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Abstract

A digraph D is a 3-anti-circulant digraph, if for any four distinct vertices
x1, x2, x3, x4 ∈ V (D), x1 → x2 ← x3 → x4 implies x4 → x1. In this pa-
per, we characterize the structure of 3-anti-circulant digraphs containing
a cycle factor and show that the structure is very close to semicomplete
and semicomplete bipartite digraphs. Laborde et al. conjectured that
every digraph has an independent set intersecting every longest path. It
has been shown that the conjecture is true for 3-anti-circulant digraphs.
In this paper, we generalize the result to the longest cycle and prove
that there exists an independent set intersecting every longest cycle for
3-anti-circulant digraphs.

1 Introduction and terminology

We shall assume that the reader is familiar with the standard terminology on digraphs
and refer the reader to [1] for terminology not defined here. We only consider finite
digraphs without loops and multiple arcs. Let D be a digraph with vertex set V (D)
and arc set A(D). For any x, y ∈ V (D), we will write x → y if xy ∈ A(D). For
disjoint subsets X and Y of V (D) or subdigraphs of D, we use the notation X → Y
to denote that every vertex of X dominates every vertex of Y , the notation X ⇒ Y
to denote that there is no arc from Y to X, and X �→ Y to denote that both of
X → Y and X ⇒ Y hold.

For a vertex x in D, its out-neighborhood is N+(x) = {y ∈ V (D) : xy ∈ A(D)}
and its in-neighborhood is N−(x) = {y ∈ V (D) : yx ∈ A(D)}. The numbers
d+(x) = |N+(x)| and d−(x) = |N−(x)| are called the out-degree and the in-degree
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of the vertex x, respectively. For a pair X, Y of vertex sets of D, define (X, Y ) =
{xy ∈ A(D) : x ∈ X, y ∈ Y }.

A path is a finite sequence of distinct vertices P = x0x1 . . . xn such that xi−1 → xi

for every 1 ≤ i ≤ n; and its length is n. A cycle is a finite sequence of distinct vertices
C = x0x1 . . . xnx0 such that xi−1 → xi for every 1 ≤ i ≤ n and xn → x0; its length is
n + 1. The predecessor of xi on C is the vertex xi−1 and is also denoted by x−

i ; the
successor of xi on C is the vertex xi+1 and is also denoted by x+

i . A k-cycle factor
(also cycle factor) of a digraph D is a set of k vertex-disjoint cycles which span the
vertex set of D. In this paper, we only consider the cycle factor C1 ∪ C2 ∪ . . . ∪ Ck

such that the length of Ci is at least 3 for i ∈ {1, 2, . . . , k}. A cycle of D with order
|V (D)| is called a Hamiltonian cycle and D is called a Hamiltonian digraph. A cycle
is anti-directed if the orientation of each arc on the cycle is opposite to that of its
predecessor. An anti-directed cycle of order k is called a k-anti-directed cycle.

A digraph D is complete if for every pair x, y of distinct vertices of D, both of
xy and yx are in D. A digraph D is semicomplete if for every pair x, y of distinct
vertices of D, vertices x and y are adjacent. A semicomplete bipartite digraph is a
digraph whose underlying undirected graph is a complete bipartite graph.

Classes of digraphs characterized by forbidding families of induced digraphs play
an important role in graph theory. Given a family of digraphs F , we say that D is
an orientedly F -free digraph if there is no digraph in F isomorphic to any induced
subdigraph of any orientation of D (an orientation of a digraph D is a spanning
subdigraph of D in which we choose only one arc between any two adjacent vertices
of D). If F = {F}, we say orientedly F -free instead of orientedly F -free.

There are four different possible orientations of the 3-path; see Figure 1 (also see
Figure 2 in [2]). In H1, H2, H3 and H4, any arc between the two vertices with a dotted
edge between them is forbidden. For i ∈ {1, 2, 3, 4}, orientedly Hi-free digraphs were
introduced by Bang-Jensen in [2] as a common generalization of both semicomplete
digraphs and semicomplete bipartite digraphs.
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Figure 1.

Orientedly {H1, H2}-free digraphs are called arc-locally semicomplete digraphs,
and were characterized by Galeana-Sánchez and Goldfeder in [5].

