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Abstract

In 2010, Hei-Chi Chan introduced the cubic partition function a(n) in
connection with Ramanujan’s cubic continued fraction. Chan proved
that ∑

n≥0

a(3n+ 2)qn = 3
∏
i≥1

(1 − q3n)3(1 − q6n)3

(1 − qn)4(1 − q2n)4

which clearly implies that, for all n ≥ 0, a(3n+ 2) ≡ 0 (mod 3).
In the same year, Byungchan Kim introduced the overcubic partition

function a(n). Using modular forms, Kim proved that

∑
n≥0

a(3n + 2)qn = 6
∏
i≥1

(1 − q3n)6(1 − q4n)3

(1 − qn)8(1 − q2n)3
.

More recently, Hirschhorn has proven Kim’s generating function result
above using elementary generating function methods. Clearly, this gen-
erating function result implies that a(3n+ 2) ≡ 0 (mod 6) for all n ≥ 0.

In this note, we use elementary means to prove functional equa-
tions satisfied by the generating functions for a(n) and a(n), respectively.
These lead to new representations of these generating functions as prod-
ucts of terms involving Ramanujan’s ψ and ϕ functions. In the process,
we are able to prove the congruences mentioned above as well as numer-
ous arithmetic properties satisfied by a(n) modulo small powers of 2.

1 Introduction

In 2010, Hei-Chi Chan [2, 3] introduced the cubic partition function a(n) in connec-
tion with Ramanujan’s cubic continued fraction. The generating function for a(n) is
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given by

A(q) :=
∑
n≥0

a(n)qn =
1

(q; q)∞(q2; q2)∞
=

1

(q; q2)∞(q2; q2)2∞
(1)

where we have used the notation that

(a; q)∞ =
∏
i≥1

(1 − aqi−1).

Note that a(n) counts the number of partitions of weight n such that the even parts
can appear in two colors. So, for example, a(3) = 4 where the colored partitions in
question are

3, 21 + 1, 22 + 1, and 1 + 1 + 1.

(The subscripts 1 and 2 denote the “colors” in question.)

Among other results, Chan [2] proved that

∑
n≥0

a(3n+ 2)qn = 3
(q3; q3)3

∞(q6; q6)3
∞

(q; q)4∞(q2; q2)4∞
.

This generating function result implies the following Ramanujan–like congruence:

Theorem 1.1 For all n ≥ 0, a(3n+ 2) ≡ 0 (mod 3).

Chan [3] went on to prove an infinite family of congruences satisfied by a(n)
modulo powers of 3.

In the same year, Byungchan Kim [5] introduced the overcubic partition function
a(n) whose generating function is given by

A(q) :=
∑
n≥0

a(n)qn =
(−q; q)∞(−q2; q2)∞

(q; q)∞(q2; q2)∞
=

(q4; q4)∞
(q; q)2∞(q2; q2)∞

. (2)

From this generating function we see that a(n) counts all of the overlined versions of
the cubic partitions counted by a(n). In this case, the first instance of each part is
allowed to be overlined (although such overlining is not required). So, for example,
a(3) = 12. Based on the four cubic partitions of 3 mentioned above, we see that the
corresponding 12 overcubic partitions are given by the following:

3, 3, 21 + 1, 21 + 1, 21 + 1, 21 + 1,

22 + 1, 22 + 1, 22 + 1, 22 + 1, 1 + 1 + 1, 1 + 1 + 1

Using modular forms, Kim [5] proved that

∑
n≥0

a(3n+ 2)qn = 6
(q3; q3)6

∞(q4; q4)3
∞

(q; q)8∞(q2; q2)3∞
. (3)

More recently, Hirschhorn [4] proved (3) using elementary generating function ma-
nipulations. Clearly, the generating function result (3) implies the following:
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Theorem 1.2 For all n ≥ 0, a(3n+ 2) ≡ 0 (mod 6).

