
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 60(1) (2014), Pages 35–49

An introduction to true-palindromic compositions

Caroline Shapcott∗

Indiana University South Bend
South Bend, Indiana

U.S.A.
shapcott@iusb.edu

Abstract

A true-palindromic composition is an integer composition whose digit-
comma-sequence is the same whether read from left to right or right
to left. Generating functions and asymptotic formulas are provided for
several quantities related to the set of true-palindromic compositions of
a given integer.

1 Introduction

A composition of n is a sequence of positive integers, called parts, that sum to n. A
palindromic composition or palindrome is a composition whose part-sequence is the
same whether it is read from left to right or right to left. For example, (12, 6, 12) is
a palindromic composition of 30. It is well-known that there are 2�

n
2
� palindromic

compositions of n, and numerous other results have been obtained for palindromic
compositions, many in the last decade [1, 3, 4, 5, 8, 9, 12]. However, the digits of
a palindromic composition of n containing at least one non-palindromic part do not
actually form a palindrome in the traditional sense. The composition (12, 6, 12) is by
definition a palindromic composition of 30, yet reflecting the digit-comma-sequence
we get (21, 6, 21) which is neither equivalent to (12, 6, 12) nor a composition of 30.

In this paper we concern ourselves with compositions that better match the tra-
ditional characteristics of a palindrome. We define a true-palindromic composition
or true-palindrome to be a composition whose digit-comma-sequence is the same
whether read from left to right or right to left. We provide a few examples and
non-examples:

Example 1.
The sequence (12, 6, 21) is a true-palindromic composition of 39.
The sequence (126, 621) is a true-palindromic composition of 747.
The sequence (12, 621) is not a true-palindromic composition.
The sequence (120, 6, 21) is not a true-palindromic composition.
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Note that a palindromic composition is not always true-palindromic and that a
true-palindromic composition is not always palindromic. For example, (12, 6, 12) is
not true-palindromic and (12, 6, 21) is not palindromic. It is also important to note
that true-palindromes do not contain parts that are congruent to 0(mod 10) because
the ending zeros are lost when the digits are reversed, as in the last example above.

Our general approach to true-palindromes is to fix the center part of a true-
palindromic composition (if there is one) and consider the compositions formed on
either side, as is done in both [4] and [12] in studying palindromic compositions.
However, in the case of true-palindromic compositions, the compositions formed on
either side of the center part are structurally more complex: For each part λ on
the left side, its reversal R(λ) (formed by reversing the digits of λ) appears on the
right, meaning that the sequences on either side of the center part often compose
different integers. Therefore, an important part of understanding true-palindromes
is understanding R(λ). We will spend the first section of this paper deriving an exact
formula for R(λ).

Throughout this paper we will denote the coefficient of xn in a formal power series
f(x) by [xn]f(x).

2 Integer reversals

In a true-palindromic composition, any non-center part λ will be paired with its
reversal R(λ). Therefore, we are interested in the quantity λ+ R(λ). (This quantity
has been well-studied due to the popular yet widely disputed Palindromic Number
Conjecture [10, 11, 13].) Lemma 1 serves the purposes of this paper by providing an
easy way to compute λ + R(λ) directly.

Lemma 1. Let x = ad · · ·a2a1 be a positive integer with d := d(x) digits, and define
R(x) := R(x, d) = a1a2 · · ·ad to be its reversal. Then

R(x) = 101−dx + 99
d−1∑
k=1

10d−2k−1x mod 10k .

The number of digits d can be computed exactly using the well-known formula

d(x) = 1 + �log10 x� .

Proof. Any integer x with d digits can be written as

x = ad · · ·a2a1 = 10d−1ad + 10d−2ad−1 + · · · + 10a2 + a1 .

