3
T , . . . , �en

T , �e1
T
)
. Let �x ∈ Ln. So B�xT = A

(
�e2

T , �e3
T , . . . , �en

T ,

�e1
T
)
�xT = A�y T , where �y = (xn, x1, x2, . . . , xn−1). Since �x ∈ Ln, by the Remark,

�y ∈ Ln. But A is Ln-good, so A�y T ∈ Ln, i.e. B�xT ∈ Ln. Hence B is Ln-good.
The second statement follows from the fact that C is obtained from I by a cyclic
permutation of its rows. �

Lemma 3 If A is Ln-good then no column of A has 1’s in both the first and last
rows.

Proof. Since �ej
T ∈ Ln, if A is Ln-good, A�ej

T = A(j) ∈ Ln. Since the first and
last positions are considered adjacent, this means that the first and last entries of
A(j) can not both be 1’s. �

Lemma 4 If A is Ln-good and Ai,j = 1 then a 1 in row Ai−1 or Ai+1 can occur only
in column A(j−1) or A(j+1). Here addition of subscripts or superscripts is modulo n,
so that when i = 1 or j = 1, by i − 1 or j − 1 we mean n, and if i = n or j = n we
mean 1. Hence either Ai−1 = �ej−1 and Ai+1 = �ej+1 or Ai−1 = �ej+1 and Ai+1 = �ej−1.

Proof. This is much the same as Lemma 1 for Fn-good matrices. For example,
suppose that A1,1 = 1. We shall show that a 1 in An occurs only in column A(n) or
column A(2). Suppose An,k = 1. We know from Lemma 3 that k �= 1. Suppose that
An,k = 1 for some k with 3 ≤ k ≤ n − 1. Then �xT = �eT

1 + �eT
k has no 1’s in adjacent

positions, so it belongs to Ln. But since, by Lemma 3, A1,n = 0 = Ak,1, A(1) + A(k)

has 1 in both the first and last positions, so that A�xT /∈ Ln. This contradiction
means that if An,k = 1 then k = 2 or n. The cases A1,n = 1, An,1 = 1, and An,n = 1
are handled similarly. The last statement follows from the fact that A is invertible
and so Ai−1 �= Ai+1. �

Next, we have the analogue of Lemma 2, for Ln.

Lemma 5 Let n ≥ 4. Suppose that A is Ln-good, and Ai,j = 1 = Ai,k, where j < k.
(i) If 2 ≤ j and k ≤ n − 1, then k = j + 2 and Ai+1,j+1 = 1 = Ai−1,j+1. Thus
Ai+1 = �ej+1 = Ai−1. Thus A is not invertible.
(ii) If j = 1 then k = 3 and Ai+1,2 = 1 = Ai−1,2, so that Ai+1 = �e2 = Ai−1, or else
k = n − 1 and Ai+1,n = 1 = Ai−1,n, and hence Ai+1 = �en = Ai−1. Thus in either
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case, A is not invertible.
(iii) If k = n, then j = 2 or j = n − 2. If j = 2, then Ai+1,1 = 1 = Ai−1,1,
so that Ai+1 = �e1 = Ai−1. If j = n − 2 then Ai+1,n−1 = 1 = Ai−1,n−1, and thus
Ai+1 = �en−1 = Ai−1. Again, in either case, A is not invertible.
(iv) Similarly, in row Ai−1 a 1 can occur only in column j + 1. Thus Ai−1 = �ej+1.
(v) Hence at most one row of A has more than one 1.
(vi) If n ≥ 5, then every row of A has exactly one 1.

Proof. (i) By Lemma 4, if 2 ≤ j ≤ n − 2 and j < k ≤ n − 1, then since Ai,j = 1,
a 1 in row Ai+1 can occur only in column A(j−1) or column A(j+1). Similarly, since
Ai,k = 1, a 1 in row Ai+1 can occur only in column A(k−1) or column A(k+1). Thus
j +1 = k−1 and so k = j +2. Furthermore, since A is invertible, some entry in row
Ai+1 must be 1. Thus we must have Ai+1,j+1 = 1, and so Ai+1 = �ej+1. The same
argument holds for row Ai−1. Therefore Ai−1 = Ai+1, contradicting the invertibility
of A.

The proofs of (ii), (iii)and (iv) are similar.

(v) This follows from (i) − (iv).

