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On radial colorings of annuli
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Abstract

We consider the chromatic numbers of unit-distance graphs of various
annuli. In particular, we consider radial colorings, which are “nice” col-
orings, and completely determine the radial chromatic numbers of various
annuli.

1 Introduction

The Chromatic Number of the Plane, denoted by χ(R2), is the least integer N such
that the points of the plane can be colored in N colors such that no two points exactly
unit distance apart are the same color. Well-known elementary arguments show that
4 ≤ χ(R2) ≤ 7, but no improvement on these bounds appears to be forthcoming.

The difficulty of improving these bounds has led several authors to consider var-
ious modifications to the problem. For instance, one might restrict the type of
coloring. In [3], Falconer shows that if the color classes must be measurable, then at
least five colors are required. (See [5], Ch. 9, for a nice exposition.) In [6], Townsend
announces the result that every “map-coloring” of the plane requires at least six
colors, and provides a proof in [7]. In a basically identical result couched in different
language, Coulson [2] considers colorings in which the color classes are composed of
“tiles”, and shows that six colors are required.

Another approach is to consider colorings of proper subsets of the plane. In [1],
Axenovich et al. consider but do not determine the chromatic number of Q × R.
They also determine the chromatic number of infinite strips of different widths, and
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of the union of two parallel lines. In [4], Kruskal considers bounded simply connected
subsets of the plane. In particular, he shows that for a closed disk of radius r,

• the disk is 2-colorable if and only if r ≤ 1
2
;

• the disk is 3-colorable if and only if r ≤ 1√
3
;

• the disk is 4-colorable if r ≤ 1√
2
.

In the present paper, we consider the annulus with inner radius 1
2
− r and outer

radius 1
2

+ r, where 0 < r < 1
2
, and prove some surprising results in the case that the

colorings are required to be “nice.”

2 Arbitrary colorings of the annulus.

Let 0 < r < 1
2
, and let Ar = {p ∈ R2 : 1

2
− r ≤ ‖p‖ ≤ 1

2
+ r}. We recall two lemmas

from Kruskal’s paper [4].

Lemma 1. A rod is a line segment of unit length. If a region R is 2-colored, and we
slide a rod continuously so that its endpoints stay within the interior of R, then the
set of points passed over by a given endpoint is monochromatic.

Lemma 2. A tri-rod is an equilateral triangle of unit side length. If a region R
is 3-colored, and we slide a tri-rod continuously so that its vertices stay within the
interior of R, then the set of points passed over by a given vertex is monochromatic.

If r > 0, then a rod can be placed with endpoints interior to Ar. By rotating the
rod by 180◦ about its center, we see that if Ar were 2-colored, then by Lemma 1 the
two endpoints would have to be colored the same color. But the endpoints are unit
distance apart, so Ar is not 2-colorable. See Figure 1. An alternate method of proof
is to embed an odd cycle. See Figure 2.

Figure 1: An embedding of a rod

If 0 < r ≤ 2−
√

3
2
√

3
, then Ar is 3-colorable. Figure 3 shows a proper 3-coloring of

Ar with r = 2−
√

3
2
√

3
(so that the outer radius of Ar is 1√

3
). Each boundary between

sectors is colored the same color as the sector clockwise from it.
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Figure 2: An embedding of an odd cycle

Figure 3: A proper 3-coloring for r = 2−
√

3
2
√

3

If r > 2−
√

3
2
√

3
, then the outer radius of Ar is greater than 1√

3
, so a tri-rod can be

placed such that its endpoints lie in the interior of Ar. Thus by rotating 120◦ and
applying Lemma 2, we see that Ar is not 3-colorable. See Figure 4.

Figure 4: An embedding of a tri-rod

Figure 5 shows a proper 4-coloring of Ar for r = 2−
√

2
2
√

2
(so that the outer radius

of Ar is 1√
2
). Again, the boundaries between sectors are colored the same color as

the adjacent sector in the clockwise direction.
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Figure 5: A proper 4-coloring for r = 2−
√

2
2
√

2

Kruskal leaves open the question of whether a closed disk of radius greater than
1√
2

can be properly 4-colored. One might think that an annulus with outer radius
1√
2

+ ε could be properly 4-colored—after all, it has a hole in the middle—but the
present authors have been unable to construct such a coloring. The nature of the
difficulty will be illuminated in the next section.

