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Abstract

A resolving set for a graph Γ is a collection of vertices S, chosen so that for
each vertex v, the list of distances from v to the members of S uniquely
specifies v. The metric dimension of Γ is the smallest size of a resolving
set for Γ.

A graph is distance-regular if, for any two vertices u, v at each distance
i, the number of neighbours of v at each possible distance from u (i.e. i−1,
i or i+1) depends only on the distance i, and not on the choice of vertices
u, v. The class of distance-regular graphs includes all distance-transitive
graphs and all strongly regular graphs.

In this paper, we present the results of computer calculations which
have found the metric dimension of all distance-regular graphs on up
to 34 vertices, low-valency distance transitive graphs on up to 100 ver-
tices, strongly regular graphs on up to 45 vertices, rank-3 strongly regular
graphs on under 100 vertices, as well as certain other distance-regular
graphs.

1 Introduction

A resolving set for a graph Γ = (V,E) is a set of vertices S = {v1, . . . , vk} such
that for each vertex w ∈ V , the list of distances (d(w, v1), . . . , d(w, vk)) uniquely
determines w. Equivalently, S is a resolving set for Γ if, for any pair of vertices
u, w ∈ V , there exists vi ∈ S such that d(u, vi) �= d(w, vi); we say that vi resolves
u and w. The metric dimension of Γ is the smallest size of a resolving set for Γ.
This concept was introduced to the graph theory literature in the 1970s by Harary
and Melter [30] and, independently, Slater [39]; however, in the context of arbitrary
metric spaces, the concept dates back at least as far as the 1950s (see Blumenthal [9],
for instance). In more recent years, there has been a considerable number of papers
written about the metric dimension of graphs. For further details, the reader is
referred to the survey paper [3].
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When studying metric dimension, distance-regular graphs are a natural class of
graphs to consider. A graph Γ is distance-regular if, for all i with 0 ≤ i ≤ diam(Γ)
and any vertices u, v with d(u, v) = i, the number of neighbours of v at distances
i − 1, i and i + 1 from u depend only on the distance i, and not on the choices
of u and v. For more information about distance-regular graphs, see the book of
Brouwer, Cohen and Neumaier [10] and the forthcoming survey paper by van Dam,
Koolen and Tanaka [16]. Note that the class of distance-regular graphs contains
the distance-transitive graphs (i.e. those graphs Γ with the property that for any
vertices u, v, u′, v′ such that d(u, v) = d(u′, v′), there exists an automorphism g such
that ug = u′ and vg = v′) and the connected strongly regular graphs (which are the
distance-regular graphs of diameter 2).

For any graph Γ with diameter d, consider the partition of V ×V into d+1 parts,
given by the pairs of vertices at each possible distance in Γ. If Γ is distance-regular,
this partition is an example of an association scheme. These are much more general
objects, and ones which are inconsistently named in the literature; see [3, Section
3.3] for more details. An association scheme is said to be P -polynomial if it arises
from a distance-regular graph; however, more than one graph may give rise to the
same P -polynomial association scheme (see [10, 16]). It is not difficult to see that
two graphs arising in this way must have the same metric dimension (see [3, Section
3.5]).

Since the publication of the survey paper by Cameron and the present author [3],
a number of papers have been written on determining, or bounding, the metric
dimension of various families of distance-regular graphs: see [1, 2, 4, 6, 18, 24, 25,
26, 31], for instance. The purpose of this paper is to give the results of a number
of computer calculations, using the GAP computer algebra system [19], which have
obtained the metric dimension for all “small” distance-regular graphs (i.e. on up to
34 vertices), for distance-regular graphs of valency 3 and 4 (on up to 189 vertices),
low-valency distance-transitive graphs (up to valency 13, and up to 100 vertices), and
certain other distance-regular graphs. For strongly regular graphs, this has included
an independent verification of earlier computations by Kratica et al. [33] (which used
an entirely different approach via linear programming).

2 Known results

In this section, we summarize the relevant known values of the metric dimension of
various families of distance-regular graphs. It is a straightforward exercise to verify
that the complete graph Kn has metric dimension n− 1, that the complete bipartite
graph Km,n has metric dimension m+n−2, and that a cycle Cn with n ≥ 3 vertices
has metric dimension 2. The following result is also straightforward, yet the author
is not aware of it appearing anywhere in the literature.

