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Abstract

We give a sharp refinement of a result of Alon, Ben-Shimon and Kriv-
elevich. This gives a sufficient condition for a finite sequence of positive
integers to be the vertex degree list of both parts of a bipartite graph.
The condition depends only on the length of the sequence and its largest
and smallest elements.

1 Introduction

Recall that a finite sequence d = (d1, . . . , dn) of positive integers is graphic if there is
a simple graph with n vertices having d as its list of vertex degrees. A pair (d1, d2)
of sequences (possibly of different length) is bipartite graphic if there is a simple,
bipartite graph whose parts have d1, d2 as their respective lists of vertex degrees. We
say that a sequence d is bipartite graphic if the pair (d, d) is bipartite graphic; that
is, if there is a simple, bipartite graph whose two parts each have d as their list of
vertex degrees. The classic Erdős–Gallai Theorem gives a necessary and sufficient
condition for a sequence to be graphic. Similarly, the Gale–Ryser Theorem [5, 7] gives
a necessary and sufficient condition for a pair of sequences to be bipartite graphic.
In particular, the Gale–Ryser Theorem gives a necessary and sufficient condition
for a single sequence to be bipartite graphic. Further results on bipartite graphic
sequences are given in [3, 6].

In [8, Theorem 6], Zverovich and Zverovich gave a sufficient condition for a se-
quence to be graphic, depending only on the length of the sequence and its largest
and smallest elements. A sharp refinement of this result is given in [4]. In [1,
Corollary 2.2], Alon, Ben-Shimon and Krivelevich gave a result for bipartite graphic
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sequences, which is directly analogous to the theorem of Zverovich–Zverovich. The
purpose of the present paper is to give a sharp refinement of the Alon–Ben-Shimon–
Krivelevich result.

Here is the Alon–Ben-Shimon–Krivelevich result:

Theorem 1 ([1, Corollary 2.2]). Suppose that d is a finite sequence of positive in-
tegers having length n, maximum element a and minimum element b. If for a real
number x ≥ 1, we have

a ≤ min

{
xb,

4xn

(x + 1)2

}
, (1)

then d is bipartite graphic.

As we will explain at the end of this introduction, Theorem 1 can be rephrased
in the following equivalent form:

Theorem 2. Suppose that d is a finite sequence of positive integers having length n,
maximum element a and minimum element b. Then d is bipartite graphic if

nb ≥ (a + b)2

4
. (2)

The main aim of this paper is to prove the following result.

Theorem 3. Suppose that d is a finite sequence of positive integers having length n,
maximum element a and minimum element b. Then d is bipartite graphic if

nb ≥
⌊

(a + b)2

4

⌋
, (3)

where �.� denotes the integer part. Moreover, for any triple (a, b, n) of positive inte-
gers with b < a ≤ n that fails (3), there is a non-bipartite-graphic sequence of length
n with maximal element a and minimal element b.

Let us contrast the above result with the sharp result for graphic sequences given
in [4]. We will require this result later in Section 5.

Theorem 4 ([4]). Suppose that d is a finite sequence of positive integers with even
sum having length n, maximum element a and minimum element b. Then d is graphic
if

nb ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊
(a + b + 1)2

4

⌋
− 1 : if b is odd, or a + b ≡ 1 (mod 4),

⌊
(a + b + 1)2

4

⌋
: otherwise.

(4)

Moreover, for any triple (a, b, n) of positive integers with b < a < n that fails (4),
there is a non-graphic sequence of length n having even sum with maximal element
a and minimal element b.
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We give two proofs of Theorem 3. The first proof is in the spirit of the origi-
nal paper of Zverovich and Zverovich, and uses the notion of strong indices. The
preparatory results for this proof, notably Theorem 7 and Lemma 2, may be of in-
dependent interest. Our second proof is much shorter, and uses the sharp version of
Zverovich–Zverovich from [4] and recent results relating bipartite graphic sequences
to the degree sequences of graphs having at most one loop at each vertex [3].