Hence, the reversal of any integer x can be written as

R(x) = a1a2 · · ·ad = 10d−1a1 + 10d−2a2 + · · · + 10ad−1 + ad . (1)

Furthermore, the digit ak can be written as

ak =

⎧⎪⎨
⎪⎩

x mod 10 k = 1

101−k(x mod 10k − x mod 10k−1) k = 2, . . . , d − 1

101−d(x − x mod 10d−1) k = d

. (2)
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Putting (2) back into (1), we have

R(x) = 10d−1x mod 10 +

d−1∑
k=2

10d−2k+1(x mod 10k − x mod 10k−1)

+ 101−d(x − x mod 10d−1)

= 10d−1x mod 10 +
d−1∑
k=2

10d−2k+1x mod 10k −
d−2∑
k=1

10d−2k−1x mod 10k

+ 101−dx − 101−dx mod 10d−1

= 101−dx +
d−1∑
k=1

10d−2k+1x mod 10k −
d−1∑
k=1

10d−2k−1x mod 10k

= 101−dx +

d−1∑
k=1

(10d−2k+1 − 10d−2k−1)x mod 10k

= 101−dx + 99

d−1∑
k=1

10d−2k−1x mod 10k .

3 Number of true-palindromic compositions

Theorem 1. Let P denote the set of nonnegative integer palindromes, and let S
denote Z+\10Z+. Let Tn denote the set of true-palindromic compositions of n. Then

|Tn| = [xn]

∑
λ∈P

xλ

1 − ∑
λ∈S

xλ+R(λ)
.

Proof. Define F (x) =
∑
λ∈P

xλ and G(x) =
∑
λ∈S

xλ+R(λ). To build a true-palindrome,

we begin by selecting a center part λ0, which must itself be an integer palindrome.
(If the composition has an even number of parts, there is no center part and we use
the convention λ0 = 0.) We then construct an ordered sequence λ1, λ2, . . . , λt by
choosing integers from the set S under the constraint

λ0 + (λ1 + R(λ1)) + · · ·+ (λt + R(λt)) = n .

The sequence λ1, λ2, . . . , λt represents the parts that fall on one side of the center
part λ0. By this reasoning, the number of true-palindromes of n with t parts on each
side of λ0 is

[xn]F (x)G(x)t .

We next sum over all possible values of t, while noting that λ + R(λ) ≥ 2, to get

|Tn| =

�n
2
�∑

t=0

[xn]F (x)G(x)t = [xn]F (x)
∞∑

t=0

G(x)t = [xn]
F (x)

1 − G(x)
.
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We now analyze the equation 1 − ∑
λ∈S

xλ+R(λ) = 0 and use the results to obtain

an asymptotic estimate for the number of true-palindromes.

Lemma 2. The function f(x) = 1 − ∑
λ∈S

xλ+R(λ) has a unique positive real root p in

the interval (0, 1) and it is the root of smallest magnitude.

Proof. Observe that f(0) = 1 and lim
x→1−

f(x) = −∞, and therefore a root exists in

the interval (0, 1). Call this root p and note that
∑
λ∈S

pλ+R(λ) = 1. Define g(x) = 1

and ε > 0, and observe that for |x| = p − ε,

|f(x) − g(x)| =

∣∣∣∣−∑
λ∈S

xλ+R(λ)

∣∣∣∣ ≤∑
λ∈S

|x|λ+R(λ) <
∑
λ∈S

pλ+R(λ) = 1 = |g(x)| .

Therefore, by Rouché’s theorem, f(x) has no zeros with magnitude less than p. We
next show that f(x) has only one zero of magnitude p. Suppose x = −p is a zero of
f and therefore f(−p) = 0. Then, since λ + R(λ) is odd for at least one element of
S (for example, λ = 12), we have

f(−p) = 1 −
∑
λ∈S

(−p)λ+R(λ) > 1 −
∑
λ∈S

pλ+R(λ) = 0 .

