Cycles in 3-anti-circulant digraphs*

Ruixia Wang
School of Mathematical Sciences
Shanxi University
Taiyuan, Shanxi 030006
PR China
wangrx@sxu.edu.cn

Abstract

A digraph D is a 3 -anti-circulant digraph, if for any four distinct vertices $x_{1}, x_{2}, x_{3}, x_{4} \in V(D), x_{1} \rightarrow x_{2} \leftarrow x_{3} \rightarrow x_{4}$ implies $x_{4} \rightarrow x_{1}$. In this paper, we characterize the structure of 3 -anti-circulant digraphs containing a cycle factor and show that the structure is very close to semicomplete and semicomplete bipartite digraphs. Laborde et al. conjectured that every digraph has an independent set intersecting every longest path. It has been shown that the conjecture is true for 3 -anti-circulant digraphs. In this paper, we generalize the result to the longest cycle and prove that there exists an independent set intersecting every longest cycle for 3 -anti-circulant digraphs.

1 Introduction and terminology

We shall assume that the reader is familiar with the standard terminology on digraphs and refer the reader to [1] for terminology not defined here. We only consider finite digraphs without loops and multiple arcs. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. For any $x, y \in V(D)$, we will write $x \rightarrow y$ if $x y \in A(D)$. For disjoint subsets X and Y of $V(D)$ or subdigraphs of D, we use the notation $X \rightarrow Y$ to denote that every vertex of X dominates every vertex of Y, the notation $X \Rightarrow Y$ to denote that there is no arc from Y to X, and $X \mapsto Y$ to denote that both of $X \rightarrow Y$ and $X \Rightarrow Y$ hold.

For a vertex x in D, its out-neighborhood is $N^{+}(x)=\{y \in V(D): x y \in A(D)\}$ and its in-neighborhood is $N^{-}(x)=\{y \in V(D): y x \in A(D)\}$. The numbers $d^{+}(x)=\left|N^{+}(x)\right|$ and $d^{-}(x)=\left|N^{-}(x)\right|$ are called the out-degree and the in-degree

[^0]of the vertex x, respectively. For a pair X, Y of vertex sets of D, define $(X, Y)=$ $\{x y \in A(D): x \in X, y \in Y\}$.

A path is a finite sequence of distinct vertices $P=x_{0} x_{1} \ldots x_{n}$ such that $x_{i-1} \rightarrow x_{i}$ for every $1 \leq i \leq n$; and its length is n. A cycle is a finite sequence of distinct vertices $C=x_{0} x_{1} \ldots x_{n} x_{0}$ such that $x_{i-1} \rightarrow x_{i}$ for every $1 \leq i \leq n$ and $x_{n} \rightarrow x_{0}$; its length is $n+1$. The predecessor of x_{i} on C is the vertex x_{i-1} and is also denoted by x_{i}^{-}; the successor of x_{i} on C is the vertex x_{i+1} and is also denoted by x_{i}^{+}. A k-cycle factor (also cycle factor) of a digraph D is a set of k vertex-disjoint cycles which span the vertex set of D. In this paper, we only consider the cycle factor $C_{1} \cup C_{2} \cup \ldots \cup C_{k}$ such that the length of C_{i} is at least 3 for $i \in\{1,2, \ldots, k\}$. A cycle of D with order $|V(D)|$ is called a Hamiltonian cycle and D is called a Hamiltonian digraph. A cycle is anti-directed if the orientation of each arc on the cycle is opposite to that of its predecessor. An anti-directed cycle of order k is called a k-anti-directed cycle.

A digraph D is complete if for every pair x, y of distinct vertices of D, both of $x y$ and $y x$ are in D. A digraph D is semicomplete if for every pair x, y of distinct vertices of D, vertices x and y are adjacent. A semicomplete bipartite digraph is a digraph whose underlying undirected graph is a complete bipartite graph.

Classes of digraphs characterized by forbidding families of induced digraphs play an important role in graph theory. Given a family of digraphs \mathcal{F}, we say that D is an orientedly \mathcal{F}-free digraph if there is no digraph in \mathcal{F} isomorphic to any induced subdigraph of any orientation of D (an orientation of a digraph D is a spanning subdigraph of D in which we choose only one arc between any two adjacent vertices of $D)$. If $\mathcal{F}=\{F\}$, we say orientedly F-free instead of orientedly \mathcal{F}-free.

There are four different possible orientations of the 3-path; see Figure 1 (also see Figure 2 in [2]). In H_{1}, H_{2}, H_{3} and H_{4}, any arc between the two vertices with a dotted edge between them is forbidden. For $i \in\{1,2,3,4\}$, orientedly H_{i}-free digraphs were introduced by Bang-Jensen in [2] as a common generalization of both semicomplete digraphs and semicomplete bipartite digraphs.

Figure 1.
Orientedly $\left\{H_{1}, H_{2}\right\}$-free digraphs are called arc-locally semicomplete digraphs, and were characterized by Galeana-Sánchez and Goldfeder in [5].

Orientedly $H_{1}\left(H_{2}\right)$-free digraphs are called arc-locally in (out)-semicomplete digraphs. In [10], the structure of strong arc-locally in (out)-semicomplete digraphs is characterized; this is very close to semicomplete digraphs, semicomplete bipartite digraphs and an extension of cycles.

Orientedly H_{3}-free digraphs are called 3 -quasi-transitive digraphs. In [4], the structure of strong 3 -quasi-transitive digraphs is characterized; this is very close to semicomplete and semicomplete bipartite digraphs.

