On the diameter of domination bicritical graphs

Michitaka Furuya
Department of Mathematical Information Science
Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
Japan

Abstract

For a graph G, we let $\gamma(G)$ denote the domination number of G. A graph G is said to be k-bicritical if $\gamma(G)=k$ and $\gamma(G-\{x, y\})<k$ for any two vertices $x, y \in V(G)$. Brigham et al. [Discrete Math. 305 (2005), 18-32] conjectured that the diameter of a connected k-bicritical graph is at most $k-1$. However, in [Australas. J. Combin. 53 (2012), 53-65], counterexamples of the conjecture for $k \neq 4$ were constructed by this author. In this paper, we construct counterexamples of the conjecture for $k=4$.

Our main aim is to give upper bounds of the diameter of a bicritical graph. In particular, we show that the diameter of a connected k-bicritical graph is at most $2 k-3$.

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph. We let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. For $u \in V(G)$, we let $N_{G}(u)$ and $N_{G}[u]$ denote the open neighborhood and the closed neighborhood of u, respectively; thus $N_{G}[u]=N_{G}(u) \cup\{u\}$. For $u, v \in$ $V(G)$, we let $d_{G}(u, v)$ denote the distance between u and v in G. For $u \in V(G)$ and a non-negative integer i, let $N_{G}^{(i)}(u)=\left\{v \in V(G) \mid d_{G}(u, v)=i\right\}$; thus $N_{G}^{(0)}(u)=\{u\}$ and $N_{G}^{(1)}(u)=N_{G}(u)$. For $u \in V(G)$, we define the eccentricity $\operatorname{ecc}_{G}(u)$ of u in G by $\operatorname{ecc}_{G}(u)=\max \left\{d_{G}(u, v) \mid v \in V(G)\right\}$. The diameter of G is defined to be the maximum of $\operatorname{ecc}_{G}(u)$ as u ranges over $V(G)$, and is denoted by $\operatorname{diam}(G)$. For $X \subseteq V(G)$, we let $G[X]$ denote the subgraph of G induced by X. We let \bar{G} denote the complement of G. For two graphs H_{1} and H_{2}, we let $H_{1} \cup H_{2}$ denote the union of H_{1} and H_{2}. For a graph H and an integer $s \geq 2, s H$ denote the disjoint union of s copies of H. We let K_{n} denote the complete graph of order n, and let P_{n} denote the path of order n. For terms and symbols not defined here, we refer the reader to [5].

Let G be a graph. For two subsets X, Y of $V(G)$, we say that X dominates Y if $Y \subseteq \bigcup_{u \in X} N_{G}[u]$. A subset of $V(G)$ which dominates $V(G)$ is called a dominating
set of G. The minimum cardinality of a dominating set of G is called the domination number of G, and is denoted by $\gamma(G)$. A dominating set of G having cardinality $\gamma(G)$ is called a γ-set of G. Let $V^{0}(G)=\{x \in V(G) \mid \gamma(G-x)=\gamma(G)\}, V^{+}(G)=\{x \in$ $V(G) \mid \gamma(G-x)>\gamma(G)\}$ and $V^{-}(G)=\{x \in V(G) \mid \gamma(G-x)<\gamma(G)\}$. A vertex x belonging to $V^{-}(G)$ is said to be critical. A graph G is critical if every vertex of G is critical (i.e., $V(G)=V^{-}(G)$), and G is k-critical if G is critical and $\gamma(G)=k$.

In this paper, we mainly study the relationship between the domination number and the diameter. For $k \geq 1$, it has been known that the diameter of a connected graph G with $\gamma(G)=k$ is at most $3 k-1$ (see Theorem 2.24 of [8]), and the bound is best possible. On the other hand, domination criticality often decreases the upper bound on the diameter of a connected graph with domination number k. For example, Fulman, Hanson and MacGillivray [6] showed the following theorem which was conjectured in [2] (and for each $k \geq 2$, since there exist infinitely many k-critical graphs with diameter exactly $2 k-2$, the bound in Theorem A is best possible).

Theorem A ([6]) Let $k \geq 2$ be an integer, and let G be a connected k-critical graph. Then $\operatorname{diam}(G) \leq 2 k-2$.

Now we introduce another domination critical concept, which was first introduced in [3]. A graph G is bicritical if $\gamma(G-\{x, y\})<\gamma(G)$ for any two vertices $x, y \in V(G)$, and G is k-bicritical if G is bicritical and $\gamma(G)=k$. Note that every bicritical graph G satisfies $V^{+}(G)=\emptyset$. Brigham, Haynes, Henning and Rall [3] gave a conjecture concerning the upper bound on the diameter of bicritical graphs.

Conjecture 1 ([3]) Let $k \geq 3$ be an integer, and let G be a connected k-bicritical graph. Then $\operatorname{diam}(G) \leq k-1$.

However, the author [7] constructed counterexamples for Conjecture 1 in the case where $k \neq 4$ as follows.

Theorem B ([7]) Let $k \geq 3$ be an integer. Then there exist infinitely many connected k-critical and bicritical graphs G with

$$
\operatorname{diam}(G)= \begin{cases}\frac{3 k-3}{2} & (k \text { is odd }) \\ \frac{3 k-6}{2} & (k \text { is even })\end{cases}
$$

In this paper, we refine Theorem B by considering only bicritical graphs (and by Theorem 1.1, Conjecture 1 is completely disproved).

Theorem 1.1 Let $k \geq 3$ be an integer. Then there exist infinitely many connected k-bicritical graphs G with

$$
\operatorname{diam}(G)= \begin{cases}3 & (k=3) \\ 6 & (k=5) \\ \frac{3 k-1}{2} & (k \text { is odd and } k \geq 7) \\ \frac{3 k-2}{2} & (k \text { is even })\end{cases}
$$

Since Conjecture 1 is false, we are interested in a non-trivial upper bound of the diameter of bicritical graphs. One may consider that Theorem A gives a valuable information for the diameter of bicritical graphs. However, there exist bicritical graphs which are not critical; for example, the vertex-expansion of a critical and bicritical graph is bicritical and not critical (see [3]), and so we cannot apply Theorem A to all bicritical graphs. Furthermore, there exist infinitely many critical graphs which are not bicritical; for example, the coalescence of 2-critical graphs is critical and not bicritical. Thus it seems difficult to deal with criticality and bicriticality together. So we consider a non-trivial class of graphs which contains all critical graphs and all bicritical graphs.