Proposition 1. Consider a complete multipartite graph Γ = Km1,...,mr with r parts
of sizes m1, . . . , mr, for r > 1. Then the metric dimension of Γ is

∑r
i=1(mi − 1).
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In particular, in the special case where a complete multipartite graph has r parts
of size m (and thus is strongly regular), this shows that the metric dimension is
r(m− 1).

Proof. Suppose the vertex set of Γ is V = V1 ∪ · · · ∪ Vr, where the Vi are disjoint
sets of sizes m1, . . . , mr; every possible edge exists from Vi to Vj (for i �= j), and no
edges exist inside any Vi. Let T be a transversal of V1, . . . , Vr, and let S = V \ T .
It is straightforward to verify that S is a resolving set for Γ of size

∑r
i=1(mi − 1).

Furthermore, no smaller resolving set may exist: suppose for a contradiction that R
is a subset of V with size smaller than the above. By the pigeonhole principle there
exists an index i for which Vi contains two vertices u, v not in R, and no vertex in R
will resolve this pair of vertices.

The following results are somewhat less trivial. Recall that the Johnson graph
J(n, k) is the graph whose vertex set consists of all k-subsets of an n-set, and two
k-subsets are adjacent if and only if they intersect in a (k − 1)-subset. The Kneser
graph K(n, k) has the same vertex set as J(n, k), but adjacency is defined by two
k-sets being disjoint. The Johnson graph is always distance-regular, whereas the
Kneser graph only is in two special cases, namely K(n, 2) (which is the complement
of J(n, 2)) and K(2k + 1, k) (known as the Odd graph, and usually denoted Ok+1).
The following result was obtained by Cameron and the present author in 2011.

Theorem 2 (Bailey and Cameron [3, Corollary 3.33]). For n ≥ 6, metric dimension
of the Johnson graph J(n, 2) and Kneser graph K(n, 2) is 2

3
(n− i) + i, where n ≡ i

(mod 3), i ∈ {0, 1, 2}.
It is easy to determine the metric dimension of J(3, 2), J(4, 2) and J(5, 2) by

hand: these values are 2, 3 and 3, respectively. Further results about resolving sets
for Johnson and Kneser graphs may be found in [2].

We also recall that the Hamming graph H(d, q) has as its vertex set the collection
of all d-tuples over an alphabet of size q, and two d-tuples are adjacent if and only
if they differ in exactly one position; these graphs are distance-transitive. Two
important examples are the hypercube H(d, 2) and the square lattice graph H(2, q).
The following result was obtained by Cáceres et al. in 2007.

Theorem 3 (Cáceres et al. [13, Theorem 6.1]). For all q ≥ 1, the metric dimension
of the square lattice graph H(2, q) is �2

3
(2q − 1)	.

This is the only infinite family of Hamming graphs for which the metric dimension
is known precisely. Further details about the metric dimension of Hamming graphs
can be found in [3, Section 3.6]; for the hypercubes, see also Beardon [6]. Some
precise values were computed by Kratica et al. [34], using genetic algorithms.

Finally, we mention a recent result of the present author, which helps to eliminate
the need for some additional computations. The bipartite double of a graph Γ =
(V,E) is a bipartite graph D(Γ), whose vertex set consists of two disjoint copies of
V , labelled V + and V −, with v+ adjacent to w− in D(Γ) if v and w are adjacent
in Γ.
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Theorem 4 (Bailey [1]). Suppose Γ is a distance-regular graph of diameter d, and
whose shortest odd cycle has length 2d + 1. Then Γ and its bipartite double D(Γ)
have the same metric dimension.

In particular, the graph Kn,n − I (obtained by deleting a perfect matching from
Kn,n) is the bipartite double of the complete graph Kn, which satisfies the conditions
of Theorem 4, and thus Kn,n − I has metric dimension n− 1.

3 The method

Suppose Γ = (V,E) is a graph with n vertices, labelled v1, . . . , vn. The distance
matrix of Γ is the n × n matrix A, whose (i, j) entry is the distance in Γ from
vi to vj. Note that if there are two distance-regular graphs arising from the same
P -polynomial association scheme, their distance matrices are equivalent, up to a
relabelling of the distance classes. For instance, the metric dimension of a primitive
strongly regular graph and that of its complement will be equal.