Orientedly H_{4}-free digraphs are called 3 -anti-quasi-transitive digraphs in [11]. The results on 3-anti-quasi-transitive digraphs are still very few and this class of digraphs seems to be difficult to work. A digraph D is a line digraph if and only if for any four distinct vertices $x, y, z, w \in V(D), x \rightarrow y \leftarrow z \rightarrow w$ implies $x \rightarrow w$ (see [1]). Clearly, line digraphs are a subclass of 3 -anti-quasi-transitive digraphs. Line digraphs have been extensively studied; see for example [1]. Here, we define another subclass of 3-anti-quasi-transitive digraphs. A digraph D is a 3 -anti-circulant digraph if for any four distinct vertices $x, y, z, w \in V(D), x \rightarrow y \leftarrow z \rightarrow w$ implies $w \rightarrow x$. Clearly, a 3 -anti-circulant digraph must be a 3 -anti-quasi-transitive digraph.

The following characterization was obtained independently by Gutin [7] and by Häggkvist and Manoussakis [8].

Theorem 1.1. [7, 8] A semicomplete bipartite digraph is Hamiltonian if and only if it is strong and has a cycle factor.

The hamiltonicity characterization can be generalized to arc-locally semicomplete digraphs [2], arc-locally in (out)-semicomplete digraphs [10], 3-quasi-transitive digraphs [4] and 3 -anti-quasi-transitive digraphs [6, 11]. Because a 3 -anti-circulant digraph must be a 3 -anti-quasi-transitive digraph, we obtain the following result.

Theorem 1.2. Let D be a 3-anti-circulant digraph. Then D is Hamiltonian if and only if D is strong and has a cycle factor.

The subdivision of an arc $u v$ of a digraph D consists of replacing $u v$ by two $\operatorname{arcs} u x, x v$, where x is a new vertex. Let us denote by D^{*} the digraph obtained by subdividing every arc of a given digraph D. Note that D^{*} is a 3 -anti-circulant digraph. Hence to characterize the structure for general 3 -anti-circulant digraphs seems a hard problem. In this paper, we shall characterize the structure of strong 3 -anti-circulant digraphs containing a cycle factor.

Laborde, Payan and Xuong [9] proposed the following conjecture, which is still open: every digraph has an independent set intersecting every longest path. In recent years the conjecture has attracted quite a bit of attention and a number of results have been obtained in support of the conjecture. For example, in [3], GaleanaSánchez and Gómez showed that the conjecture is true for 3-anti-quasi-transitive digraphs. Because a 3 -anti-circulant digraph must be a 3 -anti-quasi-transitive digraph, the conjecture is also true for 3 -anti-circulant digraphs. However, the general conjecture appears to be quite difficult to settle. In this context it seems quite natural to ask what can be said about the obvious cycle analogue of the conjecture. To the knowledge of the author, this problem has not previously been addressed in the literature. In this paper, we prove that there exists an independent set intersecting every longest cycle for strong 3-anti-circulant digraphs.

2 Longest cycles in 3-anti-circulant digraphs

The following easy facts will be very useful in our proofs.
Lemma 2.1. Let D be a strong 3-anti-circulant digraph and D^{\prime} be a strong subdigraph of D. If for any $x \in V\left(D^{\prime}\right), d_{D^{\prime}}^{-}(x) \geq 2$ and $d_{D^{\prime}}^{+}(x) \geq 2$, then for any $s \in V(D)-$ $V\left(D^{\prime}\right)$, we have $\left(V\left(D^{\prime}\right), s\right) \neq \emptyset$ and $\left(s, V\left(D^{\prime}\right)\right) \neq \emptyset$.

Proof. Since the converse of a 3-anti-circulant digraph is still a 3-anti-circulant digraph, it suffices to prove $\left(V\left(D^{\prime}\right), s\right) \neq \emptyset$. Since D is strong, there exists a path from s to D^{\prime}. Let $P=s y_{1} \ldots y_{k}$ be a shortest path from s to D^{\prime}, where $y_{k} \in V\left(D^{\prime}\right)$. We prove $\left(V\left(D^{\prime}\right), s\right) \neq \emptyset$ by induction on the length k of P. If $k=1$, then, by the hypothesis of the lemma, there exist $z, w \in V\left(D^{\prime}\right)$ such that $z \rightarrow y_{1}$ and $z \rightarrow w$. Then $w \rightarrow s$ because $s \rightarrow y_{1} \leftarrow z \rightarrow w$ and D is a 3 -anti-circulant digraph. For any $k \geq 2$, we suppose that the assertion holds for $k-1$. Note that $y_{1} y_{2} \ldots y_{k}$ is a path of length $k-1$. By the induction hypothesis, there exists a vertex $u \in V\left(D^{\prime}\right)$ such that $u \rightarrow y_{1}$. Since $d_{D^{\prime}}^{+}(u) \geq 2$, there exists a vertex $v \in V\left(D^{\prime}\right)$ such that $u \rightarrow v$. Then $v \rightarrow s$ because $s \rightarrow y_{1} \leftarrow u \rightarrow v$.

In the following three lemmas, all the subscripts of x_{i} are taken modulo m and all the subscripts of y_{i} are taken modulo n.