A graph G is weak bicritical if $G-x$ is $\gamma(G)$-critical for every vertex $x \in$ $V(G)-V^{-}(G)$, and G is weak k-bicritical if G is weak bicritical and $\gamma(G)=k$. By the definition, if a graph G is weak bicritical, then $V^{+}(G)=\emptyset$. Since all critical graphs and all bicritical graphs are weak bicritical, weak bicriticality seems a natural unification of criticality and bicriticality. Indeed, weak bicritical graphs have the same diameter-property as critical graphs. We show the following theorem which is an extension of Theorem A.

Theorem 1.2 Let $k \geq 2$ be an integer, and let G be a connected weak k-bicritical graph. Then $\operatorname{diam}(G) \leq 2 k-2$.

Recall that for each integer $k \geq 2$, there exist infinitely many connected k-critical graphs with diameter $2 k-2$. Hence the bound in Theorem 1.2 is best possible.

By Theorem 1.2, the diameter of a connected k-bicritical graph is at most $2 k-2$. We further refine such upper bound as follows.

Theorem 1.3 Let $k \geq 3$ be an integer, and let G be a connected k-bicritical graph. Then $\operatorname{diam}(G) \leq 2 k-3$.

In Section 3, we construct some bicritical graphs and prove Theorem 1.1. We prove Theorem 1.2 in Section 4, and prove Theorem 1.3 in Section 5.

By considering Theorem 1.1, Theorem 1.3 for the case where $k \in\{3,4\}$ is sharp. We conclude this section with the following conjecture.

Conjecture 2 Let $k \geq 5$ be an integer. Then there exist infinitely many connected k-bicritical graphs G with $\operatorname{diam}(G)=2 k-3$.

2 Basic properties

In this section, we prepare some fundamental properties for our proof.

2.1 Weak bicritical graphs

In this subsection, we give some properties of weak bicritical graphs.

We first give a degree condition of weak bicritical graphs.
Proposition 2.1 Let G be a connected weak bicritical graph of order at least three. Then the minimum degree of G is at least two.

Proof. Suppose that there exists a vertex x of G of degree exactly one, and write $N_{G}(x)=\{y\}$. Note that y is not a critical vertex of G. Since $|V(G)| \geq 3, y$ is adjacent to a vertex $z(\neq x)$. Let S be a γ-set of $G-\{y, z\}$. Since G is weak bicritical and y is not critical, $|S| \leq \gamma(G)-1$. Furthermore, $x \in S$ because S dominates x. This implies that $S^{\prime}=(S-\{x\}) \cup\{y\}$ is a dominating set of G with $\left|S^{\prime}\right| \leq \gamma(G)-1$, which is a contradiction.

We next consider weak 2-bicritical graphs. A characterization of 2-critical graphs and 2-bicritical graphs was given in the following two theorems.

Theorem C ([1]) A graph G is 2-critical if and only if $\bar{G}=n K_{2}$ for some $n \geq 1$ (i.e., G is the graph obtained from a complete graph of even order by deleting a perfect matching).

Theorem D ([3]) There is no 2-bicritical graph of order at least four.
Now we characterize weak 2-bicritical graphs by using Theorem C.
Theorem 2.2 A graph G is weak 2-bicritical if and only if $\bar{G} \in\left\{n K_{2}, n K_{2} \cup K_{3},(n-\right.$ 1) $\left.K_{2} \cup P_{3} \mid n \geq 1\right\}$.

Proof. If $\bar{G} \in\left\{n K_{2}, n K_{2} \cup K_{3},(n-1) K_{2} \cup P_{3} \mid n \geq 1\right\}$, then we can easily check that G is a weak 2-bicritical graph. Thus it suffices to show that if G is weak 2-bicritical, then $\bar{G} \in\left\{n K_{2}, n K_{2} \cup K_{3},(n-1) K_{2} \cup P_{3} \mid n \geq 1\right\}$. If G is critical, then by Theorem C, $\bar{G}=n K_{2}$ for some $n \geq 1$, as desired. Thus we may assume that G has a non-critical vertex u. Since $\gamma(G)=2, V(G)-N_{G}[u] \neq \emptyset$. Let $x \in V(G)-N_{G}[u]$. Since G is weak 2-bicritical, $G-u$ is 2-critical, and hence the complement of $G-u$ is isomorphic to $n K_{2}$ for some $n \geq 1$ by Theorem C. In particular, x is not adjacent to exactly one vertex y in $G-u$. Since there is no vertex of $G-y$ dominating $V(G)-\{y\}, y$ is not a critical vertex of G. Since G is weak 2-bicritical, it follows that $\gamma(G-\{x, y\})=1$. This implies that u is adjacent to any vertices in $V(G)-\{u, x, y\}$ in G. If $u y \in E(G)$, then $\bar{G}=(n-1) K_{2} \cup P_{3}$, as desired. Thus we may assume that $u y \notin E(G)$. Then $\bar{G}=(n-1) K_{2} \cup K_{3}$. If $n=1$, then G consists of three isolated vertices, and so $\gamma(G)=3$, which is a contradiction. Thus $n \geq 2$, and hence $\bar{G}=m K_{2} \cup K_{3}$ for some $m \geq 1$.

2.2 Coalescence of two graphs

In this subsection, we introduce a way of constructing of a graph from two small graphs, which was defined in [2].

Let H_{1} and H_{2} be graphs, and for each $i \in\{1,2\}$, let x_{i} be a vertex of H_{i}. Under this notation, we let $\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2}: x\right)$ denote the graph obtained from H_{1} and H_{2} by identifying x_{1} and x_{2} into a vertex labeled x. We call $\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2}: x\right)$ a coalescence of H_{1} and H_{2} (via x_{1} and x_{2}).

Some properties for criticality or bicriticality in a coalescence of two graphs have been known. (Note that Lemma 2.3(iii) is a special case of Theorem 3.3 in [7].)

Lemma $2.3([2,4,7])$ Let H_{1} and H_{2} be two graphs, and for each $i \in\{1,2\}$, let x_{i} be a non-isolated vertex of H_{i}. Let $G=\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2}: x\right)$.
(i) If x_{i} is a critical vertex of H_{i} for each $i \in\{1,2\}$, then $V^{-}(G)=\left(\left(V^{-}\left(H_{1}\right) \cup\right.\right.$ $\left.\left.V^{-}\left(H_{2}\right)\right)-\left\{x_{1}, x_{2}\right\}\right) \cup\{x\}$ and $\gamma(G)=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1$.
(ii) The graph G is critical if and only if both H_{1} and H_{2} are critical.
(iii) The graph G is bicritical if and only if for some $i \in\{1,2\}$,
(a) H_{i} is critical and bicritical,
(b) H_{3-i} is bicritical, and
(c) x_{3-i} is a critical vertex of H_{3-i}.