Therefore, if there does exist a second root with magnitude p, it must have an
imaginary part. Suppose p̂ is such a root. Then p̂ = p(cos θ + i sin θ) where θ ∈
(0, π) ∪ (π, 2π). Since f(p̂) = 0, the real part of f(p̂) is also zero:

0 = Re(1 −
∑
k∈S

p̂λ+R(λ))

= 1 −
∑
λ∈S

pλ+R(λ) cos((λ + R(λ))θ)

= (1 −
∑
λ∈S

pλ+R(λ)) +
∑
k∈S

pλ+R(λ)(1 − cos((λ + R(λ))θ))

= 0 +
∑
λ∈S

pλ+R(λ)(1 − cos((λ + R(λ))θ)) .

Because 1− cos((λ+R(λ))θ) ≥ 0, each term in the sum must be zero. Therefore, for
all λ ∈ S, there is an �λ ∈ Z such that (λ + R(λ))θ = 2π�λ. However, if we choose λ
to be any positive integer less than 9, then R(λ + 1) = R(λ) + 1 and

(λ + 1 + R(λ + 1))θ − (λ + R(λ))θ = (λ + 1 + R(λ) + 1 − λ − R(λ))θ = 2θ

whereas

(λ + 1 + R(λ + 1))θ − (λ + R(λ))θ = 2π�λ+1 − 2π�λ = 2π(�λ+1 − �λ) .

Therefore θ = π(�λ+1 − �λ) and since (�λ+1 − �λ) ∈ Z, this contradicts the fact that
θ ∈ (0, π) ∪ (π, 2π).
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Lemma 3. Let p̄ be the root of next smallest magnitude after p, and define r to be
a real number such that p < r < |p̄|. Define also the following constants:

C1 =
∑
λ∈S

(λ + R(λ))pλ+R(λ)

C2 =
∑
λ∈S

(λ + R(λ))(λ + R(λ) − 1)pλ+R(λ)

Then, for any positive integer k,

[xk]
1

f(x)
=

1

pkC1

+ O

(
1

rk

)

and

[xk]
1

f(x)2
=

k + 1

pkC2
1

+
C2

pkC3
1

+ O

(
1

rk

)
.

Proof. Define E(x) = x−p
f(x)

. Since Lemma 2 tells us that E(x) is analytic inside

|x| ≤ r, we can expand around p to obtain

[xk]
1

f(x)
= [xk]

E(x)

x − p
= [xk]

E(p)

x − p
+ [xk]

1

x − p

∞∑
s=1

E(s)(p)

s!
(x − p)s = ε1 + ε2 . (3)

To evaluate ε1, we note that

f ′(x) =
E(x) − (x − p)E ′(x)

E(x)2

and therefore

E(p) =
1

f ′(p)
=

1

−∑
λ∈S

(λ + R(λ))pλ+R(λ)−1
.

We then apply the generalized binomial theorem to obtain

ε1 = [xk]
E(p)

x − p
=

E(p)

−p · pk
=

1

pk
∑
λ∈S

(λ + R(λ))pλ+R(λ)
. (4)

To estimate ε2, we note that

1

x − p

∞∑
s=1

E(s)(p)

s!
(x − p)s

is analytic inside |x| ≤ r with a removable singularity at x = p. Therefore we can
apply Cauchy’s inequality to obtain

|ε2| ≤
max

∣∣∣∣ 1
x−p

∞∑
s=1

E(s)(p)
s!