Lemma 2.2. Let D be a 3-anti-circulant digraph, $C_{1}=x_{0} x_{1} \ldots x_{m-1} x_{0}$ and $C_{2}=$ $y_{0} y_{1} \ldots y_{n-1} y_{0}$ be two vertex-disjoint cycles of D. For any $x_{i} \in V\left(C_{1}\right)$ and $y_{j} \in$ $V\left(C_{2}\right)$, if $x_{i} \rightarrow y_{j}$, then $x_{i+k} \rightarrow y_{j-k}$ and $x_{i-k} \rightarrow y_{j+k}$, for any integer k.

Proof. We will show $x_{i+k} \rightarrow y_{j-k}$ by induction on k. The base case $k=0$ is immediate. Assume that the result holds by induction for $k-1$. Then $y_{j-k} \rightarrow y_{j-(k-1)} \leftarrow$ $x_{i+(k-1)} \rightarrow x_{i+k}$ implies $x_{i+k} \rightarrow y_{j-k}$. From this with the arbitrariness of k, we have $x_{i+(a m-k)} \rightarrow y_{j-(a m-k)}$, where $m a=n b$. As a result, $x_{i-k} \rightarrow y_{j+k}$.

The following useful fact is an easy consequence of Lemma 2.2.
Lemma 2.3. Let D be a 3-anti-circulant digraph, $C_{1}=x_{0} x_{1} \ldots x_{m-1} x_{0}$ and $C_{2}=$ $y_{0} y_{1} \ldots y_{n-1} y_{0}$ be two vertex-disjoint cycles of D. For any $x_{i} \in V\left(C_{1}\right)$ and $y_{j} \in$ $V\left(C_{2}\right)$, if x_{i} and y_{j} are adjacent, then x_{i+k} and y_{j-k} are adjacent as well x_{i-k} and y_{j+k}, for any integer k.

Lemma 2.2 also implies the following. Below $\operatorname{gcd}(m, n)$ means the greatest common divisor of m and n. For example, $\operatorname{gcd}(12,8)=4$.

Lemma 2.4. Let D be a 3-anti-circulant digraph, $C_{1}=x_{0} x_{1} \ldots x_{m-1} x_{0}$ and $C_{2}=$ $y_{0} y_{1} \ldots y_{n-1} y_{0}$ be two vertex-disjoint cycles of D. For any $x_{i} \in V\left(C_{1}\right)$ and $y_{j} \in$ $V\left(C_{2}\right)$, if $x_{i} \rightarrow y_{j}$, then $x_{i} \rightarrow y_{j+d}$ and $x_{i} \rightarrow y_{j-d}$, where $d=\operatorname{gcd}(m, n)$.

Proof. For convenience, we, without loss of generality, assume that $i=j=0$. From $x_{0} \rightarrow y_{0}$ and Lemma 2.2, we conclude that $x_{0} \rightarrow y_{k m}$, for $k=0,1,2, \cdots$. Let $G=\left\{k m \in Z_{n}: k \in Z\right\}$. It is easy to show that $G=\left\{k m \in Z_{n}: k \in Z\right\}=\{k d:$ $\left.k=0,1, \ldots, \frac{n}{d}-1\right\}$. Hence $x_{0} \rightarrow y_{k d}$, for $k=0,1, \ldots, \frac{n}{d}-1$. In particular, $x_{0} \rightarrow y_{d}$ and $x_{0} \rightarrow y_{n-d}$.

For a strong 3 -anti-circulant digraph containing a 4 -anti-directed cycle, there is the following nice structural characterization.

Lemma 2.5. Let D be a strong 3-anti-circulant digraph. If D contains a 4-antidirected cycle, then D is either a complete digraph or a semicomplete bipartite digraph.

Proof. Let $C=x_{0} \rightarrow x_{1} \leftarrow x_{2} \rightarrow x_{3} \leftarrow x_{0}$ be a 4-anti-directed cycle of D. Since $x_{0} \rightarrow x_{1} \leftarrow x_{2} \rightarrow x_{3}$, we have $x_{3} \rightarrow x_{0}$. Similarly, we can obtain that $x_{1} \rightarrow x_{0}$, $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{2}$. Hence every arc of $A(C)$ is contained in a 2 -cycle.
Claim 1. For any $x \in V(D)-V(C)$, if $x_{i} \rightarrow x$ then $x \rightarrow x_{i+2}$; if $x \rightarrow x_{i}$ then $x_{i+2} \rightarrow x$.

If $x_{i} \rightarrow x$, then since $x_{i+2} \rightarrow x_{i+1} \leftarrow x_{i} \rightarrow x$, we have $x \rightarrow x_{i+2}$. If $x \rightarrow x_{i}$, then since $x \rightarrow x_{i} \leftarrow x_{i+1} \rightarrow x_{i+2}$, we have $x_{i+2} \rightarrow x$.
Claim 2. If x_{i} and x_{i+2} are adjacent for $i=0$ or $i=1$, then D is a complete digraph.

Assume, without loss of generality, that x_{0} and x_{2} are adjacent and $x_{0} \rightarrow x_{2}$. Since $x_{1} \rightarrow x_{2} \leftarrow x_{0} \rightarrow x_{3}$, we have that $x_{3} \rightarrow x_{1}$. By $x_{3} \rightarrow x_{2} \leftarrow x_{0} \rightarrow x_{1}$, we have that $x_{1} \rightarrow x_{3}$. By $x_{0} \rightarrow x_{3} \leftarrow x_{1} \rightarrow x_{2}$, we have that $x_{2} \rightarrow x_{0}$. Hence C is a complete digraph.