In particular, G is critical or bicritical, then $\gamma(G)=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1$.
By combining Lemma 2.3(i) and (iii), we get the following result.
Lemma 2.4 Let H_{1} and H_{2} be two graphs, and for each $i \in\{1,2\}$, let x_{i} be a non-isolated vertex of H_{i}. If $G=\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2}: x\right)$ is bicritical, then $V^{-}(G)=$ $\left(\left(V^{-}\left(H_{1}\right) \cup V^{-}\left(H_{2}\right)\right)-\left\{x_{1}, x_{2}\right\}\right) \cup\{x\}$.

2.3 2-coalescence of two graphs

Lemma 2.5 Let G be a graph, and let x_{1} and x_{2} be two distinct vertices of G with $N_{G}\left[x_{1}\right] \subseteq N_{G}\left[x_{2}\right]$. Then x_{2} is not a critical vertex of G. Furthermore, if G is bicritical, then $V(G)-\left\{x_{1}, x_{2}\right\} \subseteq V^{-}(G)$.

Proof. Let S be a γ-set of $G-x_{2}$. Since S dominates $x_{1}, S \cap N_{G}\left[x_{1}\right] \neq \emptyset$, and so $S \cap N_{G}\left[x_{2}\right] \neq \emptyset$. This implies that S is a dominating set of G, and hence $\gamma\left(G-x_{2}\right) \geq$ $\gamma(G)$. Consequently x_{2} is not a critical vertex of G.

Assume that G is bicritical. Let $u \in V(G)-\left\{x_{1}, x_{2}\right\}$, and let S^{\prime} be a γ-set of $G-\left\{x_{2}, u\right\}$. Then $\left|S^{\prime}\right| \leq \gamma(G)-1$. Since S^{\prime} dominates x_{1}, S^{\prime} also dominates x_{2}. Hence S^{\prime} is a dominating set of $G-u$, and so $\gamma(G-u) \leq\left|S^{\prime}\right| \leq \gamma(G)-1$. Since $u \in V(G)-\left\{x_{1}, x_{2}\right\}$ is arbitrary, we have $V(G)-\left\{x_{1}, x_{2}\right\} \subseteq V^{-}(G)$.

Let H_{1} and H_{2} be graphs, and for each $i \in\{1,2\}$, let $x_{i}^{(1)}$ and $x_{i}^{(2)}$ be two adjacent vertices of H_{i}. Under this notation, we let $\left(H_{1} \bullet H_{2}\right)\left(x_{1}^{(1)}, x_{2}^{(1)}: x^{(1)}\right)\left(x_{1}^{(2)}, x_{2}^{(2)}: x^{(2)}\right)$
denote the graph obtained from H_{1} and H_{2} by identifying $x_{1}^{(i)}$ and $x_{2}^{(i)}$ into a vertex labeled $x^{(i)}$ for each $i \in\{1,2\}$. We call $\left(H_{1} \bullet H_{2}\right)\left(x_{1}^{(1)}, x_{2}^{(1)}: x^{(1)}\right)\left(x_{1}^{(2)}, x_{2}^{(2)}: x^{(2)}\right)$ a 2-coalescence of H_{1} and H_{2}.

Proposition 2.6 Let H_{1} and H_{2} be two bicritical graphs, and for each $i \in\{1,2\}$, let $x_{i}^{(1)}$ and $x_{i}^{(2)}$ be two distinct vertices of H_{i} with $N_{H_{i}}\left[x_{i}^{(1)}\right]=N_{H_{i}}\left[x_{i}^{(2)}\right]$. Then the graph $G=\left(H_{1} \bullet H_{2}\right)\left(x_{1}^{(1)}, x_{2}^{(1)}: x^{(1)}\right)\left(x_{1}^{(2)}, x_{2}^{(2)}: x^{(2)}\right)$ is bicritical and $\gamma(G)=$ $\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1$.

Proof. Recall that deleting a vertex of bicritical graphs cannot increase the domination number. By Lemma 2.5, for each $i \in\{1,2\}, V^{0}\left(H_{i}\right)=\left\{x_{i}^{(1)}, x_{i}^{(2)}\right\}$ and $V^{-}\left(H_{i}\right)=V\left(H_{i}\right)-\left\{x_{i}^{(1)}, x_{i}^{(2)}\right\}$. Since $H_{i}-x_{i}^{(1)}$ is critical for each $i \in\{1,2\}$, $\left(H_{1}-x_{1}^{(1)} \bullet H_{2}-x_{2}^{(1)}\right)\left(x_{1}^{(2)}, x_{2}^{(2)}: x^{(2)}\right)\left(=G-x^{(1)}\right)$ is critical by Lemma 2.3(ii). By Lemma 2.3,

$$
\gamma\left(G-x^{(1)}\right)=\gamma\left(H_{1}-x_{1}^{(1)}\right)+\gamma\left(H_{2}-x_{2}^{(1)}\right)-1=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1 .
$$

Since $N_{G}\left[x^{(1)}\right]=N_{G}\left[x^{(2)}\right]$, we see that $x^{(1)} \in V^{0}(G)$. Hence $\gamma(G)=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1$.
We show that G is bicritical. Let u and v be two distinct vertices of G. It suffices to show that there exists a dominating set S of $G-\{u, v\}$ with $|S| \leq \gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-2$.

Case 1: $\{u, v\}=\left\{x^{(1)}, x^{(2)}\right\}$.
For each $i \in\{1,2\}$, let S_{i} be a γ-set of $H_{i}-\left\{x_{i}^{(1)}, x_{i}^{(2)}\right\}$. Then $S_{1} \cup S_{2}$ is a dominating set of $G-\{u, v\}$. Since both H_{1} and H_{2} are bicritical, $\left|S_{1} \cup S_{2}\right|=$ $\left|S_{1}\right|+\left|S_{2}\right| \leq\left(\gamma\left(H_{1}\right)-1\right)+\left(\gamma\left(H_{2}\right)-1\right)$.

Case 2: $\left|\{u, v\} \cap\left\{x^{(1)}, x^{(2)}\right\}\right|=1$.
We may assume that $u=x^{(1)}$ and $v \in V\left(H_{1}\right)-\left\{x_{1}^{(1)}, x_{1}^{(2)}\right\}$. Let S_{1} be a γ-set of $H_{1}-\left\{x_{1}^{(1)}, v\right\}$, and let S_{2} be a γ-set of $H_{2}-\left\{x_{2}^{(1)}, x_{2}^{(2)}\right\}$. If $x_{1}^{(2)} \notin S_{1}$, let $S=S_{1} \cup S_{2}$; if $x_{1}^{(2)} \in S_{1}$, let $S=\left(S_{1}-\left\{x_{1}^{(2)}\right\}\right) \cup\left\{x^{(2)}\right\} \cup S_{2}$. Then S is a dominating set of $G-\{u, v\}$. Since both H_{1} and H_{2} are bicritical, $|S|=\left|S_{1}\right|+\left|S_{2}\right| \leq\left(\gamma\left(H_{1}\right)-1\right)+\left(\gamma\left(H_{2}\right)-1\right)$.

