On unique minimum dominating sets in some repeated Cartesian products

Jason Hedetniemi
Department of Mathematical Sciences
Clemson University
Clemson, South Carolina 29634
U.S.A.
jhedetn@clemson.edu

Abstract

Unique minimum dominating sets in the Cartesian product of a graph and a Hamming graph are considered. A characterization of such sets is given, when they exist. A necessary and sufficient condition for the existence of a unique minimum dominating set is given in the special case of the Cartesian product of a tree and multiple copies of the same complete graph.

1 Introduction

Unique minimum vertex dominating sets have been studied in many classes of graphs, including trees [4], block graphs [2], and cactus graphs [3]. In [6], the author considered unique minimum dominating sets in the Cartesian product of a graph and a complete graph. In particular, a necessary and sufficient condition for the existence of a unique minimum dominating set was given for the product of a tree and a complete graph.

In the present work, we continue this study by considering unique minimum dominating sets in graphs $G \square K_{n_{1}} \square K_{n_{2}} \square \cdots \square K_{n_{m}}$, where
$K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{m}}$ denote the complete graphs on $n_{1}, n_{2}, \ldots, n_{m}$ vertices respectively. In Section 3, we first develop a characterization of the unique minimum dominating sets in such graphs when they exist. We then consider changing the cardinalities of the complete graphs, and show that the property of having a unique minimum dominating set is preserved when the cardinalities are decreased. In Section 4, we specialize to the case of $n_{i}=n_{j}$ for $i \neq j$, and prove a necessary and sufficient condition for the existence of a unique minimum dominating set in $T \square K_{n}^{m}$ where T is a tree. We conclude by noting that unique minimum dominating sets in the Cartesian product of a tree and a hypercube can be considered by setting $n_{i}=2$ for $1 \leq i \leq m$.

2 Notation

In our work to follow, G denotes a finite, simple graph with vertex set $V(G)$ and edge set $E(G)$. If $v \in V(G)$, then the open neighborhood of v is defined by $N(v)=\{u \mid u v \in$ $E(G)\}$ while the closed neighborhood of v is defined by $N[v]=N(v) \cup\{v\}$. A vertex x of G dominates every vertex in $N[x]$. Given $S \subseteq V(G)$, the open neighborhood of S, denoted $N(S)$, is the set $\cup_{v \in S} N(v)$, while the closed neighborhood, denoted $N[S]$, is the set $S \cup N(S)$. If $S \subseteq V(G)$ satisfies $N[S]=V(G)$, then S is called a dominating set. The cardinality of a minimum dominating set is referred to as the domination number of G and is denoted by $\gamma(G)$, while a dominating set of minimum cardinality is referred to as a γ-set. If D is a dominating set of G and $x \in D$, then a private neighbor of x with respect to D is any vertex u that is dominated by x and by no other vertex of D, and if $u \neq x$, then u is called an external private neighbor of x with respect to D. For notational purposes, we let epn (x, D) denote the set of external private neighbors of x with respect to D. We note that $\operatorname{epn}(x, D)$ may be empty.

Given two graphs G_{1} and G_{2}, their Cartesian product, denoted $G_{1} \square G_{2}$, is the graph whose vertex set is the Cartesian product of the sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ with two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ in $G_{1} \square G_{2}$ adjacent if either $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$, or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$. The projections
$\pi_{G_{i}}: V\left(G_{1} \square G_{2}\right) \rightarrow V\left(G_{i}\right)$, for $i=1$ and $i=2$, defined by $\pi_{G_{i}}\left(\left(u_{1}, u_{2}\right)\right)=u_{i}$ will be extensively used. Finally, for $\left(u_{1}, u_{2}\right) \in V\left(G_{1} \square G_{2}\right)$, the G_{i}-layer through $\left(u_{1}, u_{2}\right)$ is defined to be the induced subgraph

$$
G_{i}^{\left(u_{1}, u_{2}\right)}=\left\langle\left\{\left(v_{1}, v_{2}\right): \pi_{G_{3-i}}\left(\left(v_{1}, v_{2}\right)\right)=\pi_{G_{3-i}}\left(\left(u_{1}, u_{2}\right)\right)\right\}\right\rangle
$$