(x − p)s

∣∣∣∣
rk

= O

(
1

rk

)
. (5)
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Putting (4) and (5) back into (3) gives the first half of the lemma. By similar
reasoning, we obtain

[xk]
1

f(x)2
= [xk]

E(x)2

(x − p)2

= [xk]
E(p)2

(x − p)2
+ [xk]

2E(p)E ′(p)

x − p
+ [xk]

1

(x − p)2

∞∑
s=2

[E2](s)(p)

s!
(x − p)s

= ε1 + ε2 + ε3 . (6)

To evaluate ε1, we note that

E(p)2 =

(
1

f ′(p)

)2

=
1(∑

λ∈S

(λ + R(λ))pλ+R(λ)−1

)2

and apply the generalized binomial theorem to obtain

ε1 = [xk]
E(p)2

(x − p)2
=

E(p)2(k + 1)

p2 · pk
=

k + 1

pk

(∑
λ∈S

(λ + R(λ))pλ+R(λ)

)2 . (7)

To evaluate ε2, we note that

f ′′(x) =
−(x − p)E(x)E ′′(x) − 2E(x)E ′(x) + 2(x − p)E ′(x)2

E(x)3

and therefore

2E(p)E ′(p) = −f ′′(p)E(p)3 =
−f ′′(p)

f ′(p)3
=

−∑
λ∈S

(λ + R(λ))(λ + R(λ) − 1)pλ+R(λ)−2

(∑
λ∈S

(λ + R(λ))pλ+R(λ)−1

)3 .

We then apply the generalized binomial theorem to obtain

ε2 = [xk]
2E(p)E ′(p)

x − p
=

2E(p)E ′(p)

−p · pk
=

∑
λ∈S

(λ + R(λ))(λ + R(λ) − 1)pλ+R(λ)

pk

(∑
λ∈S

(λ + R(λ))pλ+R(λ)

)3 . (8)

To estimate ε3, we note that

1

(x − p)2

∞∑
s=2

[E2](s)(p)

s!
(x − p)s

is analytic inside |x| ≤ r with a removable singularity at x = p. Therefore we can
apply Cauchy’s inequality to obtain

|ε3| ≤
max

∣∣∣∣ 1
(x−p)2

∞∑
s=2

[E2](s)(p)
s!

(x − p)s

∣∣∣∣
rk

= O

(
1

rk

)
. (9)

Putting (7), (8), and (9) back into (6) gives the second half of the lemma.
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We record the following simple lemma without proof for easy reference during
the proof of Theorem 2.

Lemma 4. Define the following constants:

D1 =
∑
j∈P

pj D2 =
∑
j∈P

jpj

Then ∑
j∈P
j≤n

pj = D1 + O(pn)

and ∑
j∈P
j≤n

jpj = D2 + O(npn) .

Theorem 2. Let Tn denote the number of true-palindromic compositions of n. Then

|Tn| =
D1

pnC1

+ O

(
1

rn

)
.

Proof. It follows from Theorem 1 that the number of true-palindromes of n is

|Tn| =
∑

j∈P, j≤n

[xn−j ]
1

1 − ∑
λ∈S

xλ+R(λ)
.

Combining this fact with Lemmas 3 and 4, we have

|Tn| =
∑

j∈P, j≤n

(
1

pn−jC1
+ O

(
1

rn−j

))

=
1

pnC1

∑
j∈P, j≤n

pj + O

(
1

rn

∑
j∈P, j≤n

rj

)

=
1

pnC1

(D1 + O(pn)) + O

(
1

rn

∑
j∈P, j≤n

rj

)
. (10)

To make the final step of the proof, we observe that |p̄| < 1, since f(0) = 1 and
(using Lemma 1 to get an approximation) f(−3

4
) < 0. Therefore f has a real root

in the interval (−1, 0) and r must be chosen to be less than 1. Hence

1

rn

∑
j∈P, j≤n

rj ≤ 1

rn(1 − r)
= O

(
1

rn

)
. (11)

Putting (11) back into (10) provides the statement of the theorem.
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4 Number of parts and size of the last part

Combinatorial structures are often studied from a probabilistic standpoint and there
are numerous papers, for instance the series by Bender and Canfield [2], that concern
probability distributions of quantities related to integer compositions. In this section
we will consider a composition chosen uniform randomly from the set of all true-
palindromic compositions of n. We will use Pn to denote the uniform probability
measure on Tn and En to denote the expected value with respect to Pn.