Case 3: $\{u, v\} \cap\left\{x^{(1)}, x^{(2)}\right\}=\emptyset$ and $u, v \in V\left(H_{i}\right)$ for some $i \in\{1,2\}$.
We may assume that $u, v \in V\left(H_{1}\right)-\left\{x_{1}^{(1)}, x_{1}^{(2)}\right\}$. Let S_{1} be a γ-set of $H_{1}-\{u, v\}$, and let S_{2} be a γ-set of $H_{2}-\left\{x_{2}^{(1)}, x_{2}^{(2)}\right\}$. Since $N_{H_{1}-\{u, v\}}\left[x_{1}^{(1)}\right]=N_{H_{1}-\{u, v\}}\left[x_{1}^{(2)}\right]$, we see that $\left|S_{1} \cap\left\{x_{1}^{(1)}, x_{1}^{(2)}\right\}\right| \leq 1$. We may assume that $x_{1}^{(1)} \notin S_{1}$. If $x_{1}^{(2)} \notin S_{1}$, let $S=S_{1} \cup S_{2}$; if $x_{1}^{(2)} \in S_{1}$, let $S=\left(S_{1}-\left\{x_{1}^{(2)}\right\}\right) \cup\left\{x^{(2)}\right\} \cup S_{2}$. Then S is a dominating set of $G-\{u, v\}$. Since both H_{1} and H_{2} are bicritical, $|S|=\left|S_{1}\right|+\left|S_{2}\right| \leq\left(\gamma\left(H_{1}\right)-1\right)+\left(\gamma\left(H_{2}\right)-1\right)$.

Case 4: $\{u, v\} \cap\left\{x^{(1)}, x^{(2)}\right\}=\emptyset$ and $\left|V\left(H_{i}\right) \cap\{u, v\}\right|=1$ for each $i \in\{1,2\}$.
We may assume that $u \in V\left(H_{1}\right)-\left\{x_{1}^{(1)}, x_{1}^{(2)}\right\}$ and $v \in V\left(H_{2}\right)-\left\{x_{2}^{(1)}, x_{2}^{(2)}\right\}$. Let S_{1} be a γ-set of $H_{1}-\left\{u, x_{1}^{(1)}\right\}$, and let S_{2} be a γ-set of $H_{2}-\left\{u, x_{2}^{(1)}\right\}$. If $x_{i}^{(2)} \notin S_{i}$ for each $i \in\{1,2\}$, let $S=S_{1} \cup S_{2}$; if $x_{i}^{(2)} \in S_{i}$ for some $i \in\{1,2\}$, let $S=\left(\left(S_{1} \cup S_{2}\right)-\left\{x_{1}^{(2)}, x_{2}^{(2)}\right\}\right) \cup\left\{x^{(2)}\right\}$. Then S is a dominating set of $G-\left\{u, v, x^{(1)}\right\}$.

Figure 1: Graph A

Since S dominates $x^{(2)}$ and $N_{G}\left[x^{(1)}\right]=N_{G}\left[x^{(2)}\right], S$ also dominates $x^{(1)}$, and hence S is a dominating set of $G-\{u, v\}$. Since both H_{1} and H_{2} are bicritical, $|S| \leq$ $\left|S_{1}\right|+\left|S_{2}\right| \leq\left(\gamma\left(H_{1}\right)-1\right)+\left(\gamma\left(H_{2}\right)-1\right)$.

This completes the proof of Proposition 2.6.

3 Examples

In this section, we show Theorem 1.1. We first construct some bicritical graphs with small domination number.

Let A be the graph on $X \cup Y$ depicted in Figure 1. Let s be a positive integer, and let $A_{i}^{(j)}(i \in\{1,2\}, 1 \leq j \leq s)$ be disjoint copies of A. For $i \in\{1,2\}$ and $1 \leq j \leq s$, let $X_{i}^{(j)}$ (resp. $Y_{i}^{(j)}$) be the subset of $V\left(A_{i}^{(j)}\right)$ which corresponds to the set X (resp. the set Y). Let $z^{(1)}, z^{(2)}, y$ be new vertices. We define some sets of edges as follows: Let

$$
\begin{gathered}
F_{1}=\left\{z^{(1)} u, z^{(2)} u \mid u \in \bigcup_{1 \leq j \leq s} X_{1}^{(j)}\right\} \cup\left\{y u \mid u \in \bigcup_{1 \leq j \leq s} X_{2}^{(j)}\right\} \cup\left\{z^{(1)} z^{(2)}\right\}, \\
F_{2}=\left\{u v \mid u \in Y_{i}^{(j)}, v \in V\left(A_{i}^{\left(j^{\prime}\right)}\right), i \in\{1,2\}, j \neq j^{\prime}\right\}
\end{gathered}
$$

and

$$
F_{3}=\left\{u v \mid u \in \bigcup_{1 \leq j \leq s} Y_{1}^{(j)}, v \in \bigcup_{1 \leq j \leq s} Y_{2}^{(j)}\right\}
$$

Let L_{s} be the graph defined by

$$
V\left(L_{s}\right)=\left\{z^{(1)}, z^{(2)}, y\right\} \cup\left(\bigcup_{i \in\{1,2\}}\left(\bigcup_{1 \leq j \leq s} V\left(A_{i}^{(j)}\right)\right)\right)
$$

and

$$
E\left(L_{s}\right)=\left(\bigcup_{1 \leq h \leq 3} F_{h}\right) \cup\left(\bigcup_{i \in\{1,2\}}\left(\bigcup_{1 \leq j \leq s} E\left(A_{i}^{(j)}\right)\right)\right)
$$

Then we can verify that L_{s} is 4 -bicritical graph with $\operatorname{diam}\left(L_{s}\right)=5$ by tedious argument (and we omit the details). By Lemma 2.5, $V^{0}\left(L_{s}\right)=\left\{z^{(1)}, z^{(2)}\right\}$ and $V^{-}\left(L_{s}\right)=V\left(L_{s}\right)-\left\{z^{(1)}, z^{(2)}\right\}$. In particular, y is a critical vertex of L_{s}.