We follow [5] for any other graph product terminology.
We consider graphs $G \square K_{n_{1}} \square K_{n_{2}} \square \cdots \square K_{n_{m}}$ where G is a connected, finite, simple graph, and where $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{m}}$ are nontrivial complete graphs on n_{1}, n_{2}, \ldots, n_{m} vertices respectively. We note, in passing, that a Cartesian product of complete graphs is called a Hamming graph. Thus, we are considering the Cartesian product of a graph with a Hamming graph. If a Cartesian product with G and m K_{n}-factors is performed, we simplify our notation to $G \square K_{n}^{m}$. In particular, note that K_{2}^{m} is the m-dimensional hypercube, denoted Q_{m}. We assume that the vertex set of K_{n} is $\{1,2, \ldots, n\}$ which we denote by $[n]$. We denote by \mathcal{U} the class of graphs G which have a unique minimum dominating set. Furthermore, if $G \in \mathcal{U}$, we let $U D(G)$ denote the unique γ-set of G.

3 Repeated Products

To begin our work with repeated products, we first recall three results: one from [4] and two from [6]. We note that the proof of Proposition 1 below is as it appears in [6]. We have included the proof here for completeness.

Lemma 1 ([4]). Let G be a graph with a unique γ-set D. Let $[u, v]$ be any edge in G other than an edge connecting a vertex in D to one of its private neighbors. Let G^{-}be the graph obtained from G by deleting the edge $[u, v]$. Then G^{-}has D as the unique γ-set.
Lemma 2 ([6]). If $G \square K_{n} \in \mathcal{U}$, then there exists $S \subseteq V(G)$ such that $U D\left(G \square K_{n}\right)$ $=S \times[n]$.

Proposition 1 ([6]). If $G \square K_{n} \in \mathcal{U}$, then $G \in \mathcal{U}$. Moreover, $G \square K_{m} \in \mathcal{U}$ for $1 \leq m \leq n$.

Proof. Denote $U D\left(G \square K_{n}\right)$ by D. By Lemma 2, there exists $S \subseteq V(G)$ such that $D=S \times[n]$. Thus, for any $(x, i) \in D$, the external private neighbors of (x, i) with respect to D all belong to $G^{(x, i)}$. Define H to be the graph

$$
G \square K_{n}-\{(v, n)(v, j): v \in V(G), 1 \leq j \leq n-1\} .
$$

We see that H is isomorphic to $\left(G \square K_{n-1}\right) \cup G$. By Lemma $1, D$ is still the unique γ-set for H. The proposition follows by induction.

Taken together, Lemma 2 and the proof of Proposition 1 imply that if $G \square K_{n} \in$ \mathcal{U}, then $\pi_{G}\left(U D\left(G \square K_{n}\right)\right)=U D(G)$. When considering repeated products, a similar statement holds.

Lemma 3. If $G \square K_{n}^{m} \in \mathcal{U}$, then $U D\left(G \square K_{n}^{m}\right)=U D(G) \times V\left(K_{n}^{m}\right)$.
Proof. As noted above, if $G \square K_{n} \in \mathcal{U}$, then $U D\left(G \square K_{n}\right)=U D(G) \times[n]$. Thus, we see that

$$
U D\left(G \square K_{n}^{m}\right)=U D\left(G \square K_{n}^{m-1} \square K_{n}\right)=U D\left(G \square K_{n}^{m-1}\right) \times[n]
$$

By induction, we see that $U D\left(G \square K_{n}^{m}\right)=U D(G) \times V\left(K_{n}^{m}\right)$.
Since the Cartesian product is both commutative and associative, Proposition 1 gives us the following result.

Proposition 2. If $G \square K_{n}^{m} \in \mathcal{U}$, then $G \square K_{n_{1}} \square K_{n_{2}} \square \cdots \square K_{n_{r}} \in \mathcal{U}$ for $1 \leq n_{i} \leq$ n and $1 \leq i \leq r \leq m$.

Proof. Suppose that $G \square K_{n}^{m} \in \mathcal{U}$. By associativity, $\left(G \square K_{n}^{m-1}\right) \square K_{n} \in \mathcal{U}$. By Proposition 1, we then have that $\left(G \square K_{n}^{m-1}\right) \square K_{n_{1}} \in \mathcal{U}$ so long as $1 \leq n_{1} \leq n$. By commutativity, we have that $\left(G \square K_{n_{1}}\right) \square K_{n}^{m-1} \in \mathcal{U}$. By induction, our result follows.