(vi) We know from (v) that at most one row has more than one 1. With no loss
of generality we may assume that the row with at least two 1’s is A2, and A2,j =
1 = A2,k, where j < k. By Lemma 4, since A1 �= A3, either (a) A1 = �ej+1 = �ek−1

and A3 = �ej−1 = �ek+1 or, (b) A1 = �ej−1 = �ek+1 and A3 = �ej+1 = �ek−1. In case (a),
j + 1 = k − 1 and j − 1 ≡ k + 1 (mod n). Thus k = j + 2 and so j − 1 ≡ j + 3 (mod
n), i.e. 4 ≡ 0 (mod n). But then 4 is a multiple of n, contradicting the assumption
that n ≥ 5. In case (b), j−1 ≡ k +1 (mod n) and j +1 = k−1. So again, k = j +2
and so j − 1 ≡ j + 3 (mod n). Once again, this contradicts the assumption that
n ≥ 5. �

Theorem 2 (Classification of Gn, the group of Ln-good matrices)

(i) G2 is the group of order 2, consisting of I and C =

(
0 1
1 0

)
.

(ii) G3 is the group of 3 × 3 permutation matrices, i.e. the dihedral group D3 (or
equivalently, the symmetric group S3).
(iii) G4 is the group of 4 × 4 matrices consisting of I, I + E1,3, I + E3,1, I + E2,4,
I + E1,3 + E2,4, I + E4,2, I + E1,3 + E4,2, C, C + E1,2, C + E2,1, C + E1,2 + E2,1,
C + E3,4, C + E4,3, C + E2,1 + E3,4, C + E1,2 + E3,4, C + E1,2 + E4,3 and all matrices
obtained from these by cyclic permutations of the rows. The order of G4 is 72.
(iv) For n ≥ 5, each Ln-good matrix has exactly one 1 in each row and exactly one
1 in each column. Gn consists of all the cyclic permutations of the rows of I and so
Gn

∼= Zn.

Proof. (i) None of the other 2 × 2 matrices is invertible.
(ii) For n = 3, any two positions in �x are adjacent. If, say, the jth column contains
two 1’s then A�eT

j /∈ L3, and A is not L3-good. Thus each column of A, and therefore
each row of A, contains exactly one 1. So A is a permutation matrix, i.e. is obtained
from I by a permutation of its rows. If π is a non-cyclic permutation, then π is a
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transposition. But for n = 3, any two rows may be considered adjacent. So with
no loss of generality, we may assume that π = (1, 2). Then π(I)�xT = (x2, x1, x3)

T .
Let �x ∈ L3. If any two 1’s occur in (x2, x3, x1) then �x has two adjacent 1’s, which
is a contradiction. Thus π(I)�xT ∈ L3 and so π(I) is L3-good. Since the symmetric
group is generated by the transpositions G3

∼= S3.
(iii) It is easy to check that each of these matrices is F4-good. By the weight of a row
we mean the number of 1’s in it. There are three cases for an F4-good matrix A: (1)
no row of A has weight 2, (2) exactly one row has weight two, or (3) exactly two rows
have weight two. In case (1) we have the 8 cyclic permutations of I. In cases (2) and
(3), it follows from Lemma 5, (i) and (ii) that there are just two choices for the row of
weight 2: [1010] or [0101]. Now in case (2), there are 4 possible positions for the row
of weight 2. Assume that [1010] is row 1 of A. Then A2,1 = A2,3 = A4,1 = A4,3 = 0.
A2 must be either �e2 or �e4, and A4 must be either �e4 or �e2 (and A2 �= A4). Thus there
are 4 L4-good matrices with A1 = [1010]. Since Ln-good matrices are closed under
cyclic permutations of rows, we have 4 × 4 L4-good matrices with the single row of
weight 2 being [1010]. Similarly, there are 4 × 4 L4-good matrices whose single row
of weight 2 is [0101]. Thus, in case (2) we have 2 × 4 × 4 = 32 L4-good matrices.

Case (3) has 2 subcases: (a) the 2 rows of weight 2 are consecutive, and (b) they
are not.
For subcase (a): first suppose that A1 = [1010] and A2 = [0101]. We obtain the
following 4 L4-good matrices:

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠.

Similarly, if we interchange the first two rows, we get the following 4 L4-good
matrices:

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠.

Since there are 4 pairs of consecutive rows, there are a total of (4 + 4) × 4 = 32
L4-good matrices in case 3(a).

For subcase (b): If the 2 rows of weight 1 are not consecutive, then each of the
rows between them must be the zero row, since no column can have two consecutive
1’s. Thus there are no L4-good matrices of this type.

Hence the total number of L4-good matrices is 8 + 32 + 32 + 0 = 72.
(iv) Let n ≥ 5, and suppose that for some i, 1 ≤ i ≤ n, row Ai has at least two 1’s.