Suppose A is the distance matrix of Γ, and let S be a subset of V . Denote by
[A]S the submatrix formed by taking the columns of A indexed by elements of S.
It is clear that S is a resolving set for Γ if and only if the rows of [A]S are distinct.
Furthermore, if one has obtained the distance matrix of a relatively small graph, it
is near-instantaneous for a computer to verify if a given submatrix has this property.

The results in this paper were obtained using the computer algebra system GAP
[19] and various packages developed for it, in particular the GRAPE package of Soicher
[44], the functions for association schemes of Hanaki [27], and also some functions of
Cameron [15]. However, the most useful tool for these computations is the SetOrbit
package of Pech and Reichard [36]. Given a set V and a group G acting on it, this
provides an efficient method for enumerating a canonical representative of each orbit
of G acting on the subsets of V of a given size. It is clear that S is a resolving set
for a graph Γ if and only if its image Sg = {xg : x ∈ S} is a resolving set, for
any g ∈ Aut(Γ). Consequently, when searching for a resolving set of a particular
size, it suffices to test just one representative of each orbit on subsets of that size.
Therefore, the methods of Pech and Reichard (which are explained in detail in [35])
are precisely what is needed to dramatically reduce the search space.

3.1 Data sources

Hanaki andMiyamoto’s library of small association schemes [28] contains all distance-
regular graphs on up to 34 vertices: one merely has to filter out the P -polynomial
examples from their lists. Association schemes with primitive automorphism groups
may be constructed by using GAP’s internal libraries of primitive groups. Graphs
(such as incidence graphs and point graphs) obtained from generalized polygons may
be constructed using the FinInG package of Bamberg et al. [5], while for graphs associ-
ated with block designs (including projective and affine geometries) the DESIGN pack-
age of Soicher [45] is used. Other useful data sources include Spence’s catalogue of
strongly regular graphs [46], Royle’s catalogue of symmetric (i.e. arc-transitive) cubic
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graphs [38], the online Atlas of Finite Group Representations [47], and Sloane’s
libraries of Hadamard matrices [40].

4 Results

4.1 Distance-regular graphs on up to 34 vertices

As mentioned above, all distance-regular graphs on up to 34 may all be obtained from
the catalogue of association schemes of Hanaki and Miyamoto [28]. For 31 and 32
vertices, a complete classification of association schemes is not available; however, as
there are no feasible parameter sets for strongly regular graphs with these numbers of
vertices, and (other than K31 and C31) no distance-transitive graphs with 31 vertices,
one can see that the data available contains all distance-regular graphs with 31 and 32
vertices. These graphs are all small enough that no sophisticated computations were
required to determine the metric dimension; the results are given in Tables 1 and 2.
Cycles, complete graphs, complete bipartite graphs and complete multipartite graphs
are omitted from these tables. Those graphs which are not distance-transitive are
indicated †; cases where there is a unique distance-transitive example are indicated ‡.
The abbreviation IG is used to denote an incidence graph. In cases where there are
multiple examples, N denotes the number of such graphs.

4.2 Distance-regular graphs of valency 3 and 4

The distance-transitive graphs of valency 3 were determined by Biggs and Smith
in 1971 [8] (see also Gardiner [20]); this classification was extended to all distance-
regular graphs of valency 3 by Biggs, Boshier and Shawe-Taylor in 1986 [7]. In
addition to K4 and K3,3, there are eleven such distance-regular graphs, of which all
but one are distance-transitive, with the exception being Tutte’s 12-cage. The metric
dimension of each of these graphs is given in Table 3.

The distance-transitive graphs of valency 4 were determined in 1974 by Smith
[41, 42, 43] (see also Gardiner [21]); this classification was extended to distance-
regular graphs by Brouwer and Koolen in 1999 [12]. The classification is complete,
except for relying on a classification of generalized hexagons GH(3, 3), which give
rise to 4-regular distance-regular graphs on 728 vertices. (In any case, these would
be beyond the scope of the computations in this paper.) The metric dimension of
each of these graphs is given in Table 4.