As a result of Proposition 2, in order to determine whether

$$
G \square K_{n_{1}} \square K_{n_{2}} \square \cdots \square K_{n_{r}} \in \mathcal{U},
$$

it may suffice to consider whether $G \square K_{n}^{r} \in \mathcal{U}$ where $n=\max \left\{n_{1}, n_{2}, \ldots, n_{r}\right\}$. Thus, we are motivated to define the following parameter.

Definition 1. Let $G \in \mathcal{U}$ and let $U_{n}^{\square}(G)$ denote the integer m such that $G \square K_{n}^{m} \in$ \mathcal{U}, but $G \square K_{n}^{m+1} \notin \mathcal{U}$. If $G \square K_{n}^{m} \notin \mathcal{U}$ for any $m \geq 1$, define $U_{n}^{\square}(G)=0$, while if $G \square K_{n}^{m} \in \mathcal{U}$ for all $m \geq 1$, define $U_{n}^{\square}(G)=\infty$.

As an illustration of this definition, consider the following examples. The graph $K_{1,2} \in \mathcal{U}$ but $K_{1,2} \square K_{2} \notin \mathcal{U}$ (see Figure 1). Thus, $U_{2}^{\square}\left(K_{1,2}\right)=0$. When we consider the graph $K_{1,3}$, we see that $K_{1,3} \square K_{2} \in \mathcal{U}$ but $K_{1,3} \square K_{2}^{2} \notin \mathcal{U}$. Hence, $U_{2}^{\square}\left(K_{1,3}\right)=1$. Finally, when considering the graph $K_{1,4}$, we see that $K_{1,4} \square K_{2}^{2} \in \mathcal{U}$, but $K_{1,4} \square K_{2}^{3} \notin \mathcal{U}$. Thus, $U_{2}^{\square}\left(K_{1,4}\right)=2$.

Figure 1: $K_{1,2} \in \mathcal{U}$ but $K_{1,2} \square K_{2} \notin \mathcal{U}$

We now determine $U_{n}^{\square}\left(K_{1, p}\right)$ for $n \geq 2$. For notational purposes, let $V\left(K_{1, p}\right)=$ $\{0,1, \ldots, p\}$ with 0 denoting the support vertex. Additionally, denote the vertices of K_{n}^{m} as strings of length m over the alphabet $[n]$. By the j th cube of $K_{1, p} \square K_{n}^{m}$, we mean the subgraph of $K_{1, p} \square K_{n}^{m}$ induced by $\{j\} \times V\left(K_{n}^{m}\right)$. The zeroth cube will be referred to as the central cube, while all other cubes will be referred to as the outer cubes.

Proposition 3. If $2 \leq p \leq n$, then $U_{n}^{\square}\left(K_{1, p}\right)=0$. If $p>n \geq 2$, then $U_{n}^{\square}\left(K_{1, p}\right)=$ $\left\lfloor\frac{p-2}{n-1}\right\rfloor$.

Proof. First, suppose that $2 \leq p \leq n$, and consider the graph $K_{1, p} \square K_{n}$. If $p<n$, then $V\left(K_{1, p}\right) \times\{1\}$ and $V\left(K_{1, p}\right) \times\{2\}$ are two distinct minimum dominating sets for $K_{1, p} \square K_{n}$. If $p=n$, then we see that the sets $\{0\} \times[n]$ and $\{(1,1),(2,2), \ldots,(p, p)\}$ are two distinct minimum dominating sets for $K_{1, p} \square K_{n}$. Thus, we see that $K_{1, p} \square K_{n}$ does not have a unique γ-set when $2 \leq p \leq n$, giving us the first part of our result.