Say that Ai,j = 1 = Ai,k, where j < k. Then Ai+1 = �ej+1 = Ai−1. This contradicts
the fact that A is invertible. So each row of A is �ej , for a unique j. Thus A is obtained
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from I by a permutation of its rows. We must show that this permutation is cyclic.
Suppose that A1 = �ej . Then A2 = either �ej+1 or �ej−1. First suppose it is �ej+1. We
claim that for all 1 ≤ i ≤ n, Ai = �ej+i−1 (remember that subscripts are computed
mod n). Assume, inductively, that for 1 ≤ q ≤ i − 1, Aq = �ej+q−1. Then Ai = either
�ej+i+1 or �ej+i−1. If it is �ej+i−1, then for i ≥ 3, Ai−2 = �ej+(i−2)+1 = �ej+i−1 = Ai,
contradicting the fact that no two rows of A can be equal. Hence Ai = �ej+i+1, and
so, by induction, for all 1 ≤ q ≤ n, Aq = �ej+q+1. Thus A is obtained from I via
the cyclic permutation i �→ j + i − 1. A similar inductive argument shows that if
A2 = �ej−1 then for all 1 ≤ q ≤ n, Aq = �ej+q+1, and so A is obtained from I via the
cyclic permutation i �→ j + i + 1. �

3 Routings

For a connected graph G, if π is a permutation of G, we define

t(π) = max{dG(π(x), x) | x ∈ G}.
We then consider the group Perm(G) to be the Cayley graph whose generating set
is Δ = {π | t(π) ≤ 1}. A t-fold product of elements of Δ equal to the permutation
σ is said to be a “t-step routing of σ”. As discussed in [5], since we consider each
edge to be doubled, i.e. one in each direction, every element τ of Perm(G) is a finite
product of elements of this generating set, and such a factoring we call a routing of
the permutation τ . We will be interested in the two cases, G = Fn and G = Ln. For
an n × n matrix A which is G-good, we define the permutation τA by τA(�x) = A�x.

3.1 Routings of permutations of Fn

Lemma 6 For A = I, I + E1,3, and I + En,n−2, t(πA) = 1. For n �= 3,
t(I +E1,3 +En,n−2) = 2. For n = 3, I +E1,3 +En,n−2 = I +E1,3 +E3,1 is not F3-good,
nor is C + En,3 + E1,n−2.

Proof. d(A�xT , �xT ) = weight(A�xT + �xT ). For A = I, I�xT + �xT = �0T and
weight(�0T ) = 0. For A = I + E1,3, A�xT = �xT + x3 �e1

T . Thus A�xT + xT = x3 �e1
T ,

whose weight is 0 if x3 = 0 and 1 if x3 = 1. Therefore t(A) = 1. If A = I + En,n−2

then A�xT + xT = En,n−2 �xT = xn−2�e
T

n , so again, t(A) = 1. If A = I + E1,3 + En,n−2,
then A�xT + �xT = x3�e

T
1 + xn−2�e

T
n , whose weight is 2. For n �= 3, E1,3En,n−2 = 0, and

so A = (I + E1,3)(I + En,n−2) is a 2-step routing of A. �

Lemma 7 If �x, �y, �z is a path in Fn, then (�x, �z) = (�x, �y)(�y, �z)(�x, �y) is a 3-step routing
of (�x, �z).

Corollary 4 C is obtained from I by the row permutation

(1, n)(2, n − 1) . . . (k, k + 1) if n = 2k, and by

(1, n)(2, n − 1) . . . (k, k + 2) if n = 2k + 1.

Each row transposition (i, j) (where | j − i | > 1) can be routed in 3 steps. Hence C
can be routed in 3n/2� steps.
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Corollary 5 C + En,3 = (I + En,n−2)C and C + En,n−2 = (I + En,3)C. Hence each
of these can be routed in 1 + 3n/2� steps.

3.2 Routings of permutations of Ln

Lemma 8 Let A be the matrix obtained from I by the row permutation (1, 2, . . . , n).
Then the permutation τA corresponds to the product of transpositions (1, n)(1, n−1)
. . . (1, 3)(1, 2). Each transposition (1, i) corresponds to an element of Δ, and hence
τA has an n-step routing.

Corollary 6 If A is obtained from I by any cyclic permutation of the rows of I,
then τA can be routed in at most n steps.

Proof. Any cyclic permutation corresponds to a power of (1, 2, . . . , n). This, in
turn, is a product of disjoint cycles. Each cycle of length k is the product of k
transpositions, and therefore can be routed in k steps. Since the cycles are disjoint,
the transpositions in one cycle are disjoint from those in the other cycles. Hence
the routings of these cycles can be carried out simultaneously, and so the number of
steps in the routing is the maximum length of a cycle in this product, and thus is at
most n. �

Lemma 9 C can be routed in 3n/2� steps.

Proof. The routing for τC as a permutation of Fn given in Corollary 4 works
equally well for τC as a permutation of Ln.

Corollary 7 If A is obtained from C by a cyclic permutation of the rows of C then
τC can be routed in at most 5n/2 steps.

Proof. Let π be a cyclic permutation of the rows of C. Then A = π(C) = Cπ(I).
By Lemma 8 τπ(I) has can be routed in at most n steps, and then by Lemma 9 τC

can be routed in an additional 3n/2� steps, for a total of n + 3n/2� ≤ 5n/2 steps.
�
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