For any $x \in V(D)-V(C)$, by Lemma 2.1, $(V(C), x) \neq \emptyset$. Assume, without loss of generality, that $x_{0} \rightarrow x$. Since $x_{2} \rightarrow x_{1} \leftarrow x_{0} \rightarrow x, x_{1} \rightarrow x_{3} \leftarrow x_{0} \rightarrow x$ and $x_{3} \rightarrow x_{2} \leftarrow x_{0} \rightarrow x$, we have $x \rightarrow x_{2}, x \rightarrow x_{1}$ and $x \rightarrow x_{3}$, respectively. By $x \rightarrow x_{1} \leftarrow x_{2} \rightarrow x_{3}, x \rightarrow x_{3} \leftarrow x_{1} \rightarrow x_{2}, x \rightarrow x_{3} \leftarrow x_{2} \rightarrow x_{1}$, we have that $x_{3} \rightarrow x$, $x_{2} \rightarrow x$ and $x_{1} \rightarrow x$, respectively. By $x_{0} \rightarrow x_{3} \leftarrow x_{2} \rightarrow x$, we have that $x \rightarrow x_{0}$. Hence $V(C) \rightarrow x \rightarrow V(C)$. For any two vertices $x, y \in V(D)-V(C)$, by the above argument, $V(C) \rightarrow\{x, y\} \rightarrow V(C)$. By $x \rightarrow x_{0} \leftarrow x_{1} \rightarrow y$ and $y \rightarrow x_{1} \leftarrow x_{0} \rightarrow x$, we have that $y \rightarrow x \rightarrow y$. So D is a complete digraph. The proof of Claim 2 is complete.

By Lemma 2.1 and Claim 1, for any $x \in V(D)-V(C), x$ either is adjacent to exactly two vertices of $V(C)$ or is adjacent to every vertex of $V(C)$. First, suppose that there exists a vertex $x \in V(D)-V(C)$ such that x is adjacent to every vertex of $V(C)$. By Lemma 2.1 and Claim 1, assume, without loss of generality, that $x_{0} \rightarrow x$ and $x_{1} \rightarrow x$. By $x_{0} \rightarrow x \leftarrow x_{1} \rightarrow x_{2}$, we have $x_{2} \rightarrow x_{0}$. By Claim 2, D is a complete digraph. Next assume that for any $x \in V(D)-V(C), x$ is adjacent to exactly two vertices of $V(C)$. Hence we divide $V(D)-V(C)$ into two sets X and Y, where $X=\left\{x \in V(D)-V(C): x\right.$ is adjacent to x_{1} and $x_{3} ; x$ is not adjacent to x_{0} and $\left.x_{2}\right\}$
and $Y=\left\{x \in V(D)-V(C): x\right.$ is adjacent to x_{0} and $x_{2} ; x$ is not adjacent to x_{1} and $\left.x_{3}\right\}$.
Claim 3. Every vertex of $X \cup\left\{x_{0}, x_{2}\right\}$ is adjacent to every vertex of $Y \cup\left\{x_{1}, x_{3}\right\}$.
By the definitions of X and Y, we only need to prove that every vertex of X is adjacent to every vertex of Y. For any $x \in X$ and $y \in Y$, by Claim 1, assume, without loss of generality, that $x_{1} \rightarrow x, x \rightarrow x_{3}$ and $x_{0} \rightarrow y, y \rightarrow x_{2}$. Since $y \rightarrow x_{2} \leftarrow x_{1} \rightarrow x$, we have $x \rightarrow y$. The proof of Claim 3 is complete.

If X and Y are both independent sets, then, by Claim 3, D is a semicomplete bipartite digraph; if not, then one of X and Y is not an independent set, say X. Hence there exist two vertices $x^{\prime}, x^{\prime \prime} \in X$ such that x^{\prime} and $x^{\prime \prime}$ are adjacent and without loss of generality, assume that $x^{\prime} \rightarrow x^{\prime \prime}$. By the definition of X and Claim 1, assume, without loss of generality, that $x_{1} \rightarrow x^{\prime \prime}$ and $x^{\prime \prime} \rightarrow x_{3}$. By $x^{\prime} \rightarrow x^{\prime \prime} \leftarrow x_{1} \rightarrow x_{2}$, we have that $x_{2} \rightarrow x^{\prime}$, a contradiction to the definition of X. The proof of the lemma is complete.

Now we consider the strong 3 -anti-circulant digraph containing a cycle factor. First define two digraphs F_{6} and F_{8}, see Figure 2. It is not difficult to check that both of the digraphs F_{6} and F_{8} are 3 -anti-circulant digraphs and each of F_{6} and F_{8} contains a cycle factor.

Figure 2.
Lemma 2.6. Let D be a strong 3-anti-circulant digraph containing a cycle factor $C_{1} \cup C_{2}$ such that the lengths of C_{1} and C_{2} are equal, denoted by n. Suppose that D contains no 4 -anti-directed cycle. Then D is either a semicomplete digraph or isomorphic to F_{6} or F_{8}.