3 Radial Colorings

Definition 3. Let 0 < r < 1
2
. A coloring of Ar is called radial if there exists a

sequence of radii r1, r2, . . . , rn = r1 such that the sector strictly between ri and ri+1

is colored with a single color. Let χradial(Ar) denote the least number of colors needed
to give a proper coloring of Ar using radial colorings only.

The radial colorings are the “nice” colorings mentioned at the end of Section 1.
We emphasize that the boundaries between sectors can be colored arbitrarily, while
the sectors between radial boundaries must be monochromatic. See Figure 6.

Figure 6: A radial coloring

Definition 4. A unit chord in Ar is a chord of unit length. A unit sector is a sector
of minimal size that contains a unit chord. See Figure 7.
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1

Figure 7: A unit chord contained within a unit sector

The following lemma will be powerful enough to allow us to determine χradial(Ar)
for all 0 < r < 1

2
.

Lemma 5. Let 0 < r < 1
2

and let Ar be given a proper radial coloring. Then the
interior of any color class is included in some unit sector.

Proof. Call the intersection of a radial ray with Ar a radial segment. See Figure 8.

Figure 8: A radial segment

By way of contradiction, suppose there exist two radial segments of the same
color (red, say) such that the chord joining their farthest-apart points has length
greater than 1 (Figure 9).

> 1

Figure 9: Two radial segments
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Call one of the segments S1 (Figure 10), and call the point at which it intersects
the outer circle P . Call the other segment S2. Let A and B be the two points that
are a unit chord away from P (Figure 11).

S1

Figure 10: The segment S1

P

B A

1 1

Figure 11: Points A, B, and P

Let P ′ be antipodal to P , and draw a segment from A to P ′ (Figure 12).
Now take the unit-length rod that goes from P to A, and slide it continuously so

that one endpoint stays on S1 and the other stays on AP ′ (Figure 13).
Thus every radial segment between A and P ′ has a point on it that is unit

distance from some point of S1. (Similarly for those between P ′ and B.) But this is
a contradiction, since some point on S2 must be on AP ′ or BP ′.

Theorem 6. Let 0 < r < 1
2
. Then χradial(Ar) is the least integer N such that one can

“walk around” the outside circumference using N unit-chord steps, i.e., N = d2π
θ
e,

where θ = arccos

(
1− 1

2(1
2

+ r)2

)
.

Proof. That χradial(Ar) ≥ N follows immediately from the previous lemma. It is easy
to color Ar in N colors using N −1 unit sectors as different colors and one “leftover”
sector in the N th color.
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P

P ′

1

Figure 12: The segment from A to P ′

P

P ′

A

Figure 13: Sliding the segment AP

Below is a table of values for χradial(Ar).

We note that if we let r = 1/2, then we get a disk of radius 1, which can be
given a proper radial coloring by coloring the 6 unit sectors in distinct colors and the
center of the disk in the 7th color.

4 Further Directions

It may be interesting to consider other connected but not simply connected regions
of the plane. For instance, consider the well-known periodic hexagonal coloring of
the plane in 7 colors. Take one color class, enlarge it slightly and delete it, leaving
a “holey plane.” Certainly, this holey plane can be colored in 6 colors. Can it be
colored in 5? Townsend’s result on colorings using tiles would seem not to apply.

Bounded and not simply connected subsets may also be interesting to consider,
although it would seem that their analysis promises little additional insight into
the larger problem of understanding plane colorings and determining the chromatic
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0 < r ≤ 2−
√

3
2
√

3
χradial = 3

2−
√

3
2
√

3
< r ≤ 2−

√
2

2
√

2
χradial = 4

2−
√

2
2
√

2
< r ≤ −1

2
+
√

2
5−
√

5
χradial = 5

−1
2

+
√

2
5−
√

5
< r < 1

2
χradial = 6

Table 1: A table of values for χradial(Ar)

number of the plane. After all, the authors were not able to find colorings of Ar that
improve Kruskal’s corresponding bounds for circular regions; the “donut hole” did
not seem to be useful for arbitrary colorings.

A more promising approach might be to try to prove (or find a counterexample
for) a Moser-spindle version of Kruskal’s tri-rod lemma. If r > 3√

11
− 1

2
, then a

spindle can be embedded into the interior of Ar (see Figure 14). If a tri-rod can be
embedded, then Ar is not 3-colorable. Perhaps if a spindle can be embedded, Ar is
not 4-colorable.

Figure 14: The Moser spindle can be embedded into Ar if r >
3√
11
− 1

2
. A radial

coloring of Ar requires 5 colors in this case.
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