Let s be a positive integer, and let H_{1} and H_{2} be disjoint copies of L_{s}. For each $i \in\{1,2\}$, let $x_{i}^{(1)}$ and $x_{i}^{(2)}$ be the distinct vertices of H_{i} with $N_{H_{i}}\left[x_{i}^{(1)}\right]=N_{H_{i}}\left[x_{i}^{(2)}\right]$. Then by Proposition 2.6, $L_{s}^{*}=\left(H_{1} \bullet H_{2}\right)\left(x_{1}^{(1)}, x_{2}^{(1)}: x^{(1)}\right)\left(x_{1}^{(2)}, x_{2}^{(2)}: x^{(2)}\right)$ is a 7 bicritical graph with $\operatorname{diam}\left(L_{s}^{*}\right)=10$. By Lemma 2.5, $V^{0}\left(L_{s}^{*}\right)=\left\{x^{(1)}, x^{(2)}\right\}$ and $V^{-}\left(L_{s}^{*}\right)=V\left(L_{s}^{*}\right)-\left\{x^{(1)}, x^{(2)}\right\}$.

Proof of Theorem 1.1. Let k be as in Theorem 1.1. If $k \in\{3,5\}$, then Theorem B yields the desired result. Thus we may assume that $k \notin\{3,5\}$. Fix a positive integer s. If k is even, let $G_{1}=L_{s}$ and $m=(k-2) / 2$; if k is odd, let $G_{1}=L_{s}^{*}$ and $m=(k-5) / 2$. In either case, there exists a vertex $w_{1}^{\prime} \in V^{-}\left(G_{1}\right)$ with $\operatorname{ecc}_{G_{1}}\left(w_{1}^{\prime}\right)=$ $\operatorname{diam}\left(G_{1}\right)$. By Theorem B, there exists a connected 3 -critical and bicritical graph with diameter 3 . For each $2 \leq i \leq m$, let G_{i} be a connected 3-critical and bicritical graph with diameter 3 , and let w_{i} and w_{i}^{\prime} be vertices of G_{i} which are at distance three apart. Let G be the graph obtained by concatenating G_{1}, \ldots, G_{m} by letting G_{i-1} and G_{i} coalesce via w_{i-1}^{\prime} and w_{i} for each $2 \leq i \leq m$. Then

$$
\operatorname{diam}(G)=\sum_{1 \leq i \leq m} \operatorname{diam}\left(G_{i}\right)= \begin{cases}\frac{3 k-1}{2} & (k \text { is odd }) \\ \frac{3 k-2}{2} & (k \text { is even })\end{cases}
$$

Further by Lemma 2.3(iii), G is bicritical and $\gamma(G)=\gamma\left(G_{1}\right)+\sum_{2 \leq i \leq m}\left(\gamma\left(G_{i}\right)-1\right)=k$. Since there exist infinitely many candidates for G_{1}, this yields the desired conclusion.

4 Proof of Theorem 1.2

Let $l \geq 3$ be an integer, and let G be a connected graph. A pair (x, j) of a vertex $x \in V(G)$ and an integer $j \geq 2$ is l-sufficient if $\operatorname{ecc}_{G}(x)=\operatorname{diam}(G)$ and there exists a γ-set S of G with $\left|S \cap\left(\bigcup_{0 \leq i \leq j} N_{G}^{(i)}(x)\right)\right| \geq(j+l) / 2$.

Lemma 4.1 Let $k \geq 3$ and $l \geq 3$ be integers, and let G be a connected weak k-bicritical graph having an l-sufficient pair. Then $\operatorname{diam}(G) \leq 2 k-l+1$.

Proof. Let (x, m) be an l-sufficient pair of G so that m is as large as possible. For each $i \geq 0$, let $X_{i}=N_{G}^{(i)}(x)$ and $U_{i}=X_{0} \cup \cdots \cup X_{i}$. Then there exists a γ-set S_{1} of G with $\left|S_{1} \cap U_{m}\right| \geq(m+l) / 2$. Suppose that $\operatorname{diam}(G) \geq 2 k-l+2$. Since $k \geq\left|S_{1} \cap U_{m}\right| \geq(m+l) / 2$, it follows that $\operatorname{diam}(G) \geq m+2$. Since $\left|S_{1} \cap U_{m}\right| \geq(m+l) / 2$ and $\left|S_{1} \cap U_{m+2}\right|<((m+2)+l) / 2$ by the maximality of $m,\left|S_{1} \cap\left(X_{m+1} \cup X_{m+2}\right)\right|=$ $\left|S_{1} \cap U_{m+2}\right|-\left|S_{1} \cap U_{m}\right|<(m+l+2) / 2-(m+l) / 2=1$. This implies that $S_{1} \cap\left(X_{m+1} \cup X_{m+2}\right)=\emptyset$, and hence $S_{1} \cap X_{m+3} \neq \emptyset$. Since $\operatorname{diam}(G) \geq 2 k-l+2$ and $k \geq\left|S_{1} \cap U_{m+3}\right| \geq(m+l) / 2+1$, we have $\operatorname{diam}(G) \geq m+4$.

Claim 4.1 For every γ-set S_{0} of $G,\left|S_{0} \cap U_{m+2}\right| \geq(m+l) / 2$ and $\mid S_{0} \cap\left(X_{m+3} \cup\right.$ $\left.X_{m+4}\right) \mid \leq 1$.

Proof. We first show that $S_{0}^{\prime}=\left(S_{0} \cap U_{m+2}\right) \cup\left(S_{1}-U_{m+2}\right)$ is a dominating set of G. Since S_{0} dominates $V(G), S_{0} \cap U_{m+2}$ dominates U_{m+1}. Since S_{1} dominates $V(G)$ and $S_{1} \cap X_{m+1}=S_{1} \cap X_{m+2}=\emptyset, S_{1}-U_{m+2}$ dominates $V(G)-U_{m+1}$. Hence S_{0}^{\prime} is a dominating set of G.

Since S_{1} is a γ-set of $G,\left|S_{1}\right| \leq\left|S_{0}^{\prime}\right|$. In particular, $\left|S_{0} \cap U_{m+2}\right|=\left|S_{0}^{\prime}\right|-\mid S_{1}-$ $U_{m+2}\left|\geq\left|S_{1}\right|-\left|S_{1}-U_{m+2}\right|=\left|S_{1} \cap U_{m+2}\right| \geq(m+l) / 2\right.$. Since S_{0} is not $(m+4)$ sufficient by the maximality of $m,\left|S_{0} \cap U_{m+4}\right|<((m+4)+l) / 2$. Therefore $\mid S_{0} \cap$ $\left(X_{m+3} \cup X_{m+4}\right)\left|=\left|S_{0} \cap U_{m+4}\right|-\left|S_{0} \cap U_{m+2}\right|<(m+l+4) / 2-(m+l) / 2=2\right.$.