Suppose then that $p>n$. Let $m=\left\lfloor\frac{p-2}{n-1}\right\rfloor$, and consider $K_{1, p} \square K_{n}^{m}$. Let D be the set $\{0\} \times V\left(K_{n}^{m}\right)$, and note that D is certainly a dominating set for $K_{1, p} \square K_{n}^{m}$. Suppose that D^{\prime} is a γ-set for $K_{1, p} \square K_{n}^{m}$ and that for some $k>0,\left|D-D^{\prime}\right|=k$. In K_{n}^{m}, every vertex is of degree $(n-1) m$. Thus, D^{\prime} contains at least $\left\lceil\frac{k}{(n-1) m+1}\right\rceil$ vertices from each of the p outer cubes of $K_{1, p} \square K_{n}^{m}$. Hence, we see that

$$
\left|D^{\prime}\right| \geq n^{m}-k+(p)\left\lceil\frac{k}{(n-1) m+1}\right\rceil
$$

Since $m<\frac{p-1}{n-1}$, we see that $(n-1) m+1<p$ in which case $(p)\left\lceil\frac{k}{(n-1) m+1}\right\rceil>k$. Hence $\left|D^{\prime}\right|>n^{m}$, a contradiction. Thus, D is the unique γ-set for $K_{1, p} \square K_{n}^{m}$.

Now consider $K_{1, p} \square K_{n}^{m+1}$. Once again, $D=\{0\} \times V\left(K_{n}^{m+1}\right)$ is a dominating set for $K_{1, p} \square K_{n}^{m+1}$. Construct a new set D^{\prime} from D by deleting $(0,11 \cdots 1)$ and all of its neighbors in the central cube from D. Since $(m+1) \geq 2,\left|D^{\prime}\right|>0$. Thus, the only vertex of the central cube not dominated by D^{\prime} is $(0,11 \cdots 1)$. Let $D^{\prime \prime}=D^{\prime} \cup\{(i, 11 \cdots 1) \mid 1 \leq i \leq p\} . \quad D^{\prime \prime}$ is a dominating set for $K_{1, p} \square K_{n}^{m+1}$. Additionally, we see that

$$
\begin{aligned}
\left|D^{\prime \prime}\right| & =|D|-[1+(n-1)(m+1)]+p \\
& \leq|D|-\left[1+(n-1) \frac{p-1}{n-1}\right]+p \\
& =|D|-p+p \\
& =|D|
\end{aligned}
$$

Hence, we have constructed a dominating set $D^{\prime \prime}$ distinct from D of cardinality at most $|D|$. Thus, $K_{1, p} \square K_{n}^{m+1}$ cannot have a unique γ-set by Lemma 3. Our result now follows.

Proposition 3 will be used in the section to follow. However, before we proceed, we note that Proposition 3 can be used to find a lower bound for $\gamma\left(Q_{m}\right)$. While the lower bound produced is not of practical value, it is nevertheless interesting that analysis of unique γ-sets could potentially be used to produce lower bounds for domination numbers that are otherwise difficult to obtain.
Corollary 1. For $p \geq 2, \gamma\left(Q_{p-2}\right) \geq \frac{2^{p-2}}{p+1}$.
Proof. Taking $n=2$, Proposition 3 implies that $U_{2}^{\square}\left(K_{1, p}\right)=p-2$. That is, $K_{1, p} \square Q_{p-2} \in \mathcal{U}$. Moreover, $\left|U D\left(K_{1, p} \square Q_{p-2}\right)\right|=2^{p-2}$. Hence, if $\gamma\left(Q_{p-2}\right)<\frac{2^{p-2}}{p+1}$, then taking a γ-set of Q_{p-2} in each of the $p+1$ cubes of $K_{1, p} \square Q_{p-2}$ would yield a dominating set of cardinality smaller than 2^{p-2}. Thus, our result follows.

4 Trees

Proposition 3 provides us with the following result.
Lemma 4. If $G \square K_{n}^{m} \in \mathcal{U}$, then for all $v \in U D\left(G \square K_{n}^{m}\right)$, $\left|e p n\left(v, U D\left(G \square K_{n}^{m}\right)\right)\right| \geq m(n-1)+2$.