The paper is organised as follows. Section 2 gives a necessary and sufficient
condition for a sequence of the form (as, bn−s) to be bipartite graphic. Here and
throughout the paper, the superscripts indicate the number of repetitions of the
element. So, for example, the sequence (5, 5, 5, 4, 4) is denoted (53, 42). In Section 2
we also prove Theorem 3 for sequences of the form (as, bn−s), and we give examples
showing that Theorem 3 is sharp. Section 3 presents results about bipartite graphic
sequences, which are used in the first proof of Theorem 3 found in Section 4. Section 5
presents the second proof of Theorem 3.

To complete this introduction, let us establish the equivalence of Theorems 1 and

2. If nb ≥ (a+b)2

4
, then setting x = a

b
, we have that (1) holds. Thus Theorem 2 follows

from Theorem 1. Conversely, fix a, b, n and note that the hypothesis of Theorem 1 is
that a ≤ xb and a ≤ 4xn

(x+1)2
. Observe that 4xn

(x+1)2
is a monotonic decreasing function

of x for x ≥ 1. So if a ≤ 4xn
(x+1)2

holds for some x ≥ a
b
, then a ≤ 4xn

(x+1)2
holds for

x = a
b
, in which case (2) holds. Hence Theorem 1 follows from Theorem 2.

2 Two-element sequences

We consider two-element sequences; that is, sequences of the form (as, bn−s) with
a, b ∈ N where N is the set of positive integers.

Theorem 5. Let a, b, n, s ∈ N with b < a ≤ n and s ≤ n. Then the sequence
(as, bn−s) is bipartite graphic if and only if s2 − (a + b)s + nb ≥ 0.

Proof. We will employ [8, Theorem 8], from which we have in particular: a two-
element sequence d = (as, bn−s) is bipartite graphic if and only if

s∑
i=1

(a + ins−i) ≤ sn and
s∑

i=1

(a + inn−i) +
n∑

i=s+1

(b + inn−i) ≤ n2, (5)

where nj is the number of elements of d equal to j; that is,

nj =

⎧⎪⎨
⎪⎩

s : if j = a

n − s : if j = b

0 : otherwise.
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Notice that the second inequality in (5) is always satisfied. Indeed,

s∑
i=1

(a + inn−i) +

n∑
i=s+1

(b + inn−i) = as + (n − s)b +

n−1∑
j=0

(n − j)nj

= s(a − b) + nb + (n − a)s + (n − b)(n − s) = n2.

So, rewriting the first inequality in (5), we have that d = (as, bn−s) is bipartite graphic
if and only if

s−1∑
j=0

(s − j)nj ≤ s(n − a). (6)

If b < s ≤ a, then
∑s−1

j=0(s − j)nj = (s − b)(n − s) and hence

s−1∑
j=0

(s − j)nj ≤ s(n − a) ⇐⇒ s2 − (a + b)s + nb ≥ 0,

as required. It remains to consider the cases s ≤ b and a < s. If s ≤ b, then

s−1∑
j=0

(s − j)nj = 0 ≤ s(n − a).

If a < s, then

s−1∑
j=0

(s − j)nj = (s − a)s + (s − b)(n − s) = s(n − a) − b(n − s) ≤ s(n − a).

The inequality s2− (a+b)s+nb ≥ 0 holds in both these cases. Indeed, the minimum
of the function f(s) = s2 − (a + b)s + nb occurs at s = a+b

2
so f(s) is decreasing for

s ≤ b, and increasing for a < s, and f(a) = f(b) = (n − a)b ≥ 0.

Example 1. First assume a ≡ b (mod 2) and 4nb < (a + b)2. Then the sequence

(a
a+b
2 , b

2n−a−b
2 )

is not bipartite graphic by Theorem 5. Now assume a 
≡ b (mod 2) and 4nb <
(a + b)2 − 1. Then

(a
a+b+1

2 , b
2n−a−b−1

2 )

is not bipartite graphic, again by Theorem 5. These examples show that the bound
given in Theorem 3 is sharp.