Orientedly H1(H2)-free digraphs are called arc-locally in (out)-semicomplete di-
graphs. In [10], the structure of strong arc-locally in (out)-semicomplete digraphs
is characterized; this is very close to semicomplete digraphs, semicomplete bipartite
digraphs and an extension of cycles.
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Orientedly H3-free digraphs are called 3-quasi-transitive digraphs. In [4], the
structure of strong 3-quasi-transitive digraphs is characterized; this is very close to
semicomplete and semicomplete bipartite digraphs.

Orientedly H4-free digraphs are called 3-anti-quasi-transitive digraphs in [11].
The results on 3-anti-quasi-transitive digraphs are still very few and this class of
digraphs seems to be difficult to work. A digraph D is a line digraph if and only if
for any four distinct vertices x, y, z, w ∈ V (D), x→ y ← z → w implies x→ w (see
[1]). Clearly, line digraphs are a subclass of 3-anti-quasi-transitive digraphs. Line
digraphs have been extensively studied; see for example [1]. Here, we define another
subclass of 3-anti-quasi-transitive digraphs. A digraph D is a 3-anti-circulant digraph
if for any four distinct vertices x, y, z, w ∈ V (D), x → y ← z → w implies w → x.
Clearly, a 3-anti-circulant digraph must be a 3-anti-quasi-transitive digraph.

The following characterization was obtained independently by Gutin [7] and by
Häggkvist and Manoussakis [8].

Theorem 1.1. [7, 8] A semicomplete bipartite digraph is Hamiltonian if and only if
it is strong and has a cycle factor.

The hamiltonicity characterization can be generalized to arc-locally semicom-
plete digraphs [2], arc-locally in (out)-semicomplete digraphs [10], 3-quasi-transitive
digraphs [4] and 3-anti-quasi-transitive digraphs [6, 11]. Because a 3-anti-circulant
digraph must be a 3-anti-quasi-transitive digraph, we obtain the following result.

Theorem 1.2. Let D be a 3-anti-circulant digraph. Then D is Hamiltonian if and
only if D is strong and has a cycle factor.

The subdivision of an arc uv of a digraph D consists of replacing uv by two
arcs ux, xv, where x is a new vertex. Let us denote by D∗ the digraph obtained
by subdividing every arc of a given digraph D. Note that D∗ is a 3-anti-circulant
digraph. Hence to characterize the structure for general 3-anti-circulant digraphs
seems a hard problem. In this paper, we shall characterize the structure of strong
3-anti-circulant digraphs containing a cycle factor.

Laborde, Payan and Xuong [9] proposed the following conjecture, which is still
open: every digraph has an independent set intersecting every longest path. In recent
years the conjecture has attracted quite a bit of attention and a number of results
have been obtained in support of the conjecture. For example, in [3], Galeana-
Sánchez and Gómez showed that the conjecture is true for 3-anti-quasi-transitive
digraphs. Because a 3-anti-circulant digraph must be a 3-anti-quasi-transitive di-
graph, the conjecture is also true for 3-anti-circulant digraphs. However, the general
conjecture appears to be quite difficult to settle. In this context it seems quite nat-
ural to ask what can be said about the obvious cycle analogue of the conjecture. To
the knowledge of the author, this problem has not previously been addressed in the
literature. In this paper, we prove that there exists an independent set intersecting
every longest cycle for strong 3-anti-circulant digraphs.
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2 Longest cycles in 3-anti-circulant digraphs

The following easy facts will be very useful in our proofs.

Lemma 2.1. Let D be a strong 3-anti-circulant digraph and D′ be a strong subdigraph
of D. If for any x ∈ V (D′), d−

D′(x) ≥ 2 and d+
D′(x) ≥ 2, then for any s ∈ V (D) −

V (D′), we have (V (D′), s) �= ∅ and (s, V (D′)) �= ∅.

Proof. Since the converse of a 3-anti-circulant digraph is still a 3-anti-circulant di-
graph, it suffices to prove (V (D′), s) �= ∅. Since D is strong, there exists a path from
s to D′. Let P = sy1 . . . yk be a shortest path from s to D′, where yk ∈ V (D′).
We prove (V (D′), s) �= ∅ by induction on the length k of P . If k = 1, then, by the
hypothesis of the lemma, there exist z, w ∈ V (D′) such that z → y1 and z → w.
Then w → s because s→ y1 ← z → w and D is a 3-anti-circulant digraph. For any
k ≥ 2, we suppose that the assertion holds for k − 1. Note that y1y2 . . . yk is a path
of length k − 1. By the induction hypothesis, there exists a vertex u ∈ V (D′) such
that u → y1. Since d+

D′(u) ≥ 2, there exists a vertex v ∈ V (D′) such that u → v.
Then v → s because s→ y1 ← u→ v.