Proof. Let $C_{1}=x_{0} x_{1} \ldots x_{n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \ldots y_{n-1} y_{0}$. From now on, all subscripts appearing in this proof are taken modulo n. Since D is strong, we have $\left(V\left(C_{1}\right), V\left(C_{2}\right)\right) \neq \emptyset$ and $\left(V\left(C_{2}\right), V\left(C_{1}\right)\right) \neq \emptyset$. If there exist $x_{i} \in V\left(C_{1}\right)$ and $y_{j} \in V\left(C_{2}\right)$ such that $x_{i} \rightarrow y_{j} \rightarrow x_{i}$, then, by Lemma 2.2, $y_{j-1} \rightarrow x_{i+1}$. Note that $x_{i} \rightarrow y_{j} \leftarrow y_{j-1} \rightarrow x_{i+1} \leftarrow x_{i}$ is a 4 -anti-directed cycle, a contradiction. Now assume that the arc between C_{1} and C_{2} is not contained in any 2 -cycle, that is to say, for any $u \in V\left(C_{i}\right)$ and $v \in V\left(C_{3-i}\right)$ with $i=1$ or $2, u \rightarrow v$ implies $u \mapsto v$. Since $\left(V\left(C_{1}\right), V\left(C_{2}\right)\right) \neq \emptyset$, we assume, without loss of generality, $x_{0} \rightarrow y_{n-1}$ and
furthermore $x_{0} \mapsto y_{n-1}$. By Lemma 2.2, $x_{i} \rightarrow y_{n-1-i}$ and furthermore $x_{i} \mapsto y_{n-1-i}$, for $i=0,1, \ldots, n-1$. According to $\left(V\left(C_{2}\right), V\left(C_{1}\right)\right) \neq \emptyset$ and Lemma 2.2, we can deduce that there is an arc from $V\left(C_{2}\right)$ to every vertex of $V\left(C_{1}\right)$, in particular, there is an arc from $V\left(C_{2}\right)$ to x_{0}.

Suppose $n=3$. If x_{0} and every vertex of $V\left(C_{2}\right)$ are adjacent, then by Lemma 2.3, every vertex of $V\left(C_{1}\right)$ is adjacent to every vertex of $V\left(C_{2}\right)$. Hence D is a semicomplete digraph. Assume that x_{0} and one of y_{0} and y_{1} is not adjacent. Since $\left(V\left(C_{2}\right), x_{0}\right) \neq \emptyset$ and $x_{0} \mapsto y_{2}$, we assume, without loss of generality, that $y_{0} \mapsto x_{0}$ and x_{0} is not adjacent to y_{1}. From Lemma 2.2, we have that $y_{1} \mapsto x_{2}, y_{2} \mapsto x_{1}$ and $x_{1}\left(x_{2}\right)$ is not adjacent to $y_{0}\left(y_{2}\right.$ respectively). It is not difficult to deduce that there are no other arcs in D. Define a mapping $\theta: V(D) \rightarrow V\left(F_{6}\right)$ such that $\theta\left(y_{2}\right)=x_{0}, \theta\left(y_{1}\right)=x_{2}, \theta\left(y_{0}\right)=x_{1}, \theta\left(x_{0}\right)=y_{1}, \theta\left(x_{1}\right)=y_{2}, \theta\left(x_{2}\right)=y_{0}$. It is easy to check that the mapping θ is an isomorphism. Hence D is isomorphic to F_{6}. Next assume that $n \geq 4$.
Claim 1. For any $2 \leq j \leq n-2$, if $y_{j} \rightarrow x_{0}$, then $y_{j-2} \rightarrow x_{0}, x_{2} \rightarrow y_{n-1}$ and $y_{n-3} \rightarrow x_{0}$.

By Lemma 2.2 and $y_{j} \rightarrow x_{0}$, we know that $y_{j-1} \rightarrow x_{1}$ and $y_{j-2} \rightarrow x_{2}$. Then $y_{j-1} \rightarrow x_{1} \leftarrow x_{0} \rightarrow y_{n-1}$ implies that $y_{n-1} \rightarrow y_{j-1}$. By $x_{0} \rightarrow y_{n-1}$ and Lemma 2.2, we have that $x_{n-j+1} \rightarrow y_{j-2}$ and $x_{n-j} \rightarrow y_{j-1}$. Then $y_{n-1} \rightarrow y_{j-1} \leftarrow x_{n-j} \rightarrow$ x_{n-j+1} implies that $x_{n-j+1} \rightarrow y_{n-1}$. By $x_{0} \rightarrow y_{n-1} \leftarrow x_{n-j+1} \rightarrow y_{j-2}$, we have that $y_{j-2} \rightarrow x_{0}$. By $y_{n-1} \rightarrow y_{j-1} \leftarrow y_{j-2} \rightarrow x_{2}$, we have that $x_{2} \rightarrow y_{n-1}$. Then $x_{0} \rightarrow y_{n-1} \leftarrow x_{2} \rightarrow y_{n-3}$ implies that $y_{n-3} \rightarrow x_{0}$.
Claim 2. For any $u \in V\left(C_{i}\right)$, there exists no vertex $v \in V\left(C_{3-i}\right)$ such that both of $u \rightarrow v$ and $v \rightarrow u^{+}$hold simultaneously, where $i=1$ or 2 .

By contradiction. Without loss of generality, assume that $y_{n-2} \rightarrow x_{0} \rightarrow y_{n-1}$. By $n \geq 4$ and Claim 1, we have that $y_{n-3} \rightarrow x_{0}$ and $x_{2} \rightarrow y_{n-1}$. Recalling that we have assumed that $x_{2} \mapsto y_{n-1}$. By $y_{n-2} \rightarrow x_{0}, y_{n-3} \rightarrow x_{0}$ and repeated application of Claim 1, we can obtain $y_{1} \rightarrow x_{0}$. This together with Lemma 2.2, we have $y_{n-1} \rightarrow x_{2}$, a contradiction to $x_{2} \mapsto y_{n-1}$. The proof of the claim is complete.