Of the graphs with more than 34 vertices, the Foster graph was obtained from
Royle’s catalogue [38], the Biggs–Smith graph from the group PSL(2, 17), and Tutte’s
12-cage as the incidence graph of the generalized hexagon GH(2, 2) (constructed
using FinInG). The Odd graph O4 lies inside the Johnson scheme J(7, 3), which may
be constructed using GRAPE, as can line graphs and bipartite doubles. The incidence
graph of the GQ(3, 3) may be constructed using FinInG.
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Vertices Graph Valency Diameter Met. dim.

6 Octahedron J(4, 2) 4 2 3

8 Cube Q3
∼= K4,4 − I 3 3 3

9 Paley graph P9
∼= H(2, 3) 4 2 3

10

Petersen graph O3 = K(5, 2) 3 2 3

J(5, 2) 6 2 3

K5,5 − I 4 3 4

12
Icosahedron 5 3 3

K6,6 − I 5 3 5

13 Paley graph P13 6 2 4

14

Heawood (IG of PG(2, 2)) 3 3 5

Non-IG of PG(2, 2) 4 3 5

K7,7 − I 6 3 6

15

Line graph of Petersen graph 4 3 4

K(6, 2) 6 2 4

J(6, 2) 8 2 4

16

4-cube Q4 4 4 4

H(2, 4) 6 2 4

Complement of H(2, 4) 9 2 4

Shrikhande graph† 6 2 4

Complement of Shrikhande graph† 9 2 4

Clebsch graph 5 2 4

(Complement of) Clebsch graph 10 2 4

K8,8 − I 7 3 7

17 Paley graph P17 8 2 4

18
Pappus graph 3 4 4

K9,9 − I 8 3 8

20

Dodecahedron 3 5 3

Desargues graph D(O3) 3 5 3

J(6, 3) 9 3 4

K10,10 − I 9 3 9

21

Line graph of Heawood graph 4 3 4

J(7, 2) 10 2 4

K(7, 2) 10 2 4

22

IG of biplane 5 3 6

Non-IG of biplane 6 3 6

K11,11 − I 10 3 10

24
Symplectic cover [10, p. 386]† 7 3 5

K12,12 − I 11 3 11

Table 1: Metric dimension of distance-regular graphs on up to 24 vertices
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Vertices Graph Valency Diameter Met. dim.

25

H(2, 5) 8 2 6

Paley graph P25 12 2 5

Other srg(25, 12, 5, 6) (N = 14, 7 pairs)† 12 2 5

Complement of H(2, 5) 16 2 6

26

srg(26, 10, 3, 4) (N = 10)† 10 2 5

IG of PG(2, 3) 4 3 8

Non-IG of PG(2, 3) 9 3 8

K13,13 − I 12 3 12

Complements of srg(26, 10, 3, 4) (N = 10)† 15 2 5

27

H(3, 3) 6 3 4

GQ(2, 4) minus spread (N = 2) 8 3 5

Complement of Schläfi graph 10 2 5

Schläfi graph 10 2 5

28

Coxeter graph 3 4 4

J(8, 2) 12 2 6

Chang graphs (N = 3)† 12 2 6

Taylor graph from P13 13 3 5

K14,14 − I 13 3 13

K(8, 2) 15 2 6

Complements of Chang graphs (N = 3)† 15 2 6

29
Paley graph P29 14 2 6

Other srg(29, 14, 6, 7) (N = 40, 20 pairs)† 14 2 5

30

Tutte’s 8-cage 3 4 6

IG of PG(3, 2) 7 3 8

Non-IG of PG(3, 2) 8 3 8

IGs of Hadamard designs (N = 3)‡ 7 3 8

Non-IGs of Hadamard designs (N = 3)‡ 8 3 8

K15,15 − I 14 3 14

32

IG of truncated AG(2, 4) 4 4 6

5-cube Q5 5 5 4

Armanios–Wells graph 5 4 5

IGs of biplanes (N = 3)† 6 3 8

Hadamard graph 8 4 7

Non-IGs of biplanes (N = 3)† 10 3 8

Taylor graph from J(6, 2) 15 3 5

Taylor graph from K(6, 2) 15 3 5

K16,16 − I 15 3 15

34 K17,17 − I 16 3 16

Table 2: Metric dimension of distance-regular graphs on 25 to 34 vertices
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Graph Vertices Diameter Metric dimension