In the following three lemmas, all the subscripts of xi are taken modulo m and
all the subscripts of yi are taken modulo n.

Lemma 2.2. Let D be a 3-anti-circulant digraph, C1 = x0x1 . . . xm−1x0 and C2 =
y0y1 . . . yn−1y0 be two vertex-disjoint cycles of D. For any xi ∈ V (C1) and yj ∈
V (C2), if xi → yj, then xi+k → yj−k and xi−k → yj+k, for any integer k.

Proof. We will show xi+k → yj−k by induction on k. The base case k = 0 is imme-
diate. Assume that the result holds by induction for k− 1. Then yj−k → yj−(k−1) ←
xi+(k−1) → xi+k implies xi+k → yj−k. From this with the arbitrariness of k, we have
xi+(am−k) → yj−(am−k), where ma = nb. As a result, xi−k → yj+k.

The following useful fact is an easy consequence of Lemma 2.2.

Lemma 2.3. Let D be a 3-anti-circulant digraph, C1 = x0x1 . . . xm−1x0 and C2 =
y0y1 . . . yn−1y0 be two vertex-disjoint cycles of D. For any xi ∈ V (C1) and yj ∈
V (C2), if xi and yj are adjacent, then xi+k and yj−k are adjacent as well xi−k and
yj+k, for any integer k.

Lemma 2.2 also implies the following. Below gcd(m, n) means the greatest com-
mon divisor of m and n. For example, gcd(12, 8) = 4.

Lemma 2.4. Let D be a 3-anti-circulant digraph, C1 = x0x1 . . . xm−1x0 and C2 =
y0y1 . . . yn−1y0 be two vertex-disjoint cycles of D. For any xi ∈ V (C1) and yj ∈
V (C2), if xi → yj, then xi → yj+d and xi → yj−d, where d = gcd(m, n).
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Proof. For convenience, we, without loss of generality, assume that i = j = 0. From
x0 → y0 and Lemma 2.2, we conclude that x0 → ykm, for k = 0, 1, 2, · · ·. Let
G = {km ∈ Zn : k ∈ Z}. It is easy to show that G = {km ∈ Zn : k ∈ Z} = {kd :
k = 0, 1, . . . , n

d
− 1}. Hence x0 → ykd, for k = 0, 1, . . . , n

d
− 1. In particular, x0 → yd

and x0 → yn−d.

For a strong 3-anti-circulant digraph containing a 4-anti-directed cycle, there is
the following nice structural characterization.

Lemma 2.5. Let D be a strong 3-anti-circulant digraph. If D contains a 4-anti-
directed cycle, then D is either a complete digraph or a semicomplete bipartite di-
graph.

Proof. Let C = x0 → x1 ← x2 → x3 ← x0 be a 4-anti-directed cycle of D. Since
x0 → x1 ← x2 → x3, we have x3 → x0. Similarly, we can obtain that x1 → x0,
x1 → x2 and x3 → x2. Hence every arc of A(C) is contained in a 2-cycle.

Claim 1. For any x ∈ V (D) − V (C), if xi → x then x → xi+2; if x → xi then
xi+2 → x.

If xi → x, then since xi+2 → xi+1 ← xi → x, we have x→ xi+2. If x→ xi, then
since x→ xi ← xi+1 → xi+2, we have xi+2 → x.

Claim 2. If xi and xi+2 are adjacent for i = 0 or i = 1, then D is a complete
digraph.

Assume, without loss of generality, that x0 and x2 are adjacent and x0 → x2.
Since x1 → x2 ← x0 → x3, we have that x3 → x1. By x3 → x2 ← x0 → x1, we
have that x1 → x3. By x0 → x3 ← x1 → x2, we have that x2 → x0. Hence C is a
complete digraph.

For any x ∈ V (D) − V (C), by Lemma 2.1, (V (C), x) �= ∅. Assume, without
loss of generality, that x0 → x. Since x2 → x1 ← x0 → x, x1 → x3 ← x0 → x
and x3 → x2 ← x0 → x, we have x → x2, x → x1 and x → x3, respectively. By
x → x1 ← x2 → x3, x → x3 ← x1 → x2, x→ x3 ← x2 → x1, we have that x3 → x,
x2 → x and x1 → x, respectively. By x0 → x3 ← x2 → x, we have that x → x0.
Hence V (C)→ x→ V (C). For any two vertices x, y ∈ V (D)− V (C), by the above
argument, V (C) → {x, y} → V (C). By x → x0 ← x1 → y and y → x1 ← x0 → x,
we have that y → x → y. So D is a complete digraph. The proof of Claim 2 is
complete.