Using Claim 2, we know that y_{n-2} does not dominate x_{0}. From Claim 2, we can also know that y_{n-1} does not dominate x_{1}, which implies that y_{0} does not dominate x_{0} from Lemma 2.2. Hence we have that y_{n-2} and y_{0} do not dominate x_{0}. Similarly, we may assume y_{n-2-i} and y_{n-i} do not dominate x_{i}, for $i=1,2, \ldots, n-1$.

If $n=4$, then it must be $y_{1} \rightarrow x_{0}$. In this case, it is easy to see that D is isomorphic to F_{8}. Now assume $n \geq 5$ and $y_{j} \rightarrow x_{0}$ for $1 \leq j \leq n-3$.
Claim 3. For any $y_{i} \in V\left(C_{2}\right), y_{i}$ dominates neither y_{i+2} nor y_{i+3}.
Without loss of generality, assume that $i=0$. By contradiction. If $y_{0} \rightarrow y_{2}$, then, by $x_{n-3} \rightarrow y_{2} \leftarrow y_{0} \rightarrow y_{1}$, we have that $y_{1} \rightarrow x_{n-3}$, a contradiction to the fact that y_{1} does not dominate x_{n-3}. If $y_{0} \rightarrow y_{3}$, then $y_{0} \rightarrow y_{3} \leftarrow x_{n-4} \rightarrow x_{n-3}$ implies that $x_{n-3} \rightarrow y_{0}$ and $x_{n-3} \mapsto y_{0}$. By $x_{n-4} \rightarrow y_{3} \leftarrow y_{0} \rightarrow y_{1}$, we have that $y_{1} \rightarrow x_{n-4}$. From this with Lemma 2.2, $y_{0} \rightarrow x_{n-3}$, a contradiction to $x_{n-3} \mapsto y_{0}$. The proof of the claim is complete.

Now we claim that there exist two vertices $y_{i}, y_{k} \in V\left(C_{2}\right)$ such that $y_{k} \rightarrow y_{i}$ where $i-k \geq 2$. If $y_{1} \rightarrow x_{0}$, then by Lemma 2.2, $y_{n-2} \rightarrow x_{3}$. By $x_{0} \rightarrow y_{n-1} \leftarrow y_{n-2} \rightarrow x_{3}$, we have that $x_{3} \rightarrow x_{0}$. By $x_{3} \rightarrow x_{0} \leftarrow x_{n-1} \rightarrow y_{0}$, we have that $y_{0} \rightarrow x_{3}$. By $y_{n-2} \rightarrow$ $x_{3} \leftarrow y_{0} \rightarrow y_{1}$, we have that $y_{1} \rightarrow y_{n-2}$. By $n \geq 5$, we have $(n-2)-1=n-3 \geq 2$. If $y_{j} \rightarrow x_{0}$, where $2 \leq j \leq n-3$, then by $y_{j} \rightarrow x_{0} \leftarrow x_{n-1} \rightarrow y_{0}$, we have that $y_{0} \rightarrow y_{j}$. Hence the claim holds. If $i-k=2$ or $i-k=3$, then it is a contradiction according to Claim 3. If $i-k \geq 4$, then by $y_{i-1} \rightarrow y_{i} \leftarrow y_{k} \rightarrow y_{k+1}$, we have that $y_{k+1} \rightarrow y_{i-1}$. Continuing in this way, there exist two vertices y_{t}, y_{s} such that $y_{t} \rightarrow y_{s}$ with $s-t=2$ or $s-t=3$, which is also a contradiction according to Claim 3 .

Lemma 2.7. Let D be a connected 3 -anti-circulant digraph containing a cycle factor $C_{1} \cup C_{2}$ such that the lengths of C_{1} and C_{2} are not equal. Then D is strong and has a 4-anti-directed cycle.

Proof. Let $C_{1}=x_{0} x_{1} \ldots x_{m-1} x_{0}$ and $C_{2}=y_{0} y_{1} \ldots y_{n-1} y_{0}$. From now on, all the subscripts of x_{i} appearing in this proof are taken modulo m and all the subscripts of y_{j} appearing in this proof are taken modulo n. Since D is connected, there exists at least an arc between C_{1} and C_{2}. Assume, without loss of generality, that there is one arc from C_{1} to C_{2} and $x_{0} \rightarrow y_{n-1}$. If $d=\operatorname{gcd}(m, n)=1$, then by Lemma 2.4, $V\left(C_{1}\right) \rightarrow V\left(C_{2}\right)$. By $x_{1} \rightarrow y_{n-2} \leftarrow x_{0} \rightarrow y_{n-1}$, we have that $y_{n-1} \rightarrow x_{1}$. Hence D is strong. Note that $x_{0} \rightarrow y_{n-1} \leftarrow x_{1} \rightarrow y_{n-2} \leftarrow x_{0}$ is a 4 -anti-directed cycle. Next assume that $d=\operatorname{gcd}(m, n) \geq 2$.

First we show that there is an arc from C_{2} to C_{1}. By $x_{0} \rightarrow y_{n-1}$ and Lemmas 2.2 and 2.4, $x_{0} \rightarrow y_{n-1-d}$ and $x_{d} \rightarrow y_{n-1-d}$. By $x_{d} \rightarrow y_{n-1-d} \leftarrow x_{0} \rightarrow y_{n-1}$, we have that $y_{n-1} \rightarrow x_{d}$. Note that $y_{n-1} x_{d}$ is an arc from C_{2} to C_{1}. Hence D is strong.