Since $S_{1} \cap X_{m+3} \neq \emptyset,\left|S_{1} \cap X_{m+3}\right|=1$ and $S_{1} \cap X_{m+4}=\emptyset$ by Claim 4.1. Hence the unique vertex w in $S_{1} \cap X_{m+3}$ dominates $X_{m+2} \cup X_{m+3}$. Let $w^{\prime} \in X_{m+2}$. Note that $w w^{\prime} \in E(G)$. If w is critical, let S_{2} be a γ-set of $G-w$; if w is not critical, let S_{2} be a γ set of $G-\left\{w, w^{\prime}\right\}$. Since G is weak bicritical, $\left|S_{2}\right| \leq \gamma(G)-1$, and hence both $S_{2} \cup\{w\}$ and $S_{2} \cup\left\{w^{\prime}\right\}$ are γ-sets of G. By Claim 4.1, $\left|S_{2} \cap U_{m+2}\right|=\left|\left(S_{2} \cup\{w\}\right) \cap U_{m+2}\right| \geq$ $(m+l) / 2$. Then $\left|\left(S_{2} \cup\left\{w^{\prime}\right\}\right) \cap U_{m+2}\right|=\left|S_{2} \cap U_{m+2}\right|+1 \geq((m+2)+l) / 2$, and hence $(x, m+2)$ is an l-sufficient pair of G, which contradicts the maximality of m.

This completes the proof of Lemma 4.1.
Now we prove Theorem 1.2.
Proof of Theorem 1.2. Let k and G be as in Theorem 1.2. If $k=2$, then $\operatorname{diam}(G)=$ $2=2 k-2$ by Theorem 2.2, as desired. Thus we may assume that $k \geq 3$. Suppose that $\operatorname{diam}(G) \geq 2 k-1$. Then by Lemma 4.1, there exists no 3 -sufficient pair of G.

Let x be a vertex of G with $\operatorname{ecc}_{G}(x)=\operatorname{diam}(G)$. Since $\operatorname{diam}(G) \geq 2 k-1 \geq 5$, $N_{G}^{(4)}(x) \neq \emptyset$. Let $w \in N_{G}^{(3)}(x)$ and $w^{\prime} \in N_{G}^{(4)}(x)$ be vertices so that $w w^{\prime} \in E(G)$. If w is a critical vertex of G, let S be a γ-set of $G-w$; if w is not a critical vertex of G, let S be a γ-set of $G-\left\{w, w^{\prime}\right\}$. In either case, since G is weak k-bicritical, $|S| \leq k-1$ and $S \cup\{w\}$ is a γ-set of G. Since $(x, 3)$ is not a 3 -sufficient pair of G, $\left|(S \cup\{w\}) \cap\left(\bigcup_{0 \leq i \leq 3} N_{G}^{(i)}(x)\right)\right|<(3+3) / 2=3$. Furthermore, $S \cap\left(\bigcup_{0 \leq i \leq 3} N_{G}^{(i)}(x)\right)$ dominates $\bigcup_{0 \leq i \leq 2} N_{G}^{(i)}(x)$ in $G-w$ or $G-\left\{w, w^{\prime}\right\}$ according as w is critical or not. This implies that $S \cap\left(\bigcup_{0 \leq i \leq 3} N_{G}^{(i)}(x)\right)$ consists of exactly one vertex $a \in N_{G}(x)$ dominating $\bigcup_{0 \leq i \leq 2} N_{G}^{(i)}(x)$. Since $N_{G}[x] \subseteq N_{G}[a]$, a is not a critical vertex of G by Lemma 2.5. By Proposition 2.1, $N_{G}(x)-\{a\} \neq \emptyset$. Let $b \in N_{G}(x)-\{a\}$, and let S^{\prime} be a γ-set of $G-\{a, b\}$. Since G is weak bicritical, $\left|S^{\prime}\right| \leq \gamma(G)-1$. Since S^{\prime} dominates x in $G-\{a, b\}, S^{\prime} \cap N_{G-\{a, b\}}[x] \neq \emptyset$. Let $c \in S^{\prime} \cap N_{G-\{a, b\}}[x]$. Since a dominates $\bigcup_{0 \leq i \leq 2} N_{G}^{(i)}(x)$ in $G, N_{G}[c] \subseteq N_{G}[a]$, and hence $S^{\prime \prime}=\left(S^{\prime}-\{c\}\right) \cup\{a\}$ is a dominating set of G with $\left|S^{\prime \prime}\right|=\left|S^{\prime}\right| \leq \gamma(G)-1$, which is a contradiction. Therefore $\operatorname{diam}(G) \leq 2 k-2$.

5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We start with a lemma.
Lemma 5.1 Let G be a bicritical graph, and let x be a non-isolated vertex of G. Then there exists a vertex $y \in N_{G}(x)$ such that no vertex in $N_{G}(x)-\{y\}$ dominates $N_{G}[x]-\{y\}$.

Proof. Suppose that for every $y \in N_{G}(x)$, there exists a vertex in $N_{G}(x)-\{y\}$ which dominates $N_{G}[x]-\{y\}$. Let $y_{1} \in N_{G}(x)$, and for each $i \geq 2$, let $y_{i} \in N_{G}(x)-\left\{y_{i-1}\right\}$ be a vertex which dominates $N_{G}[x]-\left\{y_{i-1}\right\}$. Suppose that $y_{1}=y_{3}$. Let S_{1} be a γ-set of $G-\left\{y_{1}, y_{2}\right\}$. Since S_{1} dominates $x, S_{1} \cap\left(N_{G}[x]-\left\{y_{1}, y_{2}\right\}\right) \neq \emptyset$. Since every vertex in $N_{G}[x]-\left\{y_{1}, y_{2}\right\}$ is adjacent to both y_{1} and y_{2} by the choice of $y_{1}\left(=y_{3}\right)$ and y_{2}, this implies that S_{1} is a dominating set of G with $\left|S_{1}\right| \leq \gamma(G)-1$, which is a contradiction. Thus $y_{1} \neq y_{3}$. Since y_{2} dominates $N_{G}[x]-\left\{y_{1}\right\}, y_{2} y_{3} \in E(G)$, and hence y_{3} dominates $N_{G}[x]$. Let S_{2} be a γ-set of $G-\left\{y_{3}, y_{4}\right\}$. Since S_{2} dominates $x, S_{2} \cap\left(N_{G}[x]-\left\{y_{3}, y_{4}\right\}\right) \neq \emptyset$. Since every vertex in $N_{G}[x]-\left\{y_{3}, y_{4}\right\}$ is adjacent to both y_{3} and y_{4}, this implies that S_{2} is a dominating set of G with $\left|S_{2}\right| \leq \gamma(G)-1$, which is a contradiction.