Remark 1. Note that for two-element sequences, we can deduce Theorem 3 from
Theorem 5. Indeed, suppose that d = (as, bn−s) and that

nb ≥
⌊

(a + b)2

4

⌋
.



G. CAIRNS ET AL. /AUSTRALAS. J. COMBIN. 60 (2) (2014), 217–226 221

As we observed in the proof of Theorem 5, the minimum of the function f(s) =
s2 − (a + b)s + nb occurs at a+b

2
. If a + b is even, then

f(s) ≥ f

(
a + b

2

)
= nb − (a + b)2

4
= nb −

⌊
(a + b)2

4

⌋
≥ 0,

and so d is bipartite graphic by Theorem 5. So we may suppose that a + b is odd.
Then as s is an integer,

f(s) ≥ f

(
a + b − 1

2

)
= nb − (a + b)2 − 1

4
= nb −

⌊
(a + b)2

4

⌋
≥ 0.

Hence d is bipartite graphic by Theorem 5.

3 Strong indices

In this section, d = (d1, . . . , dn) is a (not necessarily strictly) decreasing sequence of
nonnegative integers and for each integer j, the number of elements in d equal to j
is denoted nj . As a particular case of [8, Theorem 7], one has the following.

Theorem 6 ([8]). The sequence d is bipartite graphic if and only if
∑k

i=1(di+ink−i) ≤
kn, for all indices k.

Recall the following standard definition.

Definition 1. In the sequence d, an index is said to be strong if dk ≥ k.

The following result improves Theorem 6.

Theorem 7. The sequence d is bipartite graphic if and only if
∑k

i=1(di+ink−i) ≤ kn,
for all strong indices k.

Proof. Necessity follows from Theorem 7 in [8]. To prove sufficiency, define

Fk = kn −
k∑

i=1

(di + ink−i) = kn −
k∑

i=1

di −
k∑

i=0

(k − i)ni.

Suppose that Fk ≥ 0 for all strong indices k. We will show that Fk ≥ 0 for all
indices k. To do this, we show that the minimum value of Fk, for k = 1, 2, . . . , n,
is nonnegative, and to do this we look at the smallest k for which Fk assumes the
minimum value. Thus it suffices to show that F1 and Fn are nonnegative and Fk ≥ 0
for all k = 2, . . . , n − 1 such that Fk−1 > Fk and Fk+1 ≥ Fk. We will make use
of the following lemma. Define the function f : N ∪ {0} → N ∪ {0} as follows:
f(k) = max{p : dp ≥ k + 1}, with the convention that max ∅ = 0.

Lemma 1. For the sequence d, suppose that n ≥ d1. For a given k = 0, 1, . . . , n,
denote p = f(k). Then, in the above notation,
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(a) if k, p > 0, then at least one of them is a strong index,

(b)
∑n

s=k+1 ns = p and
∑n

s=0 ns = n,

(c)
∑n

s=k+1 sns =
∑p

i=1 di and
∑n

s=0 sns =
∑n

i=1 di,

(d) Fk =
∑n

i=1 di −
∑k

i=1 di −
∑p

i=1 di +kp. In particular, if f(p) = k, then Fk = Fp.

Proof. (a) Suppose k is not a strong index, so that k > dk. As p = f(k) is assumed
to be positive we have p ∈ {1, . . . , n} and moreover, dp ≥ k + 1 > dk. So, as d is
decreasing, p < k. Thus dp ≥ k + 1 > p and so p is a strong index, as required.

(b) The left-hand side of the first equality equals #{s : ds ≥ k + 1} = p by
definition. The second equality is obvious.

(c) For an arbitrary s ≥ 0 we have sns =
∑

i:di=s di. It follows that
∑n

s=k+1 sns =∑n
s=k+1

∑
i:di=s di =

∑
i:di≥k+1 di =

∑p
i=1 di. This proves the first equality; the second

equality is obvious.