Now we show that D contains a 4 -anti-directed cycle. We may assume, without loss of generality, that $m<n$. Since $x_{0} \rightarrow y_{n-1}$, by Lemma $2.2, x_{0} \rightarrow y_{n-m-1}$ and $x_{1} \rightarrow y_{n-2}$. Noting that $(n-1)-(n-m-1)=m \geq 3$, we have $n-4 \geq n-m-1$. By $y_{n-2} \rightarrow y_{n-1} \leftarrow x_{0} \rightarrow y_{n-m-1}$, we have that $y_{n-m-1} \rightarrow y_{n-2}$. By $x_{1} \rightarrow y_{n-2} \leftarrow$ $y_{n-m-1} \rightarrow y_{n-m}$, we have that $y_{n-m} \rightarrow x_{1}$. By $y_{n-m-1} \rightarrow y_{n-2} \leftarrow x_{1} \rightarrow x_{2}$, we have that $x_{2} \rightarrow y_{n-m-1}$. Combining this with Lemma 2.2, we have $x_{1} \rightarrow y_{n-m}$. Note that $x_{1} \rightarrow y_{n-2} \leftarrow y_{n-m-1} \rightarrow y_{n-m} \leftarrow x_{1}$ is a 4 -anti-directed cycle.

Theorem 2.8. Let D be a strong 3-anti-circulant digraph. If D has a cycle factor $C_{1} \cup C_{2} \cup \ldots \cup C_{t}$ with $t \geq 2$, then D is either a semicomplete digraph or a semicomplete bipartite digraph or isomorphic to F_{6}.

Proof. Let $F=C_{1} \cup C_{2} \cup \ldots \cup C_{t}$. If D has a 4-anti-directed cycle, then by Lemma $2.5, D$ is either a complete digraph or a semicomplete bipartite digraph. Now assume that D has no 4 -anti-directed cycle. By Lemma 2.7, we know that the lengths of all cycles are equal, say n.

First we claim that D contains a cycle factor consisting of exactly two cycles. We show the claim by induction on t. If $t=2$, it is nothing to prove. Suppose $t \geq 3$. If there exist two cycles C_{i} and C_{j} of F such that $\left(V\left(C_{i}\right), V\left(C_{j}\right)\right) \neq \emptyset$ and $\left(V\left(C_{j}\right), V\left(C_{i}\right)\right) \neq \emptyset$, then by Theorem $1.2, D$ contains a cycle covering the vertices
of $V\left(C_{i}\right) \cup V\left(C_{j}\right)$. By the induction hypothesis, the claim holds. Hence we assume that for any two cycles C_{i} and C_{j} of F, we have $C_{i} \Rightarrow C_{j}$ or $C_{j} \Rightarrow C_{i}$. Since D is strong, it must exist three cycles C_{i}, C_{j} and C_{k} such that there is at least one arc from C_{i} to C_{j} and from C_{j} to C_{k}. Let $C_{i}=x_{0} x_{1} \ldots x_{n-1} x_{0}, C_{j}=y_{0} y_{1} \ldots y_{n-1} y_{0}$ and $C_{k}=z_{0} z_{1} \ldots z_{n-1} z_{0}$. Without loss of generality, assume that $x_{0} \rightarrow y_{n-1} \rightarrow z_{0}$. Combining this with Lemma 2.2, we have $y_{n-2} \rightarrow z_{1}, x_{n-1} \rightarrow y_{0}$ and $y_{0} \rightarrow z_{n-1}$. By $x_{0} \rightarrow y_{n-1} \leftarrow y_{n-2} \rightarrow z_{1}$, we have that $z_{1} \rightarrow x_{0}$. By $z_{1} \rightarrow x_{0} \leftarrow x_{n-1} \rightarrow y_{0}$, we have that $y_{0} \rightarrow z_{1}$. By $y_{n-2} \rightarrow z_{1} \leftarrow y_{0} \rightarrow z_{n-1}$, we have that $z_{n-1} \rightarrow y_{n-2}$. Hence $V\left(C_{j}\right) \cup V\left(C_{k}\right)$ induces a strong digraph, a contradiction.

By the above claim, D has a cycle factor $C_{1}^{\prime} \cup C_{2}^{\prime}$. As we have assumed that D has no 4 -anti-directed cycle. This together with Lemma 2.7 implies that the lengths of C_{1}^{\prime} and C_{2}^{\prime} are same. Note that F_{8} is a semicomplete bipartite digraph. By Lemma 2.6, D is either a semicomplete digraph or a semicomplete bipartite digraph or isomorphic to F_{6}.

Lemma 2.9. Let D be a 3-anti-circulant digraph. If C is an anti-directed cycle of length k in D, then D contains a cycle of length k covering the vertices of $V(C)$.

Proof. Let $C=\left(x_{0}, x_{1}, \ldots, x_{k-1}, x_{0}\right)$ be an anti-directed cycle of length k such that $x_{0} \rightarrow x_{1}$. By the definition of anti-directed cycles, k must be even. For any even $i \in\{0,2, \ldots, k-2\}, x_{i} \rightarrow x_{i+1} \leftarrow x_{i+2} \rightarrow x_{i+3}$ implies $x_{i+3} \rightarrow x_{i}$. Note that $x_{0} x_{1} x_{k-2} x_{k-1} x_{k-4} x_{k-3} \ldots x_{4} x_{5} x_{2} x_{3} x_{0}$ is a cycle of length k covering the vertices of $V(C)$.