By Lemma 2.1 and Claim 1, for any x ∈ V (D) − V (C), x either is adjacent to
exactly two vertices of V (C) or is adjacent to every vertex of V (C). First, suppose
that there exists a vertex x ∈ V (D)−V (C) such that x is adjacent to every vertex of
V (C). By Lemma 2.1 and Claim 1, assume, without loss of generality, that x0 → x
and x1 → x. By x0 → x← x1 → x2, we have x2 → x0. By Claim 2, D is a complete
digraph. Next assume that for any x ∈ V (D)− V (C), x is adjacent to exactly two
vertices of V (C). Hence we divide V (D) − V (C) into two sets X and Y , where
X = {x ∈ V (D)−V (C) : x is adjacent to x1 and x3; x is not adjacent to x0 and x2}
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and Y = {x ∈ V (D)−V (C) : x is adjacent to x0 and x2; x is not adjacent to x1 and
x3}.
Claim 3. Every vertex of X ∪ {x0, x2} is adjacent to every vertex of Y ∪ {x1, x3}.

By the definitions of X and Y , we only need to prove that every vertex of X is
adjacent to every vertex of Y . For any x ∈ X and y ∈ Y , by Claim 1, assume, without
loss of generality, that x1 → x, x→ x3 and x0 → y, y → x2. Since y → x2 ← x1 → x,
we have x→ y. The proof of Claim 3 is complete.

If X and Y are both independent sets, then, by Claim 3, D is a semicomplete
bipartite digraph; if not, then one of X and Y is not an independent set, say X.
Hence there exist two vertices x′, x′′ ∈ X such that x′ and x′′ are adjacent and without
loss of generality, assume that x′ → x′′. By the definition of X and Claim 1, assume,
without loss of generality, that x1 → x′′ and x′′ → x3. By x′ → x′′ ← x1 → x2, we
have that x2 → x′, a contradiction to the definition of X. The proof of the lemma is
complete.

Now we consider the strong 3-anti-circulant digraph containing a cycle factor.
First define two digraphs F6 and F8, see Figure 2. It is not difficult to check that
both of the digraphs F6 and F8 are 3-anti-circulant digraphs and each of F6 and F8

contains a cycle factor.

� � �
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F8F6

Figure 2.
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Lemma 2.6. Let D be a strong 3-anti-circulant digraph containing a cycle factor
C1 ∪ C2 such that the lengths of C1 and C2 are equal, denoted by n. Suppose that
D contains no 4-anti-directed cycle. Then D is either a semicomplete digraph or
isomorphic to F6 or F8.

Proof. Let C1 = x0x1 . . . xn−1x0 and C2 = y0y1 . . . yn−1y0. From now on, all sub-
scripts appearing in this proof are taken modulo n. Since D is strong, we have
(V (C1), V (C2)) �= ∅ and (V (C2), V (C1)) �= ∅. If there exist xi ∈ V (C1) and
yj ∈ V (C2) such that xi → yj → xi, then, by Lemma 2.2, yj−1 → xi+1. Note
that xi → yj ← yj−1 → xi+1 ← xi is a 4-anti-directed cycle, a contradiction. Now
assume that the arc between C1 and C2 is not contained in any 2-cycle, that is to
say, for any u ∈ V (Ci) and v ∈ V (C3−i) with i = 1 or 2, u → v implies u �→ v.
Since (V (C1), V (C2)) �= ∅, we assume, without loss of generality, x0 → yn−1 and
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furthermore x0 �→ yn−1. By Lemma 2.2, xi → yn−1−i and furthermore xi �→ yn−1−i,
for i = 0, 1, . . . , n − 1. According to (V (C2), V (C1)) �= ∅ and Lemma 2.2, we can
deduce that there is an arc from V (C2) to every vertex of V (C1), in particular, there
is an arc from V (C2) to x0.