Theorem 3. Let N := Nn(�λ) be the number of parts in a given composition �λ of n.
The average number of parts over all true-palindromic compositions of n is

En(N) =
2n

C1
+

2

C1
+

2C2

C2
1

− 2D2

C1D1
− 1

D1
− 1 + O

((p

r

)n)
where p is again the unique positive real root of smallest magnitude of f , p̄ is the root
of next smallest magnitude after p, and r is a real number such that p < r < |p̄|.
Proof. Define s(A) to be the sum of the number of parts over all compositions in a
set A. Recall that F := F (x) =

∑
λ∈P

xλ and G := G(x) =
∑
λ∈S

xλ+R(λ). Then we have

s(Tn) = s({�λ ∈ Tn | N(�λ) = 1}) + s({�λ ∈ Tn | N(�λ) is odd and N(�λ) ≥ 3})
+ s({�λ ∈ Tn | N(�λ) is even})

= [xn](F − 1) +

�n
2
�∑

t=1

(2t + 1)[xn](F − 1)Gt +

�n
2
�∑

t=1

(2t)[xn]Gt

= [xn](F − 1) + [xn]2(F − 1)
∞∑

t=1

tGt + [xn](F − 1)
∞∑

t=1

Gt + [xn]2
∞∑

t=1

tGt

= [xn](F − 1) + [xn]
2(F − 1)G

(1 − G)2
+ [xn]

(F − 1)G

1 − G
+ [xn]

2G

(1 − G)2

= [xn]

(
F − 1

1 − G
+

2FG

(1 − G)2

)
.

Since En(N) = s(Tn)
|Tn| , we use this generating function to obtain

En(N) =
1

|Tn|

⎛
⎜⎜⎝[xn]

F

1 − G
− [xn]

1

1 − G
+ 2

∑
j∈P
j≤n

[xn−j ]
G

(1 − G)2

⎞
⎟⎟⎠

=
1

|Tn|

⎛
⎜⎜⎝[xn]

F

1 − G
− [xn]

1

1 − G
+ 2

∑
j∈P
j≤n

[xn−j ]
1

(1 − G)2
− 2

∑
j∈P
j≤n

[xn−j]
1

1 − G

⎞
⎟⎟⎠

=
1

|Tn|(ε1 − ε2 + 2ε3 − 2ε4) .
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The quantities ε1 and ε2 are given directly by Theorem 1 and Lemma 3. We use
Lemma 3 to obtain estimates for ε3 and ε4:

ε3 =
∑
j∈P
j≤n

[xn−j ]
1

(1 − G)2
=
∑
j∈P
j≤n

(
n − j + 1

pn−jC2
1

+
C2

pn−jC3
1

+ O

(
1

rn−j

))

=
n + 1

pnC2
1

∑
j∈P
j≤n

pj − 1

pnC2
1

∑
j∈P
j≤n

jpj +
C2

pnC3
1

∑
j∈P
j≤n

pj + O

⎛
⎜⎜⎝ 1

rn

∑
j∈P
j≤n

rj

⎞
⎟⎟⎠

=

(
n + 1

pnC2
1

+
C2

pnC3
1

)
(D1 + O(pn)) − 1

pnC2
1

(D2 + O(npn)) + O

(
1

rn

)

=
(n + 1)D1

pnC2
1

+
D1C2

pnC3
1

− D2

pnC2
1

+ O

(
1

rn

)

ε4 =
∑
j∈P
j≤n

[xn−j ]
1

1 − G
=
∑
j∈P
j≤n

(
1

pn−jC1

+ O

(
1

rn−j

))

=
1

pnC1

∑
j∈P
j≤n

pj + O

⎛
⎜⎜⎝ 1

rn

∑
j∈P
j≤n

rj

⎞
⎟⎟⎠ =

1

pnC1
(D1 + O(pn)) + O

(
1

rn

)