In this note, we use elementary means to prove functional equations satisfied
by A(q) and A(q) which lead to new representations of these generating functions
as product of terms involving Ramanujan’s ψ and ϕ functions. In the process, we
provide truly elementary proofs of Theorems 1.1 and 1.2 with ease. We also prove
numerous arithmetic properties satisfied by a(n) modulo small powers of 2 which are
new.

In order to complete the proofs in the next section, we require a few elementary
tools. First, we recall Ramanujan’s ψ and ϕ functions which are defined as

ψ(q) :=
∑
n≥0

qn(n+1)/2 (4)

and
ϕ(q) := 1 + 2

∑
n≥1

qn2

. (5)

The presence of the multiplier 2 in the representation of ϕ(q) above will allow us to
prove a number of arithmetic properties modulo small powers of 2 which are satisfied
by a(n). Secondly, using Jacobi’s Triple Product Identity [1, Theorem 2.8], we know
that

ψ(q) =
(q2; q2)2

∞
(q; q)∞

(6)

and

ϕ(q) =
(q2; q2)5

∞
(q; q)2∞(q4; q4)2∞

. (7)

Equations (6) and (7) are crucial for our proof of the functional equations for A(q)
and A(q). It is these functional equations which drive all of the other proofs in this
note.

2 Arithmetic Properties

We begin this section by proving the following functional equations for A(q) and
A(q).

Theorem 2.1 The following are true:

A(q) = ψ(q) ψ(q2)A(q2)2

and
A(q) = ϕ(q)ϕ(q2)A(q2)2.
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Proof. First, using (1) and (6), we have

ψ(q)ψ(q2)A(q2)2 =
(q2; q2)2

∞
(q; q)∞

· (q4; q4)2
∞

(q2; q2)∞
· 1

(q2; q2)2∞(q4; q4)2∞

=
1

(q; q)∞(q2; q2)∞
= A(q).

Similarly, using (2) and (7), we see that

ϕ(q)ϕ(q2)A(q2)2 =
(q2; q2)5

∞
(q; q)2∞(q4; q4)2∞

· (q4; q4)5
∞

(q2; q2)2∞(q8; q8)2∞
· (q8; q8)2

∞
(q2; q2)4∞(q4; q4)2∞

=
(q4; q4)∞

(q; q)2∞(q2; q2)∞
= A(q).

�

Iteration of the functional equations in Theorem 2.1 ad infinitum allows us to
obtain extremely valuable representations for A(q) and A(q) in terms of the ψ and
ϕ functions, respectively.

Corollary 2.2

A(q) = ψ(q)
∏
i≥1

ψ(q2i

)3·2i−1

.

Corollary 2.3

A(q) = ϕ(q)
∏
i≥1

ϕ(q2i

)3·2i−1

.

With Corollaries 2.2 and 2.3 in hand, we can prove a number of congruence
properties satisfied by a(n) and a(n) with relative ease. We begin by proving a
number of arithmetic properties satisfied by a(n) modulo small powers of 2.

Theorem 2.4 For all n ≥ 1, a(n) ≡ 0 (mod 2).

Proof. This result follows from Corollary 2.3 and the fact that ϕ(q) ≡ 1 (mod 2)
thanks to (5). �

Theorem 2.5 For all n ≥ 1,

a(n) ≡
{

2 (mod 4) if n = k2 or n = 2k2 for some integer k

0 (mod 4) otherwise.
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Proof. Thanks to the binomial theorem, it is clear that ϕ(q2i
)3·2i−1 ≡ 1 (mod 4) for

each i ≥ 2. Thus,∑
n≥0

a(n)qn ≡ ϕ(q)ϕ(q2)3 (mod 4)

=

(
1 + 2

∑
n≥1

qn2

)(
1 + 2

∑
n≥1

q2n2

)3

≡
(

1 + 2
∑
n≥1

qn2

)(
1 + 6

∑
n≥1

q2n2

)
(mod 4)

≡ 1 + 2
∑
n≥1

qn2

+ 2
∑
n≥1

q2n2

(mod 4).

The result follows. �

It is clear that infinitely many Ramanujan-like congruences follow as corollaries
of Theorem 2.5. We mention one such family of congruences here.