Proof. For notational convenience, let D denote the set $U D\left(G \square K_{n}^{m}\right)$ and let D^{\prime} denote the set $U D(G)$. Recall that by Lemma 3, $D=D^{\prime} \times V\left(K_{n}^{m}\right)$. This implies that if $v \in D^{\prime}$ with $\operatorname{epn}\left(v, D^{\prime}\right)=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$, then for all $x \in V\left(K_{n}^{m}\right),(v, x) \in D$ with $\operatorname{epn}((v, x), D)=\left\{\left(p_{1}, x\right),\left(p_{2}, x\right), \ldots,\left(p_{k}, x\right)\right\}$. For the sake of contradiction, suppose that $(u, w) \in D$ has $\operatorname{epn}((u, w), D)=\left\{\left(p_{1}, w\right),\left(p_{2}, w\right), \ldots,\left(p_{j}, w\right)\right\}$ for some $j<$ $m(n-1)+2$. Since $U_{n}^{\square}\left(K_{1, j}\right)<m$, this implies that the subgraph of $G \square K_{n}^{m}$ induced by $\left\{u, p_{1}, p_{2}, \ldots, p_{j}\right\} \times V\left(K_{n}^{m}\right)$ has a γ-set, call it B, distinct from $\{u\} \times V\left(K_{n}^{m}\right)$. In that case, $\left(D-\left(\{u\} \times V\left(K_{n}^{m}\right)\right)\right) \cup B$ is a γ-set for $G \square K_{n}^{m}$ distinct from D, a contradiction.

Before proceeding to our main result, we recall one more theorem from [6].
Theorem 1 ([6]). Let n be a positive integer and let T be a tree. The graph $T \square K_{n} \in \mathcal{U}$ if and only if T has a minimum dominating set D such that for all $v \in D,|e p n(v, D)| \geq n+1$.

We are now able to classify the trees T for which $T \square K_{n}^{m}$ has a unique γ-set. For notational purposes, if $v \in V(T)$, then we let the v th cube of $T \square K_{n}^{m}$ denote the subgraph of $T \square K_{n}^{m}$ induced by $\{v\} \times V\left(K_{n}^{m}\right)$.
Theorem 2. Let $n \geq 2, m \geq 1$, and let T be a tree. The Cartesian product $T \square K_{n}^{m}$ has a unique γ-set if and only if $T \square K_{m(n-1)+1}$ has a unique γ-set.

Proof. First, suppose that $T \square K_{n}^{m} \in \mathcal{U}$. By Lemma 3, $U D\left(T \square K_{n}^{m}\right)=U D(T) \times$ $V\left(K_{n}^{m}\right)$. By Lemma 4, we know that for each $v \in U D\left(T \square K_{n}^{m}\right)$, $\left|e p n\left(v, U D\left(T \square K_{n}^{m}\right)\right)\right| \geq m(n-1)+2$. This implies that for each $w \in U D(T)$, $|e p n(w, U D(T))| \geq m(n-1)+2$. By Theorem 1, it follows that $T \square K_{m(n-1)+1}$ has a unique γ-set.

Now suppose that $T \square K_{m(n-1)+1} \in \mathcal{U}$. By Proposition 1 and Theorem 1, we see that T has a unique γ-set S so that every element in S has at least $m(n-1)+2$ external private neighbors with respect to S. Consider then $T \square K_{n}^{m}$. Note that the set $S \times V\left(K_{n}^{m}\right)$ is a dominating set for $T \square K_{n}^{m}$. We must show that it is a γ-set for $T \square K_{n}^{m}$, and that it is the unique γ-set for $T \square K_{n}^{m}$.

We proceed by induction on $\gamma(T)$. If $\gamma(T)=1$, then T is a star $K_{1, p}$ with $p \geq m(n-1)+2$. By Proposition 3, we see that $T \square K_{n}^{m}$ has $U D(T) \times V\left(K_{n}^{m}\right)$ as its unique γ-set. Thus, suppose the result has been proven whenever $\gamma(T)<q$. Let T be a tree such that $\gamma(T)=q$ and such that $T \square K_{m(n-1)+1}$ has a unique γ-set. Let S be the unique γ-set for T. We know that for all $x \in S$, \mid epn $(x, S) \mid \geq m(n-1)+2$. Consider a diametral path $x_{1} x_{2} \ldots x_{t-1} x_{t} x_{t+1}$ in T. Note that $x_{t} \in S$ and that $t \geq 3$.