=
D1

pnC1
+ O

(
1

rn

)

Finally, we have

En(N) =
1

|Tn|(ε1 − ε2 + 2ε3 − 2ε4)

= 1 +
pnC1

D1

(
1 + O

((p

r

)n))
(−ε2 + 2ε3 − 2ε4)

= 1 +
(
1 + O

((p

r

)n))(
− 1

D1
+

2(n + 1)

C1
+

2C2

C2
1

− 2D2

D1C1
− 2 + O

((p

r

)n))

=
2(n + 1)

C1
− 1

D1
+

2C2

C2
1

− 2D2

D1C1
− 1 + O

((p

r

)n)
.

Theorem 4. Let L := Ln(�λ) be the size (or value) of the last part in a given compo-

sition �λ of n. The average size of the last part over all true-palindromic compositions
of n is

En(L) =
∑
k∈S

kpk+R(k) + O
((p

r

)n)
.
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Proof. Define the following indicator functions:

IP =

{
1 n ∈ P
0 else

IL =

{
1 λ + R(λ) < n

0 else

IE =

{
1 λ + R(λ) = n

0 else
IG =

{
1 λ + R(λ) > n

0 else

Then the average value of L is given by

En(L) =

n∑
k=1

kPn(L = k)

= nPn(L = n) +

n−1∑
k=1

kPn(L = k)

=
nIP
|Tn| +

∑
k∈S
k<n

kIE

|Tn| +
∑
k∈S
k<n

k|Tn−k−R(k)|IL

|Tn|

= ε1 + ε2 + ε3 .

We first obtain asymptotic estimates for ε1 and ε2:

|ε1| =
nIP
|Tn| ≤

n
D1

pnC1
+ O

(
1
rn

) = O (npn) (12)

|ε2| =
1

|Tn|
∑
k∈S
k<n

kIE ≤ 1

|Tn|
n−1∑
k=1

n ≤ (n − 1)n
D1

pnC1
+ O

(
1
rn

) = O
(
n2pn

)
(13)

Now we compute the dominant term ε3 in steps:

ε3 =
∑
k∈S
k<n

k|Tn−k−R(k)|IL

|Tn|

=
∑
k∈S
k<n

k

(
D1

pn−k−R(k)C1
+ O

(
1

rn−k−R(k)

)
D1

pnC1
+ O

(
1
rn

)
)
IL

=
∑
k∈S
k<n

k

(
pk+R(k) + O

(
pn

rn−k−R(k)

)
1 + O

(
pn

rn

)
)
IL

=
(
1 + O

((p

r

)n))⎛⎜⎝∑
k∈S
k<n

kpk+R(k)IL + O
((p

r

)n)∑
k∈S
k<n

krk+R(k)IL

⎞
⎟⎠

=
(
1 + O

((p

r

)n))
(δ1 + δ2)
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δ1 =
∑
k∈S
k<n

kpk+R(k)IL

=
∑
k∈S
k<n

kpk+R(k) −
∑
k∈S
k<n

kpk+R(k)(IE + IG)

=
∑
k∈S

kpk+R(k) −
∑
k∈S
k≥n

kpk+R(k) −
∑
k∈S
k<n

kpk+R(k)(IE + IG)

=
∑
k∈S

kpk+R(k) + γ1 + γ2

|γ1| =
∑
k∈S
k≥n

kpk+R(k) ≤
∞∑

k=n

kpk = O (npn)

|γ2| =
∑
k∈S
k<n

kpk+R(k)(IE + IG) ≤ 2
n−1∑
k=1

kpn ≤ (n − 1)npn = O
(
n2pn

)

|δ2| = O
((p

r

)n)∑
k∈S
k<n

krk+R(k)IL ≤ O
((p

r

)n) ∞∑
k=1

krk = O
((p

r

)n)

Putting these back into ε3, we have

ε3 =
(
1 + O

((p

r

)n))
(δ1 + δ2)

=
(
1 + O

((p

r

)n))(∑
k∈S

kpk+R(k) + O
((p

r

)n))

=
∑
k∈S

kpk+R(k) + O
((p

r

)n)
. (14)

Finally, putting (12), (13), and (14) together gives the statement of the theorem.