Corollary 2.6 For all j ≥ 0 and n ≥ 0, a(2j(4n+ 3)) ≡ 0 (mod 4).

We can certainly prove additional results similar to Theorem 2.5 for moduli which
are larger powers of 2. Unfortunately, such results become less elegant as the modulus
increases. Thus, we provide only one additional result of this type.

Theorem 2.7 For all n ≥ 1,

a(n) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 (mod 8) if n = k2 or n = 2(2k)2 for some integer k ≥ 1

6 (mod 8) if n = 2(2k − 1)2 for some integer k ≥ 1

4 (mod 8) if n = k2 + 2�2 for some integer k, � ≥ 1

0 (mod 4) otherwise.

Proof. Thanks to the binomial theorem, it is clear that ϕ(q2i
)3·2i−1 ≡ 1 (mod 8) for

each i ≥ 3. Thus, modulo 8,∑
n≥0

a(n)qn ≡ ϕ(q)ϕ(q2)3ϕ(q4)6

≡
(

1 + 2
∑
n≥1

qn2

)(
1 + 4

∑
n≥1

q4n2

+ 6
∑
n≥1

q2n2

)

×
(

1 + 4
∑
n≥1

q4n2

+ 4
∑
n≥1

q8n2

)

≡ 1 + 2
∑
n≥1

qn2

+ 6
∑
n≥1

q2(2n−1)2 + 2
∑
n≥1

q2(2n)2 + 4
∑

m,n≥1

qn2+2m2

after simplification. The result follows. �
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Similar to Corollary 2.6, we state a straightforward corollary to Theorem 2.7.

Corollary 2.8 For all j ≥ 0 and n ≥ 0,

a(2j(8n+ 5)) ≡ 0 (mod 8),

a(2j(8n+ 7)) ≡ 0 (mod 8).

We now close this paper by returning to Theorems 1.1 and 1.2. Thanks to
Corollaries 2.2 and 2.3, these can be easily proven in elementary fashion.

Proof. (of Theorem 1.1) From Corollary 2.2, we know

A(q) = ψ(q)
∏
i≥1

ψ(q2i

)3·2i−1

.

This implies that

A(q) ≡ ψ(q)
∏
i≥1

ψ(q3·2i

)2i−1

(mod 3).

Note that ∏
i≥1

ψ(q3·2i

)2i−1

is a function of q3, and we are considering the behavior of a(3n+ 2) (mod 3). Thus,
as long as every coefficient of q3n+2 in the power series representation of ψ(q) (as
given in (4)) is divisible by 3, then a(3n+ 2) ≡ 0 (mod 3) for all n. With this said,
our proof is complete because no triangular number is congruent to 2 modulo 3.
Hence, for each n ≥ 0, the coefficient of q3n+2 in the power series representation of
ψ(q) is identically 0. Our result follows. �

An extremely similar proof can be used to prove Theorem 1.2.

Proof. (of Theorem 1.2) First, thanks to Theorem 2.4, we only need to prove that,
for all n ≥ 0, a(3n+ 2) ≡ 0 (mod 3) to complete our proof. From Corollary 2.3, we
know

A(q) = ϕ(q)
∏
i≥1

ϕ(q2i

)3·2i−1

.

This implies that

A(q) ≡ ϕ(q)
∏
i≥1

ϕ(q3·2i

)2i−1

(mod 3).

Note that ∏
i≥1

ϕ(q3·2i

)2i−1

is a function of q3, and we are considering the behavior of a(3n+2) (mod 3). Thus, as
long as every coefficient of q3n+2 in the power series representation of ϕ(q) (as given
in (5)) is divisible by 3, then a(3n + 2) ≡ 0 (mod 3) for all n. With this said, our
proof is complete because no square is congruent to 2 modulo 3 (i.e., 2 is a quadratic
non–residue modulo 3). Hence, for each n ≥ 0, the coefficient of q3n+2 in the power
series representation of ϕ(q) is identically 0. Our result follows. �
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