(d) We have by (b) and (c):

Fk = kn −
∑k

i=1
di − k

∑k

i=0
ni +

∑k

i=0
ini

= k
(
n −

∑k

i=0
ni

)
−

∑k

i=1
di +

∑n

i=0
ini −

∑n

i=k+1
ini

= kp −
∑k

i=1
di +

∑n

i=1
di −

∑p

i=1
di,

as required. If not only f(k) = p, but also f(p) = k, then Fk = Fp, as the latter
expression for Fk is symmetric with respect to k and p.

Continuing with the proof of the theorem, by Lemma 1(b),

Fk+1 − Fk = n − dk+1 −
∑k

i=0
ni =

∑n

i=k+1
ni − dk+1 = f(k) − dk+1. (7)

Moreover, Fn = n2−∑n
i=1 di−n

∑n
i=0 ni+

∑n
i=0 ini = 0 by Lemma 1(b, c) and F1 ≥ 0

by assumption, as d1 ≥ 1. By (7) and Lemma 1(b), the inequalities Fk−1 > Fk and
Fk+1 ≥ Fk give

Fk+1 − Fk = f(k) − dk+1 ≥ 0,

Fk − Fk−1 = f(k − 1) − dk = f(k) + nk − dk < 0.

That is,
dk+1 ≤ f(k) < dk − nk. (8)

Let k be a non-strong index for which (8) holds. Denote p = f(k). If p > 0, then
p is a strong index by Lemma 1(a), hence Fp ≥ 0 by assumption. Moreover, by (8)
we have dk+1 ≤ p and dk > p + nk so dk ≥ p + 1 and dk+1 < p + 1. It follows that
k = max{s : ds ≥ p + 1}, so f(p) = k by definition. Then, by Lemma 1(d), we have
Fk = Fp ≥ 0. So we may assume that p = 0. Then dk+1 = 0, by (8), and hence dj = 0
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for all j > k. Furthermore, as f(k) = p = 0, we have {s : ds ≥ k + 1} = ∅, and so
ni = 0 for all i > k. So by (7), for every j > k we have Fj −Fj−1 =

∑n
i=j ni−dj = 0.

Thus Fk = Fn. As Fn = 0 from the above, we get Fk = 0, as required.

In the next section, we will also need the following lemma, which is a variation
of [4, Lemma 1].

Lemma 2. Suppose that d has maximum element a = d1 ≤ n and minimum element
b = dn. For every strong index k > b, we have

k∑
i=1

(di + ink−i) ≤ n(k − b) + K(a + b) − K2,

where K is the largest strong index, K = max{k : dk ≥ k}.

Proof. Let k > b be a strong index. We have
∑k

i=1 di ≤ ka. Furthermore, since
nj = 0 for j < b, we have

k∑
i=1

ink−i =

k−1∑
j=0

(k − j)nj ≤ (k − b)

k−1∑
j=0

nj.

The sum
∑k−1

j=0 nj counts the number of elements of d strictly less than k, hence∑k−1
j=0 nj ≤ n − K as dK ≥ K ≥ k. Hence

k∑
i=1

(di + ink−i) ≤ ka + (k − b)(n − K). (9)

As a ≥ dK ≥ K, we have a + 1 − K ≥ 1. Thus, using k ≤ K, inequality (9) gives

k∑
i=1

(di + ink−i) ≤ ka + (k − b)(n − K) = kn + k(a − K) + bK − bn

≤ kn + K(a − K) + bK − bn

= n(k − b) + K(a + b) − K2,

as required.

4 First Proof of Theorem 3

Let d be a sequence satisfying hypothesis (3) of Theorem 3. If a ≡ b (mod 2), then
the result follows from Theorem 2. So we may assume that a, b have different parity.
Let k be a strong index and suppose first that k > b. By Lemma 2,

k∑
i=1

(di + ink−i) ≤ n(k − b) + K(a + b) − K2, (10)
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where K denotes the largest strong index. As a quadratic in K, the maximal value
of n(k − b) + K(a + b) − K2 is attained at K = a+b±1

2
and

n(k − b) +
(a + b ± 1)

2
(a + b) −

(
a + b ± 1

2

)2

= n(k − b) +
1

4
(a + b)2 − 1

4
.