Cube Q3
∼= K4,4 − I 8 3 3

Petersen graph O3 10 2 3

Heawood graph 14 3 5

Pappus graph 18 4 4

Dodecahedron 20 5 3

Desargues graph D(O3) 20 5 3

Coxeter graph 28 4 4

Tutte’s 8-cage 30 4 6

Foster graph 90 8 5

Biggs–Smith graph 102 7 4

Tutte’s 12-cage† 126 6 8

Table 3: Metric dimension of distance-regular graphs of valency 3

Graph Vertices Diameter Metric dimension

Octahedron J(4, 2) 6 2 3

Paley graph P9
∼= H(2, 3) 9 2 3

K5,5 − I 10 3 5

Distance-3 graph of Heawood graph 14 3 5

Line graph of Petersen graph 15 3 4

4-cube Q4 16 4 4

Line graph of Heawood graph 21 3 4

Incidence graph of PG(2, 3) 26 3 8

Incidence graph of truncated AG(2, 4) 32 4 6

Odd graph O4 35 3 5

Line graph of Tutte’s 8-cage 45 4 4

Doubled Odd graph D(O4) 70 7 5

Incidence graph of GQ(3, 3)† 80 4 10

Line graph of Tutte’s 12-cage† 189 6 6

Incidence graph of GH(3, 3) 728 6 unknown

Table 4: Metric dimension of distance-regular graphs of valency 4
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4.3 Distance-transitive graphs of valencies 5 to 13

The distance-transitive graphs of valencies 5, 6 and 7 were determined in 1986 by
Faradjev, Ivanov and Ivanov [17], and independently (for valencies 5 and 6) by
Gardiner and Praeger [22, 23]. For valencies 8 to 13, the classification was obtained
in 1988 by Ivanov and Ivanov [32].

Tables 5 to 12 contain the metric dimension of all such graphs on up to 100 vertices
(apart one exception on 98 vertices), as well as larger graphs when the computations
succeeded. No table is provided for valency 11, as the only example under 100
vertices (other than K12 or K11,11) is K12,12 − I, which has metric dimension 11. An
asterisk indicates that the metric dimension was not computed directly, but rather
that Theorem 4 was applied to the result of an earlier computation.

Of the examples with more than 34 vertices, many of the graphs are incidence
graphs of designs or geometries, so can be constructed using the DESIGN or FinInG
packages; the resolvable transversal designs RT[8, 2; 4] and RT[9, 3; 3] are given in
the paper of Hanani [29]. Otherwise, graphs were constructed in GAP from their
automorphism groups, either from the internal libraries of primitive groups, or using
permutation representations in the Atlas.

Graph Vertices Diameter Metric dimension

K6,6 − I 12 3 5

Icosahedron 12 3 3

Clebsch graph 16 2 4

Incidence graph of biplane 22 3 6

5-cube Q5 32 5 4

Armanios–Wells graph 32 4 5

Sylvester graph from Aut(S6) 36 3 5

Incidence graph of PG(2, 4) 42 3 10

Incidence graph of truncated AG(2, 5) 50 4 9

Odd graph O5 126 4 6

Incidence graph of GQ(4, 4) 170 4 unknown

Doubled Odd graph D(O5) 252 9 6∗

Table 5: Metric dimension of distance-transitive graphs of valency 5

4.4 Strongly regular graphs on up to 45 vertices

Recall that a strongly regular graph Γ has parameters (n, k, a, c), where n is the
number of vertices, k is the valency, a is the number of common neighbours of a pair of
adjacent vertices, and c is the number of common neighbours of a pair of non-adjacent
vertices. In this subsection, we consider the strongly regular graphs on between 35
and 45 vertices, for parameters where a complete classification of graphs are known,
and obtain their metric dimension; the results are given in Table 13. (Smaller strongly
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Graph Vertices Diameter Metric dimension