5 Hairpin compositions

A gapped palindrome is a word that is palindromic except for a sequence of letters
in the center. For example, the word ABCDBA is a gapped palindrome. Hence,
we define a gapped-palindromic composition with t parts to be a composition such
as (12, 35, 1, 2, 3, 35, 12) that is palindromic except for a part-sequence in the center
of length at least 2 but no more than t − 2. (Note that t must be at least 4.)
While gapped palindromes have been studied a great deal from an algorithmic and
computer science theoretic perspective [6, 7], gapped-palindromic compositions have
not.
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It is not difficult to count the number of gapped-palindromic compositions of
n. Let Pn be the set of palindromic compositions of n and recall that |Pn| = 2�

n
2
�.

Let Λn be the set of compositions of n whose first and last parts are the same
(including the case when there is only one part of size n). Then, trivially, the number
of gapped-palindromic compositions is equivalent to |Λn| − |Pn|. Therefore, the
following calculation allows for an exact enumeration of the set of gapped-palindromic
compositions of n:

If n is odd, then

|Λn| = 1 +

n−1
2∑

k=1

2n−2k−1 = 1 + 2n−1

n−1
2∑

k=1

1

4k
=

2n−1 + 2

3
. (15)

If n is even, then

|Λn| = 1 + 1 +

n
2
−1∑

k=1

2n−2k−1 = 2 + 2n−1

n
2
−1∑

k=1

1

4k
=

2n−1 + 4

3
. (16)

We can analogously define a gapped true-palindromic composition or hairpin com-
position with t parts to be a composition that is true-palindromic except for a part-
sequence in the center of length at least 1 but no more than t−2. (Note that t must
be at least 3.) The word “hairpin” is reminiscent of a structure that arises in DNA
computing. A single strand of DNA is a string over the alphabet {A,T,C,G}, and
two single strands can bind to each other if they are Watson-Crick complementary
(A is complementary to T, and C is complementary to G). A DNA “stem-loop” or
“hairpin” occurs when two regions of the same strand bind to each other leaving an
unpaired loop in the center. For example, the sequence CCTGATCTTGGGTCAGG
might bind in the following way:

G G A C T G G G
T

TCTAGTCC

This idea extends naturally to true-palindromic compositions since the parts on
each end complement each other and yet are not the same. To count the number of
hairpin compositions, we define Ωn to be the set of compositions of n whose first and
last part are reversals (including the case when there is one part of size n which is a
palindrome), i.e. if the first part is λ, then the last part is R(λ). Then the number
of hairpin compositions is |Ωn| − |Tn|.
Theorem 5. Let Hn denote the set of hairpin compositions of n. Then

|Hn| ∼ 2n−1
∑
λ∈S

1

2λ+R(λ)
.

Proof. A composition in Ωn with t parts is subject to the restrictions λ1 ∈ S and

λ1 + R(λ1) + λ2 + · · ·+ λt−1 = n .
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Hence,

|Ωn| = |Ωn ∩ {t = 1}| + |Ωn ∩ {t ≥ 2}|

= IP +

n∑
t=2

[xn]G(x)

(
x

1 − x

)t−2

. (17)

The second term on the right hand side can be simplified to obtain

n∑
t=2

[xn]G(x)

(
x

1 − x

)t−2

= [xn]G(x)

∞∑
t=0

(
x

1 − x

)t

= [xn]
G(x)

1 − x
1−x

.