Case One

First, suppose that $x_{t-1} \notin \operatorname{epn}\left(x_{t}, S\right)$. In this case, since $\left|e p n\left(x_{t}, S\right)\right| \geq m(n-1)+2$, we see that x_{t} is adjacent to at least $m(n-1)+2$ leaves. Thus, by the proof of Proposition 3, every vertex of the x_{t} th cube in $T \square K_{n}^{m}$ is selected for inclusion in every γ-set of $T \square K_{n}^{m}$. Let T^{\prime} denote the tree obtained by removing x_{t} and all of its private neighbors with respect to S from T. Note that by Lemma 1, $T^{\prime} \in \mathcal{U}$ with $U D\left(T^{\prime}\right)=S-\left\{x_{t}\right\}$. Additionally, observe that if $x \in S-\left\{x_{t}\right\}$, then $e p n\left(x, S-\left\{x_{t}\right\}\right) \supseteq \operatorname{epn}(x, S)$. Thus, by Theorem 1, we also see that $T^{\prime} \square K_{m(n-1)+1} \in$ \mathcal{U}. Since $\gamma\left(T^{\prime}\right)<\gamma(T)$, our induction hypothesis implies that $T^{\prime} \square K_{n}^{m} \in \mathcal{U}$ and that $U D\left(T^{\prime} \square K_{n}^{m}\right)=\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)$.

Suppose then that D is a γ-set for $T \square K_{n}^{m}$ and that $D \neq S \times V\left(K_{n}^{m}\right)$. By our observations above, we know that $\left\{x_{t}\right\} \times V\left(K_{n}^{m}\right) \subseteq D$. Let $B=D-\left(\left\{x_{t}\right\} \times\right.$ $\left.V\left(K_{n}^{m}\right)\right)$ and note that $B \subseteq V\left(T^{\prime} \square K_{n}^{m}\right)$. If B dominates $T^{\prime} \square K_{n}^{m}$, then since $U D\left(T^{\prime} \square K_{n}^{m}\right)=\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)$ and since $B \neq\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)$, this implies that $|B|>\left|\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)\right|$. This, however, implies that $S \times V\left(K_{n}^{m}\right)$ is a smaller cardinality dominating set for $T \square K_{n}^{m}$, a contradiction.

Thus, assume that B does not dominate $T^{\prime} \square K_{n}^{m}$. Since D is a dominating set of $T \square K_{n}^{m}$, this implies that B fails to dominate some subset of the x_{t-1}-cube in $T^{\prime} \square K_{n}^{m}$. In particular, this implies that some subset of the x_{t-1}-cube is not contained in B. We consider two subcases.

Subcase One

Suppose that $x_{t-1} \notin S$.

- First, suppose that $N\left(x_{t-1}\right)=\left\{x_{t-2}, x_{t}\right\}$. Since $x_{t-1} \notin e p n\left(x_{t}, S\right)$, this implies that $x_{t-2} \in S$. Apply Lemma 1 to T, and remove the edge $x_{t-2} x_{t-1}$. It follows that $T^{\prime}-x_{t-1} \in \mathcal{U}$ and that $U D\left(T^{\prime}-x_{t-1}\right)=S-\left\{x_{t}\right\}$. This further implies, by the same logic as above, that $\left(T^{\prime}-x_{t-1}\right) \square K_{n}^{m} \in \mathcal{U}$ with unique γ-set given by $\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)$. Note that since B does not dominate all of the x_{t-1}-cube in $T^{\prime} \square K_{n}^{m}$, this implies that B does not contain all of the x_{t-2}-cube.
If B contains no vertices from the x_{t-1}-cube, then B is a dominating set for $\left(T^{\prime}-x_{t-1}\right) \square K_{n}^{m}$ distinct from $\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)$. This contradicts our assumption that D was a γ-set for $T \square K_{n}^{m}$.
Hence, we see that B contains some subset of the x_{t-1}-cube. Let $\left\{\left(x_{t-1}, p_{1}\right),\left(x_{t-1}, p_{2}\right), \ldots,\left(x_{t-1}, p_{j}\right)\right\} \subseteq B$. This implies that

$$
B \cap\left\{\left(x_{t-2}, p_{1}\right),\left(x_{t-2}, p_{2}\right), \ldots,\left(x_{t-2}, p_{j}\right)\right\}=\emptyset
$$

since otherwise D would not be a $\gamma-$ set for $T \square K_{n}^{m}$. Thus, consider the set

$$
\left(B-\left\{\left(x_{t-1}, p_{1}\right), \ldots,\left(x_{t-1}, p_{j}\right)\right\}\right) \cup\left\{\left(x_{t-2}, p_{1}\right), \ldots,\left(x_{t-2}, p_{j}\right)\right\}
$$

This is a dominating set for $\left(T^{\prime}-x_{t-1}\right) \square K_{n}^{m}$ distinct from $\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)$, a contradiction.