Lemma 2.9 immediately implies the following result.
Theorem 2.10. Let D be a 3-anti-circulant digraph of order even. If D has an anti-directed cycle of length $|V(D)|$, then D is Hamiltonian.

Conjecture 2.11. [9] Every digraph has an independent set intersecting every longest path.

In [3], Galeana-Sánchez and Gómez showed that Conjecture 2.11 is true for 3-anti-quasi-transitive digraphs.

Theorem 2.12. [3] Let D be a 3-anti-quasi-transitive digraph. There exists an independent set in D intersecting every longest path in D.

Noting that a 3 -anti-circulant digraph is also a 3 -anti-quasi-transitive digraph, Theorem 2.12 immediately implies the following.

Corollary 2.13. Let D be a 3-anti-circulant digraph. There exists an independent set in D intersecting every longest path in D.

Now we generalize the above result to the longest cycle and give the following theorem.

Theorem 2.14. Let D be a strong 3-anti-circulant digraph. There exists an independent set intersecting every longest cycle.

Proof. Let $C=x_{0} x_{1} \ldots x_{n-1} x_{0}$ be a longest cycle in D and let F be a maximal independent set. If $V(C) \cap F \neq \emptyset$, then we are done. Now suppose $V(C) \cap F=\emptyset$. First show that $F \Rightarrow V(C)$ or $V(C) \Rightarrow F$ holds. Since F is a maximal independent set, for any $x \in V(C)$, there exists a vertex $y \in F$ such that x and y are adjacent. If $(V(C), F) \neq \emptyset$ and $(F, V(C)) \neq \emptyset$, then there exist $x_{i} \in V(C)$ and $u, v \in F$ such that $u \rightarrow x_{i}$ and $x_{i-1} \rightarrow v$. Then $u=v$ because $u \rightarrow x_{i} \leftarrow x_{i-1} \rightarrow v$ and F is an independent set. But $x_{i-1} u C\left[x_{i}, x_{i-1}\right]$ is a longer cycle than C in D contradicting that C is a longest cycle. Hence $F \Rightarrow C$ or $C \Rightarrow F$. Since the converse of a 3 -anticirculant digraph is still a 3 -anti-circulant digraph, we assume that $F \Rightarrow C$. Now divide the vertices of $V(D)-V(C)$ into four sets I, O, B, Y such that

$$
\begin{aligned}
I & =\{x \in V(D)-V(C):(x, V(C)) \neq \emptyset, x \Rightarrow C\} \\
O & =\{x \in V(D)-V(C):(V(C), x) \neq \emptyset, C \Rightarrow x\}, \\
B & =\{x \in V(D)-V(C):(x, V(C)) \neq \emptyset,(V(C), x) \neq \emptyset\} \\
\text { and } Y & =V(D)-I-O-B .
\end{aligned}
$$

By the hypothesis, we can see that $F \subset I$. For any $y \in O \cup B$, by the definition of $O \cup B$, there exists $x \in V(C)$ such that $x \rightarrow y$. By the definition of F, there exists $u \in F$ such that $u \rightarrow x^{+}$. Then $y \rightarrow u$ from $u \rightarrow x^{+} \leftarrow x \rightarrow y$. But $x y u C\left[x^{+}, x\right]$ is a longer cycle than C, a contradiction. Hence $O \cup B=\emptyset$, which is a contradiction to the fact that D is strong.

Acknowledgements

I thank the referees for their valuable comments and suggestions that improved the presentation considerably.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
[2] J. Bang-Jensen, The structure of strong arc-locally semicomplete digraphs, Discrete Math. 283 (2004), 1-6.
[3] H. Galeana-Sánchez and R. Gómez, Independent sets and non-augmentable paths in generalizations of tournaments, Discrete Math. 308 (2008), 2460-2472.
[4] H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of strong 3-quasi-transitive digraphs, Discrete Math. 310 (2010), 2495-2498.
[5] H. Galeana-Sánchez and I.A. Goldfeder, A classification of all arc-locally semicomplete digraphs, Discrete Math. 312 (2012), 1883-1891.
[6] H. Galeana-Sánchez and I.A. Goldfeder, Hamiltonian cycles in a generalization of bipartite tournaments with a cycle factor, Discrete Math. 315 (2014), 135-143.
[7] G. Gutin, Finding a longest path in a complete multipartite digraph, SIAM J. Discrete Math. 6 (1993), 270-273.
[8] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9(1) (1989), 33-38.
[9] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest paths in digraphs, in Graphs and other Combinatorial Topics, Proc. Third Czechoslovak Symposium Graph Theory (1982), 173-177.
[10] S. Wang and R.Wang, The structure of strong arc-locally in-semicomplete digraphs, Discrete Math. 309 (2009), 6555-6562.
[11] R. Wang, A conjecture on 3-anti-quasi-transitive digraphs, Discrete Math. 322 (2014), 48-52.

[^0]: * This work is supported by the National Natural Science Foundation for Young Scientists of China (11201273)(61202017), the Natural Science Foundation for Young Scientists of Shanxi Province, China (2011021004)(2013021001-5) and Shanxi Scholarship Council of China(2013-017).