Then

[xn]
G(x)

1 − x
1−x

= [xn]

∑
λ∈S

(IL + IE)xλ+R(λ)

1 − x
1−x

=
∑
λ∈S

IE +
∑
λ∈S

IL[xn−λ−R(λ)]
1

1 − x
1−x

=
∑
λ∈S

IE +
∑
λ∈S

IL2n−λ−R(λ)−1 . (18)

Combining (17) and (18), we get

|Ωn| = IP +
∑
λ∈S

IE + 2n−1
∑
λ∈S

IL

2λ+R(λ)

= IP +
∑
λ∈S

IE + 2n−1
∑
λ∈S

1

2λ+R(λ)
− 2n−1

∑
λ∈S

IE + IG

2λ+R(λ)
.

The first term, IP is either equal to 0 or 1. The second term can be crudely bounded
above by n, which we will see is sufficient for analyzing the asymptotics of Hn.
The constant in the third term can be approximated using Lemma 1 to be slightly
less than 1

3
, a figure that seems to parallel the formulas for the number of gapped-

palindromic compositions of n given in (15) and (16). The fourth term is bounded
as follows: Let a(n) be the value of the smallest λ in S such that λ + R(λ) ≥ n.
Then

∣∣∣∣∣2n−1
∑
λ∈S

IE + IG

2λ+R(λ)

∣∣∣∣∣ = 2n−1
∑
λ∈S

λ≥a(n)

IE + IG

2λ+R(λ)
≤ 2n−1

∑
λ≥a(n)

2

2λ
= 2n−a(n)+1 .

We get a crude bound on a(n) through the following argument: Suppose 10k ≤ λ <
10k+1 for some k ∈ Z+. Then it is also true that R(λ) < 10k+1. Furthermore, d(λ),
the number of digits of λ, is equal to k + 1. Hence

R(λ) < 10k+1 = 10d(λ) = 101+�log10 λ� ≤ 101+log10 λ = 10λ .
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This is a crude bound in that it is often very bad (consider R(91)); however, it is
sometimes quite good (consider R(109)). Now we have

λ + R(λ) < 11λ < n

whenever λ < n
11

. Therefore, a(n) ≥ n
11

and∣∣∣∣∣2n−1
∑
λ∈S

IE + IG

2λ+R(λ)

∣∣∣∣∣ ≤ 2n− n
11

+1 = 2
10n
11

+1 .

Finally we put these estimates together to obtain

|Hn| = |Ωn| − |Tn|
= IP +

∑
λ∈S

IE + 2n−1
∑
λ∈S

1

2λ+R(λ)
− 2

10n
11

+1 − D1

pnC1
+ O

(
1

rn

)

∼ 2n−1
∑
λ∈S

1

2λ+R(λ)
.

6 Remarks

An interesting quantity that we do not fully understand is ck, the number of positive
integers λ such that λ is not congruent to 0(mod 10) and λ +R(λ) = k. Notice that∑

λ∈S

xλ+R(λ) =
∑
k∈Z+

ck xk

Therefore, if ck were known exactly, Theorems 2 and 5 could be exact rather than
asymptotic formulas. However, preliminary calculations show ck to be an unpre-
dictable sequence (more so if multiples of 10 are included) with many terms equal to
zero. Until ck is better understood, Lemma 1 enables the constants in Theorems 2,
3, 4 and 5 to be numerically approximated as follows:

|Tn| ∼ (0.8380008..)(1.4137001..)n

|Hn| ∼ = (0.1666661..)2n

En(N) = (0.5028927..)n + (0.5710118..) + o(1)

En(L) = (1.9884956..) + o(1)

The beginning terms of the actual sequences |Tn| and |Hn|, beginning at n = 1, are:

{|Tn|} = {1, 2, 2, 4, 4, 8, 8, 16, 16, 31, 32, 62, 63, 124, 126, 248, 252, 496, 504, 991 . . .}

{|Hn|} = {0, 0, 0, 0, 2, 4, 14, 28, 70, 140, 310, 621, 1302, 2607, 5335, 10675, 21593, . . .}
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