- Now suppose that x_{t-1} is adjacent to a vertex, call it y, not on the diametral path. First, note that $y \in S$. If $y \notin S$, then since $x_{t-1} \notin S, y$ would have a neighbor in S which, with its external private neighbors, could be used to create a longer path in T. In particular, any neighbors of x_{t-1} in T not on the diametral path are in S and have only leaf neighbors. Since our initial assumption was that each element of S has at least $m(n-1)+2$ external private neighbors, this implies that y has $m(n-1)+2$ leaf-neighbors in T. Hence, by the same logic as applied to x_{t} above, every vertex of the y-cube is contained in every γ-set for $T \square K_{n}^{m}$. However, this implies that $\{y\} \times V\left(K_{n}^{m}\right) \subseteq D$ which further implies that B dominates $T^{\prime} \square K_{n}^{m}$, a contradiction.

Thus, in both cases, $x_{t-1} \notin S$ leads to a contradiction.

Subcase Two

Suppose now that $x_{t-1} \in S$. This implies that $\left|\operatorname{epn}\left(x_{t-1}, S\right)\right| \geq m(n-1)+2$ by our earlier assumption. If x_{t-1} has an external private neighbor other than x_{t-2} that is not a leaf, then a longer path in T can be found. Hence, we see that x_{t-1} has at least
$m(n-1)+1$ leaf-neighbors in T, call them $l_{1}, l_{2}, \ldots, l_{r}$. Note that if $r \geq m(n-1)+2$, then every vertex of the x_{t-1}-cube is contained in every γ-set of $T \square K_{n}^{m}$ implying that B is a dominating set for $T^{\prime} \square K_{n}^{m}$, a contradiction.

Thus, we see that x_{t-1} has exactly $m(n-1)+1$ leaf-neighbors and $x_{t-2} \in$ $\operatorname{epn}\left(x_{t-1}, S\right)$. Recall that some subset of the x_{t-1}-cube in $T \square K_{n}^{m}$ is not contained in B. To be specific, assume k vertices of the x_{t-1}-cube are not contained in B. This implies that at least $\left\lceil\frac{k}{m(n-1)+1}\right\rceil$ vertices from each of the $l_{1}, l_{2}, \ldots, l_{r}$-cubes are contained in B. Additionally, the vertices in the x_{t-2}-cube that are adjacent to vertices in $\left(\left\{x_{t-1}\right\} \times V\left(K_{n}^{m}\right)\right)-B$ are dominated by vertices outside of the x_{t-1}-cube. Since

$$
[m(n-1)+1] \cdot\left\lceil\frac{k}{m(n-1)+1}\right\rceil \geq k
$$

we see that B contains exactly k vertices from the $l_{1}, l_{2}, \ldots, l_{r}$-cubes in total, since otherwise a smaller dominating set for $T \square K_{n}^{m}$ could be constructed. Consider the set obtained from B by removing the k vertices from the $l_{1}, l_{2}, \ldots, l_{r}$-cubes and including the k missing vertices from the x_{t-1}-cube. This set is a dominating set for $T^{\prime} \square K_{n}^{m}$ distinct from $\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)$, a contradiction.

Case Two

Finally, suppose that $x_{t-1} \in \operatorname{epn}\left(x_{t}, S\right)$. In this case, x_{t} is adjacent to at least $m(n-1)+1$ leaves, call them $l_{1}, l_{2}, \ldots, l_{p}$. Note that the only neighbors of x_{t-1} are x_{t} and x_{t-2}. If x_{t-1} had any other neighbors, either a longer path in T could be found, or x_{t-1} would not be an external private neighbor of x_{t} with respect to S.