Suppose n = 3. If x0 and every vertex of V (C2) are adjacent, then by Lemma
2.3, every vertex of V (C1) is adjacent to every vertex of V (C2). Hence D is a
semicomplete digraph. Assume that x0 and one of y0 and y1 is not adjacent. Since
(V (C2), x0) �= ∅ and x0 �→ y2, we assume, without loss of generality, that y0 �→ x0

and x0 is not adjacent to y1. From Lemma 2.2, we have that y1 �→ x2, y2 �→ x1

and x1(x2) is not adjacent to y0(y2 respectively). It is not difficult to deduce that
there are no other arcs in D. Define a mapping θ : V (D) → V (F6) such that
θ(y2) = x0, θ(y1) = x2, θ(y0) = x1, θ(x0) = y1, θ(x1) = y2, θ(x2) = y0. It is easy to
check that the mapping θ is an isomorphism. Hence D is isomorphic to F6. Next
assume that n ≥ 4.

Claim 1. For any 2 ≤ j ≤ n − 2, if yj → x0, then yj−2 → x0, x2 → yn−1 and
yn−3 → x0.

By Lemma 2.2 and yj → x0, we know that yj−1 → x1 and yj−2 → x2. Then
yj−1 → x1 ← x0 → yn−1 implies that yn−1 → yj−1. By x0 → yn−1 and Lemma
2.2, we have that xn−j+1 → yj−2 and xn−j → yj−1. Then yn−1 → yj−1 ← xn−j →
xn−j+1 implies that xn−j+1 → yn−1. By x0 → yn−1 ← xn−j+1 → yj−2, we have
that yj−2 → x0. By yn−1 → yj−1 ← yj−2 → x2, we have that x2 → yn−1. Then
x0 → yn−1 ← x2 → yn−3 implies that yn−3 → x0.

Claim 2. For any u ∈ V (Ci), there exists no vertex v ∈ V (C3−i) such that both of
u→ v and v → u+ hold simultaneously, where i = 1 or 2.

By contradiction. Without loss of generality, assume that yn−2 → x0 → yn−1. By
n ≥ 4 and Claim 1, we have that yn−3 → x0 and x2 → yn−1. Recalling that we have
assumed that x2 �→ yn−1. By yn−2 → x0, yn−3 → x0 and repeated application of
Claim 1, we can obtain y1 → x0. This together with Lemma 2.2, we have yn−1 → x2,
a contradiction to x2 �→ yn−1. The proof of the claim is complete.

Using Claim 2, we know that yn−2 does not dominate x0. From Claim 2, we can
also know that yn−1 does not dominate x1, which implies that y0 does not dominate
x0 from Lemma 2.2. Hence we have that yn−2 and y0 do not dominate x0. Similarly,
we may assume yn−2−i and yn−i do not dominate xi, for i = 1, 2, . . . , n− 1.

If n = 4, then it must be y1 → x0. In this case, it is easy to see that D is
isomorphic to F8. Now assume n ≥ 5 and yj → x0 for 1 ≤ j ≤ n− 3.

Claim 3. For any yi ∈ V (C2), yi dominates neither yi+2 nor yi+3.

Without loss of generality, assume that i = 0. By contradiction. If y0 → y2,
then, by xn−3 → y2 ← y0 → y1, we have that y1 → xn−3, a contradiction to the fact
that y1 does not dominate xn−3. If y0 → y3, then y0 → y3 ← xn−4 → xn−3 implies
that xn−3 → y0 and xn−3 �→ y0. By xn−4 → y3 ← y0 → y1, we have that y1 → xn−4.
From this with Lemma 2.2, y0 → xn−3, a contradiction to xn−3 �→ y0. The proof of
the claim is complete.
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Now we claim that there exist two vertices yi, yk ∈ V (C2) such that yk → yi where
i− k ≥ 2. If y1 → x0, then by Lemma 2.2, yn−2 → x3. By x0 → yn−1 ← yn−2 → x3,
we have that x3 → x0. By x3 → x0 ← xn−1 → y0, we have that y0 → x3. By yn−2 →
x3 ← y0 → y1, we have that y1 → yn−2. By n ≥ 5, we have (n− 2)− 1 = n− 3 ≥ 2.
If yj → x0, where 2 ≤ j ≤ n − 3, then by yj → x0 ← xn−1 → y0, we have that
y0 → yj. Hence the claim holds. If i− k = 2 or i− k = 3, then it is a contradiction
according to Claim 3. If i − k ≥ 4, then by yi−1 → yi ← yk → yk+1, we have that
yk+1 → yi−1. Continuing in this way, there exist two vertices yt, ys such that yt → ys

with s− t = 2 or s− t = 3, which is also a contradiction according to Claim 3.