Hence, since nb ≥
⌊

(a+b)2

4

⌋
= (a+b)2

4
− 1

4
, we have

n(k − b) + K(a + b) − K2 ≤ n(k − b) +
1

4
(a + b)2 − 1

4
≤ kn.

So by (10), we have
∑k

i=1(di + ink−i) ≤ kn. On the other hand, if k ≤ b, then d
contains no elements less than k and hence

k∑
i=1

(di + ink−i) =
k∑

i=1

di ≤ ka. (11)

Note that n ≥ a, since otherwise by (3), we would have ab > nb ≥ (a+b)2−1
4

, and
hence (a − b)2 < 1, giving a = b, which is impossible as a, b have different parity.
So (11) gives

∑k
i=1(di + ink−i) ≤ kn once again. Hence d is bipartite graphic by

Theorem 7.

5 Second Proof of Theorem 3

Suppose we have a decreasing sequence d = (a, . . . , b) of length n, and suppose it
satisfies hypothesis (3) of Theorem 3. By Remark 1, we may assume that d has at
least 3 distinct elements. Suppose that na = s; that is, d has precisely s elements
equal to a. Now consider the sequence d ′ obtained from d by reducing the first s
elements of d by 1. So d ′ has maximal element a′ = a − 1. Note that d has at
least 3 distinct elements, hence the minimum element of d ′ is still b. Suppose for the
moment that d ′ has even sum. We will show that d ′ is graphic. From (3), we have

nb ≥

⎧⎪⎪⎨
⎪⎪⎩

(a+b)2

4
: if a ≡ b (mod 2),

⌊
(a+b)2

4

⌋
: otherwise,

We will show that

nb ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊
(a′ + b + 1)2

4

⌋
− 1 : if b is odd, or a′ + b ≡ 1 (mod 4),

⌊
(a′ + b + 1)2

4

⌋
: otherwise,

(12)
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from which we can conclude that d ′ is graphic by Theorem 4. Consider two cases
according to whether or not a ≡ b (mod 2). If a ≡ b (mod 2), then our hypothesis

is nb ≥ (a+b)2

4
, and hence

nb ≥ (a′ + b + 1)2

4
=

⌊
(a′ + b + 1)2

4

⌋
,

and so (12) holds. Similarly, if a 
≡ b (mod 2), then our hypothesis is nb ≥
⌊

(a+b)2

4

⌋
,

and hence

nb ≥
⌊

(a′ + b + 1)2

4

⌋
,

and again (12) holds. Thus in either case, d ′ is graphic.

We now use a result of [3]. By a graph-with-loops we mean a graph, without
multiple edges, in which there is at most one loop at each vertex. For a graph-with-
loops, the reduced degree of a vertex is taken to be the number of edges incident to
the vertex, with loops counted once. This differs from the usual definition of degree
in which each loop contributes two to the degree. By [3, Corollary 1], a sequence
d of positive integers is the sequence of reduced degrees of the vertices of a graph-
with-loops if and only if d is bipartite graphic. In our case, d ′ is graphic. Take a
realization of d ′ as the degree sequence of some graph G′, and label the vertices of
G′ in the same order as d ′. Now add a loop to each of the first s nodes of G′ and
call the resulting graph-with-loops G. So the sequence of reduced degrees of G is d.
Thus by [3, Corollary 1], d is bipartite graphic.

It remains to deal with the case where d ′ has odd sum. Since d has at least
3 distinct elements, we can modify the above construction as follows: we take the
sequence d ′′ obtained from d by reducing the first (s + 1) elements of d by 1. Then
d ′′ has even sum, maximum element a− 1 and minimum element b, and we proceed
exactly as above, only adding s + 1 loops.
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