Proof of Theorem 1.3. Let k and G be as in Theorem 1.3. Suppose that $\operatorname{diam}(G) \geq$ $2 k-2$. Then by Theorem 1.2, $\operatorname{diam}(G)=2 k-2$. By Lemma 4.1, there exists no 4-sufficient pair. Let $A=\left\{x \in V(G) \mid \operatorname{ecc}_{G}(x)=\operatorname{diam}(G)\right\}$. By Lemma 5.1, for each $x \in A$, there exists a vertex $y_{x} \in N_{G}(x)$ such that no vertex in $N_{G}(x)-\left\{y_{x}\right\}$ dominates $N_{G}[x]-\left\{y_{x}\right\}$.

Claim 5.1 Let $x \in A$ be a vertex. Then the following hold:
(i) There exists a vertex in $N_{G}^{(2)}(x)$ which dominates $N_{G}(x)-\left\{y_{x}\right\}$.
(ii) The vertex y_{x} is not a critical vertex of G.
(iii) $\left|N_{G}^{(2)}(x)\right| \geq 2$.
(iv) There exists no vertex in $N_{G}(x)$ which dominates $N_{G}[x]$.

Proof. We first show (i) and (ii). If y_{x} is a critical vertex of G, let S be a γ-set of $G-y_{x}$; if y is not a critical vertex of G, let S be a γ-set of $G-\left\{x, y_{x}\right\}$. In either case, $|S| \leq k-1$ and $S \cup\{x\}$ is a γ-set of G. Since $(x, 2)$ is not a 4 -sufficient pair of $G,\left|(S \cup\{x\}) \cap\left(\bigcup_{0 \leq i \leq 2} N_{G}^{(i)}(x)\right)\right|<(2+4) / 2=3$, and hence $\left|S \cap\left(\bigcup_{0 \leq i \leq 2} N_{G}^{(i)}(x)\right)\right| \leq$ 1. Since S dominates $N_{G}(x)-\left\{y_{x}\right\}$ and no vertex in $N_{G}(x)-\left\{y_{x}\right\}$ dominates $N_{G}(x)-\left\{y_{x}\right\}$, this implies that $\left|S \cap\left(\bigcup_{0 \leq i \leq 2} N_{G}^{(i)}(x)\right)\right|=\left|S \cap N_{G}^{(2)}(x)\right|=1$ and the unique vertex $w \in S \cap N_{G}^{(2)}(x)$ dominates $N_{G}(x)-\left\{y_{x}\right\}$. In particular, (i) holds. If y_{x} is a critical vertex of G, then S dominates x, which is a contradiction. Thus (ii) holds.

We next show (iii). Suppose that $\left|N_{G}^{(2)}(x)\right|=1$, and let $H_{1}=G\left[\bigcup_{0 \leq i \leq 2} N_{G}^{(i)}(x)\right]$ and $H_{2}=G-N_{G}[x]$. Then we can regard G as a coalescence of H_{1} and H_{2}, and hence H_{1} is bicritical by Lemma 2.3(iii). On the other hand, since $\left|V\left(H_{1}\right)\right| \geq 4$ and $\gamma\left(H_{1}\right) \leq 2, H_{1}$ is not bicritical by Theorem D, which is a contradiction.

We finally show (iv). Suppose that there exists a vertex in $N_{G}(x)$ which dominates $N_{G}[x]$ in G. By the definition of y_{x}, no vertex in $N_{G}(x)-\left\{y_{x}\right\}$ dominates $N_{G}[x]$ in G. Thus y_{x} dominates $N_{G}[x]$ in G. Let $x^{\prime} \in V(G)$ with $d_{G}\left(x, x^{\prime}\right)=\operatorname{ecc}_{G}(x)$. Since $x^{\prime} \in A$, the vertex $y_{x^{\prime}}$ is not a critical vertex of G by (ii). Let S be a γ-set of $G-\left\{y_{x}, y_{x^{\prime}}\right\}$. Since S dominates $x, S \cap\left(N_{G}[x]-\left\{y_{x}\right\}\right) \neq \emptyset$. Since y_{x} dominates $N_{G}[x]$ in G, S dominates y_{x}. In particular, S is a dominating set of $G-y_{x^{\prime}}$, and hence $y_{x^{\prime}}$ is a critical vertex of G, which is a contradiction.

Let $x \in A$. For each $i \geq 0$, let $X_{i}=N_{G}^{(i)}(x)$ and $U_{i}=X_{0} \cup \cdots \cup X_{i}$. By Claim 5.1(i), there exists a vertex $w_{2} \in X_{2}$ which dominates $N_{G}(x)-\left\{y_{x}\right\}$. Let S_{1} be a γ-set of $G-\left\{y_{x}, w_{2}\right\}$. If $S_{1} \cap N_{G}(x) \neq \emptyset$, then S_{1} is a dominating set of $G-y_{x}$, and hence y_{x} is a critical vertex of G, which contradicts Claim 5.1(ii). Thus $S_{1} \cap N_{G}(x)=\emptyset$. Since S_{1} dominates x, we have $x \in S_{1}$. Note that $S_{1} \cup\left\{w_{2}\right\}$ is a γ-set of G. Since both $(x, 2)$ and $(x, 3)$ are not a 4 -sufficient pair, $\left|\left(S_{1} \cup\left\{w_{2}\right\}\right) \cap U_{2}\right|<$ $(2+4) / 2=3$ and $\left|\left(S_{1} \cup\left\{w_{2}\right\}\right) \cap U_{3}\right|<(3+4) / 2=7 / 2$. This forces $S_{1} \cap U_{2}=\{x\}$ and $\left|S_{1} \cap X_{3}\right| \leq 1$. By Claim 5.1(iii), $X_{2}-\left\{w_{2}\right\} \neq \emptyset$, and hence $\left|S_{1} \cap X_{3}\right|=1$ and the unique vertex w_{3} in $S_{1} \cap X_{3}$ dominates $X_{2}-\left\{w_{2}\right\}$.

Let m be the maximum integer satisfying that $S_{1} \cap X_{2 j+1} \neq \emptyset$ for all j with $1 \leq$ $j \leq m$. Choose a γ-set S_{1} of $G-\left\{y_{x}, w_{2}\right\}$ so that m is as large as possible. Recall that $x \in S_{1}$. This together with the definition of m leads to $\left|S_{1} \cap U_{2 m+1}\right| \geq m+1$. Since $(x, 2 m+2)$ is not a 4 -sufficient pair, $\left|\left(S_{1} \cup\left\{w_{2}\right\}\right) \cap U_{2 m+2}\right|<((2 m+2)+4) / 2=m+3$ (i.e., $\left|S_{1} \cap U_{2 m+2}\right| \leq m+1$). This forces

- $\left|S_{1} \cap U_{2 m+1}\right|=m+1$,
- $S_{1} \cap X_{2 j}=\emptyset$ for all j with $1 \leq j \leq m+1$, and
- $\left|S_{1} \cap X_{2 j+1}\right|=1$ for all j with $1 \leq j \leq m$.