Lemma 2.7. Let D be a connected 3-anti-circulant digraph containing a cycle factor
C1 ∪C2 such that the lengths of C1 and C2 are not equal. Then D is strong and has
a 4-anti-directed cycle.

Proof. Let C1 = x0x1 . . . xm−1x0 and C2 = y0y1 . . . yn−1y0. From now on, all the
subscripts of xi appearing in this proof are taken modulo m and all the subscripts
of yj appearing in this proof are taken modulo n. Since D is connected, there exists
at least an arc between C1 and C2. Assume, without loss of generality, that there is
one arc from C1 to C2 and x0 → yn−1. If d = gcd(m, n) = 1, then by Lemma 2.4,
V (C1) → V (C2). By x1 → yn−2 ← x0 → yn−1, we have that yn−1 → x1. Hence D
is strong. Note that x0 → yn−1 ← x1 → yn−2 ← x0 is a 4-anti-directed cycle. Next
assume that d = gcd(m, n) ≥ 2.

First we show that there is an arc from C2 to C1. By x0 → yn−1 and Lemmas
2.2 and 2.4, x0 → yn−1−d and xd → yn−1−d. By xd → yn−1−d ← x0 → yn−1, we have
that yn−1 → xd. Note that yn−1xd is an arc from C2 to C1. Hence D is strong.

Now we show that D contains a 4-anti-directed cycle. We may assume, without
loss of generality, that m < n. Since x0 → yn−1, by Lemma 2.2, x0 → yn−m−1 and
x1 → yn−2. Noting that (n− 1)− (n−m− 1) = m ≥ 3, we have n− 4 ≥ n−m− 1.
By yn−2 → yn−1 ← x0 → yn−m−1, we have that yn−m−1 → yn−2. By x1 → yn−2 ←
yn−m−1 → yn−m, we have that yn−m → x1. By yn−m−1 → yn−2 ← x1 → x2, we have
that x2 → yn−m−1. Combining this with Lemma 2.2, we have x1 → yn−m. Note that
x1 → yn−2 ← yn−m−1 → yn−m ← x1 is a 4-anti-directed cycle.

Theorem 2.8. Let D be a strong 3-anti-circulant digraph. If D has a cycle factor
C1∪C2∪. . .∪Ct with t ≥ 2, then D is either a semicomplete digraph or a semicomplete
bipartite digraph or isomorphic to F6.

Proof. Let F = C1 ∪C2 ∪ . . .∪Ct. If D has a 4-anti-directed cycle, then by Lemma
2.5, D is either a complete digraph or a semicomplete bipartite digraph. Now assume
that D has no 4-anti-directed cycle. By Lemma 2.7, we know that the lengths of all
cycles are equal, say n.

First we claim that D contains a cycle factor consisting of exactly two cycles.
We show the claim by induction on t. If t = 2, it is nothing to prove. Suppose
t ≥ 3. If there exist two cycles Ci and Cj of F such that (V (Ci), V (Cj)) �= ∅ and
(V (Cj), V (Ci)) �= ∅, then by Theorem 1.2, D contains a cycle covering the vertices
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of V (Ci) ∪ V (Cj). By the induction hypothesis, the claim holds. Hence we assume
that for any two cycles Ci and Cj of F , we have Ci ⇒ Cj or Cj ⇒ Ci. Since D is
strong, it must exist three cycles Ci, Cj and Ck such that there is at least one arc
from Ci to Cj and from Cj to Ck. Let Ci = x0x1 . . . xn−1x0, Cj = y0y1 . . . yn−1y0

and Ck = z0z1 . . . zn−1z0. Without loss of generality, assume that x0 → yn−1 → z0.
Combining this with Lemma 2.2, we have yn−2 → z1, xn−1 → y0 and y0 → zn−1. By
x0 → yn−1 ← yn−2 → z1, we have that z1 → x0. By z1 → x0 ← xn−1 → y0, we
have that y0 → z1. By yn−2 → z1 ← y0 → zn−1, we have that zn−1 → yn−2. Hence
V (Cj) ∪ V (Ck) induces a strong digraph, a contradiction.