Suppose that D is a γ-set of $T \square K_{n}^{m}$ which does not contain k vertices of the x_{t} th cube. This implies that D contains at least $\left\lceil\frac{k}{(n-1) m+1}\right\rceil$ vertices from each of the $l_{1}, l_{2}, \ldots, l_{p}$-cubes. In fact, if $(m(n-1)+1)\left\lceil\frac{k}{(n-1) m+1}\right\rceil>k$, then we have reached a contradiction since a smaller dominating set for $T \square K_{n}^{m}$ could be found simply by including every vertex of the x_{t} th cube. In particular, this implies that ($m(n-1$) + 1) $\left\lceil\frac{k}{m(n-1)+1}\right\rceil=k$.

We now claim that D contains at least one vertex from the x_{t-1}-cube. To see this, first note that the tree $T^{\prime \prime}$ defined by $T^{\prime \prime}=T-\left\{x_{t}, x_{t-1}, l_{1}, \ldots, l_{p}\right\}$ belongs to \mathcal{U} with $U D\left(T^{\prime \prime}\right)=S-\left\{x_{t}\right\}$. Additionally, since $\operatorname{epn}\left(x, S-\left\{x_{t}\right\}\right)=e p n(x, S)$ for all $x \in S-\left\{x_{t}\right\}$, Theorem 1 implies that $T^{\prime \prime} \square K_{m(n-1)+1} \in \mathcal{U}$. Thus, our induction hypothesis implies that $T^{\prime \prime} \square K_{n}^{m}$ has a unique γ-set given by $\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)$. If no vertices from the x_{t-1}-cube are included in D, then

$$
D \cap V\left(T^{\prime \prime} \square K_{n}^{m}\right)=\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)
$$

This, however, results in at least k vertices of the x_{t-1}-cube being undominated by D since $x_{t-2} \notin S-\left\{x_{t}\right\}$. This is a contradiction.

Thus, D contains at least one vertex from the x_{t-1}-cube. If we "shift" these vertices to their corresponding positions in the x_{t-2}-cube, remove the vertices from D in the $l_{1}, l_{2}, \ldots, l_{p}$-cubes, and add in the missing vertices from the x_{t}-cube, we create a γ-set D^{\prime} distinct from D which induces a γ-set distinct from $\left(S-\left\{x_{t}\right\}\right) \times V\left(K_{n}^{m}\right)$ on the subgraph $T^{\prime \prime} \square K_{n}^{m}$, a contradiction.

Hence, if D is a γ-set for $T \square K_{n}^{m}$, then every vertex of the x_{t}-cube is included in D. By the logic applied above, this implies that $S \times V\left(K_{n}^{m}\right)$ is the unique γ-set for $T \square K_{n}^{m}$.

Thus, we see that if $T \square K_{m(n-1)+1} \in \mathcal{U}$, then $T \square K_{n}^{m} \in \mathcal{U}$.
Before we conclude, we note that Theorem 2, together with Theorem 1 above, imply the following corollary concerning hypercubes.
Corollary 2. Let T be a tree on at least four vertices, and let $m \geq 1$. The following conditions are equivalent.

- $T \square Q_{m} \in \mathcal{U}$.
- $T \square K_{m+1} \in \mathcal{U}$.
- T has a γ-set D such that for all $v \in D,|e p n(v, D)| \geq m+2$.

We note that a γ-set in a tree can be found in linear time (see [1]). Hence, the problem of determining for which $m, T \square Q_{m} \in \mathcal{U}$ can be solved in polynomial time.

Acknowledgements

The author would like to thank Dr. Doug Rall of Furman University for his guidance in researching this topic. He would also like to thank Dr. Kevin James of Clemson University for motivating some of this paper's content.

References

[1] E. Cockayne, S. Goodman and S. Hedetniemi, A linear algorithm for the domination number of a tree, Inform. Process. Lett. 4 (1975), 41-44.
[2] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (1-3) (2001), 247-251.
[3] M. Fischermann and L. Volkmann, Cactus graphs with unique minimum dominating sets, Util. Math. 63 (2003), 229-238.
[4] G. Gunther, B. Hartnell, L. Markus and D. Rall, Graphs with unique minimum dominating sets, in: Proc. 25th S.E. Int. Conf. Combin., Graph Theory, and Computing; Congr. Numer. 101 (1994), 55-63.
[5] R. Hammack, W. Imrich and S. Klavžar, Handbook of product graphs, CRC Press, 2011.
[6] J. Hedetniemi, On Unique Minimum Dominating Sets in Some Cartesian Product Graphs, Discuss. Math. Graph Theory (to appear).