K7,7 − I 14 3 6

J(5, 2) 10 2 3

Paley graph P13 13 2 4

K(6, 2) 15 2 4

H(2, 4) 16 2 4

Non-incidence graph of biplane 22 3 6

H(3, 3) 27 3 4

Incidence graph of biplane 32 3 8

Hexacode graph 36 4 7

2nd subconstituent of Hoffman–Singleton 42 3 7

Halved Foster graph 45 4 6

Flag graph of PG(2, 3) 52 3 6

Perkel graph 57 3 6

Incidence graph of PG(2, 5) 62 3 15

Point graph of GH(2, 2) 63 3 6

Point graph of dual GH(2, 2) 63 3 6

6-cube Q6 64 6 5

Table 6: Metric dimension of distance-transitive graphs of valency 6

Graph Vertices Diameter Metric dimension

K8,8 − I 16 3 7

Incidence graph of PG(3, 2) 30 3 8

Hoffman–Singleton graph 50 2 11

Folded 7-cube 64 3 6

Incidence graph of truncated AG(2, 7) 98 4 unknown

Doubled Hoffman–Singleton graph 100 5 11∗

7-cube Q7 128 7 6

Table 7: Metric dimension of distance-transitive graphs of valency 7
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Graph Vertices Diameter Metric dimension

J(6, 2) 15 2 4

Paley graph P17 17 2 4

K9,9 − I 18 3 8

H(2, 5) 25 2 6

Point graph of GQ(2, 4) minus spread 27 3 5

Non-incidence graph of PG(3, 2) 30 3 8

Hadamard graph 32 4 7

Incidence graph of RT[8, 2; 4] 64 4 10

H(4, 3) 81 4 5

Flag graph of PG(2, 4) 105 3 7

Folded 8-cube 128 4 11

8-cube Q8 256 8 6

Table 8: Metric dimension of distance-transitive graphs of valency 8

Graph Vertices Diameter Metric dimension

Complement of H(2, 4) 16 2 4

K10,10 − I 20 3 9

J(6, 3) 20 3 4

Non-incidence graph of PG(2, 3) 26 3 8

Incidence graph of RT[9, 3; 3] 54 4 10

H(3, 4) 64 3 6

Unitals in PG(2, 4) (from PSL(3, 4)) 280 4 5

9-cube Q9 512 9 7

Table 9: Metric dimension of distance-transitive graphs of valency 9

Graph Vertices Diameter Metric dimension

Clebsch graph 16 2 4

J(7, 2), K(7, 2) 21 2 4

K11,11 − I 22 3 10

Complement of Schläfi graph 27 2 5

Non-incidence graph of biplane 32 3 8

H(2, 6) 36 2 7

Gewirtz graph 56 2 9

Conway-Smith graph from 3.S7 63 4 6

Hall graph from PΣL(2, 25) 65 3 6

Doubled Gewirtz graph 112 5 9∗

H(5, 3) 243 5 5

Hall–Janko near octagon from J2.2 315 4 8

Table 10: Metric dimension of distance-transitive graphs of valency 10
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Graph Vertices Diameter Metric dimension

Paley graph P25 25 2 5

K13,13 − I 26 3 12

J(8, 2) 28 2 6

J(7, 3) 35 3 5

Point graph of GQ(3, 3) 40 2 7

Point graph of dual GQ(3, 3) 40 2 8

Point graph of GQ(4, 2) 45 2 8

Hadamard graph 48 4 8

H(2, 7) 49 2 8

Doro graph from PΣL(2, 16) 68 3 6

H(3, 5) 125 3 7

H(4, 4) 256 4 7

Table 11: Metric dimension of distance-transitive graphs of valency 12

Graph Vertices Diameter Metric dimension

K14,14 − I 28 3 13

Taylor graph from P13 28 3 5

Incidence graph of PG(3, 3) 80 3 14

Table 12: Metric dimension of distance-transitive graphs of valency 13

regular graphs were considered in Tables 1 and 2 above.) These graphs were obtained
from the online catalogue of Spence [46]. This forms an independent verification of
the earlier calculations of Kratica et al. [33]; however, we do not consider strongly
regular graphs with parameters (37, 18, 8, 9), as it is unknown if the 6760 known
graphs form the complete set. (The Paley graphs on 37 and 41 vertices are considered
in the next subsection.)