By the above claim, D has a cycle factor C ′
1 ∪ C ′

2. As we have assumed that D
has no 4-anti-directed cycle. This together with Lemma 2.7 implies that the lengths
of C ′

1 and C ′
2 are same. Note that F8 is a semicomplete bipartite digraph. By

Lemma 2.6, D is either a semicomplete digraph or a semicomplete bipartite digraph
or isomorphic to F6.

Lemma 2.9. Let D be a 3-anti-circulant digraph. If C is an anti-directed cycle of
length k in D, then D contains a cycle of length k covering the vertices of V (C).

Proof. Let C = (x0, x1, . . . , xk−1, x0) be an anti-directed cycle of length k such that
x0 → x1. By the definition of anti-directed cycles, k must be even. For any even
i ∈ {0, 2, . . . , k − 2}, xi → xi+1 ← xi+2 → xi+3 implies xi+3 → xi. Note that
x0x1xk−2xk−1xk−4xk−3 . . . x4x5x2x3x0 is a cycle of length k covering the vertices of
V (C).

Lemma 2.9 immediately implies the following result.

Theorem 2.10. Let D be a 3-anti-circulant digraph of order even. If D has an
anti-directed cycle of length |V (D)|, then D is Hamiltonian.

Conjecture 2.11. [9] Every digraph has an independent set intersecting every long-
est path.

In [3], Galeana-Sánchez and Gómez showed that Conjecture 2.11 is true for 3-
anti-quasi-transitive digraphs.

Theorem 2.12. [3] Let D be a 3-anti-quasi-transitive digraph. There exists an
independent set in D intersecting every longest path in D.

Noting that a 3-anti-circulant digraph is also a 3-anti-quasi-transitive digraph,
Theorem 2.12 immediately implies the following.

Corollary 2.13. Let D be a 3-anti-circulant digraph. There exists an independent
set in D intersecting every longest path in D.

Now we generalize the above result to the longest cycle and give the following
theorem.
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Theorem 2.14. Let D be a strong 3-anti-circulant digraph. There exists an inde-
pendent set intersecting every longest cycle.

Proof. Let C = x0x1 . . . xn−1x0 be a longest cycle in D and let F be a maximal
independent set. If V (C) ∩ F �= ∅, then we are done. Now suppose V (C) ∩ F = ∅.
First show that F ⇒ V (C) or V (C)⇒ F holds. Since F is a maximal independent
set, for any x ∈ V (C), there exists a vertex y ∈ F such that x and y are adjacent.
If (V (C), F ) �= ∅ and (F, V (C)) �= ∅, then there exist xi ∈ V (C) and u, v ∈ F such
that u → xi and xi−1 → v. Then u = v because u → xi ← xi−1 → v and F is an
independent set. But xi−1uC[xi, xi−1] is a longer cycle than C in D contradicting
that C is a longest cycle. Hence F ⇒ C or C ⇒ F . Since the converse of a 3-anti-
circulant digraph is still a 3-anti-circulant digraph, we assume that F ⇒ C. Now
divide the vertices of V (D)− V (C) into four sets I, O, B, Y such that

I = {x ∈ V (D)− V (C) : (x, V (C)) �= ∅, x⇒ C},
O = {x ∈ V (D)− V (C) : (V (C), x) �= ∅, C ⇒ x},
B = {x ∈ V (D)− V (C) : (x, V (C)) �= ∅, (V (C), x) �= ∅}

and Y = V (D)− I − O − B.

By the hypothesis, we can see that F ⊂ I. For any y ∈ O ∪ B, by the definition
of O∪B, there exists x ∈ V (C) such that x→ y. By the definition of F , there exists
u ∈ F such that u→ x+. Then y → u from u→ x+ ← x→ y. But xyuC[x+, x] is a
longer cycle than C, a contradiction. Hence O ∪ B = ∅, which is a contradiction to
the fact that D is strong.
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[8] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments
with spanning configurations, Combinatorica 9(1) (1989), 33–38.

[9] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest paths in
digraphs, in Graphs and other Combinatorial Topics, Proc. Third Czechoslovak
Symposium Graph Theory (1982), 173–177.

[10] S. Wang and R.Wang, The structure of strong arc-locally in-semicomplete di-
graphs, Discrete Math. 309 (2009), 6555–6562.

[11] R. Wang, A conjecture on 3-anti-quasi-transitive digraphs, Discrete Math. 322
(2014), 48–52.

(Received 9 Nov 2013; revised 15 Apr 2014, 14 June 2014)