By the maximality of m, we have $S_{1} \cap X_{2 m+3}=\emptyset$. Write $S_{1} \cap X_{2 m+1}=\{z\}$. Since $S_{1} \cap X_{2 m}=S_{1} \cap X_{2 m+2}=S_{1} \cap X_{2 m+3}=\emptyset, z$ dominates $X_{2 m+1} \cup X_{2 m+2}$. Since $m+2=\left|\left(S_{1} \cup\left\{w_{2}\right\}\right) \cap U_{2 m+1}\right| \leq k, 1 \leq m \leq k-2$.

Suppose that $m=k-2$ (i.e., $\operatorname{diam}(G)=2 k-2=2 m+2$). Let $x^{\prime} \in X_{2 k-2}$. Then $x^{\prime} \in A$. Since $N_{G}\left[x^{\prime}\right] \subseteq X_{2 k-3} \cup X_{2 k-2}, z$ dominates $N_{G}\left[x^{\prime}\right]$, which contradicts Claim 5.1(iv). Thus $m \leq k-3$, and so $\operatorname{diam}(G)=2 k-2 \geq 2 m+4$. Let S_{2} be a γ-set of $G-\left\{y_{x}, z\right\}$. If S_{2} dominates z in G, then S_{2} is a dominating set of $G-y_{x}$, and hence y_{x} is a critical vertex of G, which contradicts Claim 5.1(ii). Thus S_{2} does not dominate z. This implies that $S_{2} \cap\left(X_{2 m+1} \cup X_{2 m+2}\right)=\emptyset$. Since diam $(G) \geq 2 m+4$, we have

$$
\begin{equation*}
S_{2} \cap X_{2 m+3} \neq \emptyset . \tag{5.1}
\end{equation*}
$$

Claim 5.2 $\left|S_{2}-U_{2 m+1}\right| \leq k-m-2$.

Proof. We first show that $S_{0}=\left(S_{2} \cap U_{2 m}\right) \cup\left(S_{1}-U_{2 m}\right)$ is a dominating set of $G-y_{x}$. Since S_{2} dominates $V(G)-\left\{y_{x}, z\right\}$ and $S_{2} \cap X_{2 m+1}=\emptyset, S_{2} \cap U_{2 m}$ dominates $U_{2 m}-\left\{y_{x}\right\}$. Recall that z dominates $X_{2 m+1} \cup X_{2 m+2}$. Since S_{1} dominates $V(G)-\left\{y_{x}, w_{2}\right\}$ and $z \in S_{1}-U_{2 m}, S_{1}-U_{2 m}$ dominates $V(G)-U_{2 m}$. Hence S_{0} is a dominating set of $G-y_{x}$.

Since y_{x} is not a critical vertex of G by Claim 5.1(ii), $\left|S_{2} \cap U_{2 m}\right|+\left|S_{1}-U_{2 m}\right|=$ $\left|S_{0}\right| \geq k$. On the other hand, $\left|S_{1}-U_{2 m}\right|=\left|S_{1}\right|-\left|S_{1} \cap U_{2 m}\right|=(k-1)-m$. Consequently, we have $\left|S_{2} \cap U_{2 m+1}\right|=\left|S_{2} \cap U_{2 m}\right| \geq k-(k-m-1)=m+1$. This together with $\left|S_{2}\right| \leq k-1$ leads to $\left|S_{2}-U_{2 m+1}\right|=\left|S_{2}\right|-\left|S_{2} \cap U_{2 m+1}\right| \leq$ $(k-1)-(m+1)=k-m-2$.

Set $S^{*}=\left(S_{1} \cap U_{2 m+1}\right) \cup\left(S_{2}-U_{2 m+1}\right)$. Since S_{1} is a dominating set of $G-\left\{y_{x}, w_{2}\right\}$ and $z \in S_{1} \cap U_{2 m+1}, S_{1} \cap U_{2 m+1}$ dominates $U_{2 m+2}-\left\{y_{x}, w_{2}\right\}$ and $y_{x}, w_{2} \notin S_{1} \cap U_{2 m+1}$. Since S_{2} dominates $V(G)-\left\{y_{x}, z\right\}, S_{2}-U_{2 m+1}$ dominates $V(G)-U_{2 m+2}$. Hence S^{*} is a dominating set of $G-\left\{y_{x}, w_{2}\right\}$. Since $\left|S^{*}\right|=\left|S_{1} \cap U_{2 m+1}\right|+\left|S_{2}-U_{2 m+1}\right| \leq$ $(m+1)+(k-m-2)=k-1$ by Claim 5.2, S^{*} is a γ-set of $G-\left\{y_{x}, w_{2}\right\}$. Then by the definition of m and (5.1), $S^{*} \cap X_{2 j+1} \neq \emptyset$ for all j with $1 \leq j \leq m+1$, which contradicts the maximality of m. Therefore $\operatorname{diam}(G) \leq 2 k-3$.

This completes the proof of Theorem 1.3.

Acknowledgment

The author is grateful to the referees for their helpful comments. This work was supported by JSPS KAKENHI Grant number 26800086.

References

[1] R. C. Brigham, P.Z. Chinn and R.D. Dutton, A study of vertex domination critical graphs, Department of Mathematics Technical Report M-2, University of Central Florida (1984).
[2] R. C. Brigham, P. Z. Chinn and R. D. Dutton, Vertex domination-critical graphs, Networks 18 (1988), 173-179.
[3] R. C. Brigham, T. W. Haynes, M. A. Henning and D. F. Rall, Bicritical domination, Discrete Math. 305 (2005), 18-32.
[4] T. Burton and D.P. Sumner, Domination dot-critical graphs, Discrete Math. 306 (2006), 11-18.
[5] R. Diestel, Graph Theory (4th edition), Graduate Texts in Mathematics 173, Springer, 2010.
[6] J. Fulman, D. Hanson and G. MacGillivray, Vertex domination-critical graphs, Networks 25 (1995), 41-43.
[7] M. Furuya, Construction of (γ, k)-critical graphs, Australas. J. Combin. 53 (2012), 53-65.
[8] T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
(Received 2 Aug 2014; revised 17 Apr 2015)