4.5 Rank-3 strongly regular graphs with up to 100 vertices

A graph which is both strongly regular and distance-transitive is called a rank-3
graph, as its automorphism group has permutation rank 3 (see [14]). Other than a
complete multipartite graph, such a graph necessarily has a primitive automorphism
group, and as GAP contains a library of all primitive groups on up to 2499 points
(as obtained by Roney-Dougal [37]), it is straightforward to construct rank-3 graphs
with a (relatively) small number of vertices. For this paper, we considered the rank-3
graphs with up to 100 vertices; the metric dimension of each of these graphs is given
in Table 14. (For the Higman–Sims graph on 100 vertices, the exact value was not
determined, but an upper bound of 14 was obtained; the author suspects this is the
exact value.)
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Parameters No. of graphs Metric dimension Notes

(35, 18, 9, 9) 3854 6

(36, 10, 4, 2) 1 7 H(2, 6)

(36, 14, 4, 6) 180 6

(36, 14, 7, 4) 1 6 J(9, 2)

(36, 15, 6, 6) 32,548 6

(40, 12, 2, 4)
27 7

1 8 point graph of dual GQ(3, 3)

(45, 12, 3, 3)
57 7

21 8

(45, 16, 8, 4) 1 7 J(10, 2)

Table 13: Metric dimension of strongly regular graphs on up to 45 vertices

4.6 Hadamard graphs

A Hadamard matrix of order k is a k × k real matrix H with entries ±1 and the
property that HH t = kI. Such a matrix must have order 1, 2 or a multiple of 4 (it
is conjectured that all multiples of 4 are admissible). From a Hadamard matrix H
of order k ≥ 4, the associated Hadamard graph Γ(H) has 4k vertices {r+i , r−i , c+i , c−i :
1 ≤ i ≤ k}, with r+i ∼ c+i and r−i ∼ c−i if Hij = 1, and r+i ∼ c−i and r−i ∼ c+i if
Hij = −1. This graph is bipartite and distance-regular, with diameter 4 and valency
k; for further details, see [10, Section 1.8].

Using Sloane’s library of Hadamard matrices, one can easily construct the cor-
responding Hadamard graphs in GRAPE. The metric dimension for the Hadamard
graphs arising from Hadamard matrices of orders from 4 to 20 is given in Table 15.
In each case considered, Hadamard graphs of the same order had the same metric
dimension.
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Graph Parameters Metric dimension

Paley graph P37 (37, 18, 8, 9) 5

Paley graph P41 (41, 20, 9, 10) 7

H(2, 7) (49, 12, 5, 2) 8

Paley graph P49 (49, 24, 11, 12) 7

Self-complementary graph from 72 : (3×D16) (49, 24, 11, 12) 7

Hoffman–Singleton graph (50, 7, 0, 1) 11

Paley graph P53 (53, 26, 12, 13) 7

J(11, 2) (55, 18, 9, 4) 8

Gewirtz graph (56, 10, 0, 2) 9

Paley graph P61 (61, 30, 14, 15) 7

(from PSp(6, 2)) (63, 30, 13, 15) 6

H(2, 8) (64, 14, 6, 2) 10

(from 26 : (3.S6)) (64, 18, 2, 6) 10

(from 26 : (S3 ×GL(3, 2)) (64, 21, 8, 6) 9

Affine polar graph VO−(6, 2) (64, 27, 10, 12) 7

(from 26 : S8) (64, 28, 12, 12) 7

J(12, 2) (66, 20, 10, 4) 8

Paley graph P73 (73, 36, 17, 18) 7

M22 graph (77, 16, 0, 4) 11

J(13, 2) (78, 22, 11, 4) 9

H(2, 9) (81, 16, 7, 2) 11

Brouwer–Haemers (from 34 : 2.PΓL(2, 9)) [11] (81, 20, 1, 6) 11

(from 34 : GL(2, 3) : S4) (81, 32, 13, 12) 8

Paley graph P81 (81, 40, 19, 20) 7

Self-complementary graph from 35 : (4.S5) (81, 40, 19, 20) 8

(from PSp(4, 4).2) (85, 20, 3, 5) 12

Paley graph P89 (89, 44, 21, 22) 8

J(14, 2) (91, 24, 12, 4) 10

Paley graph P97 (97, 48, 23, 24) 8

H(2, 10) (100, 18, 8, 2) 12

Higman–Sims graph (100, 22, 0, 6) ≤ 14

Hall–Janko graph (100, 36, 14, 12) 9

Table 14: Metric dimension of rank-3 strongly regular graphs on up to 100 vertices

Order (=valency) Vertices No. of examples Metric dimension

4 16 1 (∼= Q4) 4

8 32 1 7

12 48 1 8

16 64 5 10

20 80 3 10

Table 15: Metric dimension of Hadamard graphs on up to 80 vertices
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