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Abstract

The beta-number, β (G), of a graph G is defined to be either the smallest
positive integer n for which there exists an injective function f : V (G) →
{0, 1, . . . , n} such that each uv ∈ E (G) is labeled |f (u)− f (v)| and
the resulting set of edge labels is {c, c+ 1, . . . , c+ |E (G)| − 1} for some
positive integer c, or +∞ if there exists no such integer n. If c = 1,
the resulting beta-number is called the strong beta-number of G and
denoted by βs (G). In this paper, some necessary conditions for a graph to
have finite (strong) beta-number are presented, which lead us to sufficient
conditions for a graph to have infinite (strong) beta-number. By means
of these, the formulas for the (strong) beta-number of certain graphs are
determined. Moreover, nontrivial trees and forests are shown to have
finite strong beta-number. Finally, three open problems are proposed.

1 Introduction

The descriptive terminology and notation used in this paper will generally follow
closely that of [2]. All graphs considered here are finite and undirected without
loops or multiple edges. The vertex set of a graph G is denoted by V (G), while the
edge set is denoted by E (G). For two graphs G1 and G2 with disjoint vertex sets,
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the union G ∼= G1∪G2 has V (G) = V (G1)∪V (G2) and E (G) = E (G1)∪E (G2). If
a graph G consists of m disjoint copies of a graph H , then we write G ∼= mH , where
m ≥ 2. For integers a and b with a ≤ b, we will denote the set {x ∈ Z : a ≤ x ≤ b}
by simply writing [a, b], where Z denotes the set of integers.

The type of graph labelings that have received the most attention over the years
was introduced by Rosa [7] in 1967 who called them β-valuations. For a graph G
with q edges, an injective function f : V (G) → [0, q] is called a β-valuation if each
uv ∈ E(G) is labeled |f(u)− f(v)| and the resulting edge labels are distinct. Such
a valuation is now commonly known as a graceful labeling (the term was introduced
by Golomb [4] in 1972) and a graph admitting a graceful labeling is called a graceful
graph. On the other hand, a graph that is not graceful is called nongraceful.

The notion of a graceful labeling naturally stemmed from the study by Golomb
[4] of the following problem. For a graph G, let grac(G) denote the smallest positive
integer n for which there exists an injective function f : V (G) → [0, n] such that
each uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting set of edge labels consists
of distinct integers. The value grac(G) is called the gracefulness of a graph G. He
pointed out that ifH is a subgraph of a graph G, then grac(H) ≤grac(G) ≤grac(Kp),
where Kp is the complete graph of order p. If we label the vertices of Kp, denoted
by vi, with f (vi) = 2i − 1 for each i ∈ [0, p− 1], then we obtain the inequality
max (p− 1, q) ≤grac(G) ≤grac(Kp) ≤ 2p−1 − 1 for every graph G of order p and
size q. Hence, every graph has finite gracefulness. If G is a graph of size q with
grac(G) = q, then G is graceful. Thus, the gracefulness is a measure of how close G
is to being graceful. By the definition, it is possible to label the vertices of a graph G
with distinct elements of the set [0, grac (G)] so that the edges of G receive distinct
labels. It is clear that some vertex of G must be labeled grac(G), but it is not known
whether an edge of G must be labeled grac(G).

Golomb [4] determined the exact values of grac(Kp) for all p ∈ [1, 10] (for instance,
grac(K4) = 6, grac(K5) = 11 and grac(K6) = 17). Then he posed the problem of
determining the exact value of grac(Kp) for all p ≥ 11. The exact value of grac(Kp)
is still not known in general. Along with some related results, Erdös has shown that
asymptotically grac(Kp) ∼ p2 (see [4]).

The notion of gracefulness motivates us to define two types of new parameters
measuring how close a graph is to being graceful. The beta-number, β (G), of a graph
G with q edges is defined to be either the smallest positive integer n for which there
exists an injective function f : V (G) → [0, n] such that each uv ∈ E (G) is labeled
|f (u)− f (v)| and the resulting set of edge labels is [c, c+ q − 1] for some positive
integer c or +∞ if there exists no such integer n. If c = 1, the resulting beta-number
is called the strong beta-number of G and denoted by βs (G).

As an immediate consequence of the above three definitions, we have the following
relations among three parameters.

Lemma 1.1 For every graph G of order p and size q,

max (p− 1, q) ≤ grac (G) ≤ β (G) ≤ βs (G) .
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In Section 2, we present some necessary conditions for a graph to have finite
(strong) beta-number. We also provide sufficient conditions for a graph to have infi-
nite (strong) beta-number. In Section 3, we determine the formulas for the (strong)
beta-numbers of cycles, 2-regular graphs with two isomorphic components and com-
plete graphs. In Section 4, we prove that every forest has finite strong beta-number.
This leads us to a corollary that every nontrivial tree has finite strong beta-number.
In addition to these, we compute the (strong) beta-number of two kinds of forests,
namely, two disjoint copies of stars, and disjoint unions of paths and stars. In Section
5, we make some remarks on bounds for the (strong) beta-number and gracefulness
of graphs, and state three open problems.

For the latest developments in graph labeling, the authors refer the reader to an
extensive survey by Gallian [3]. The books by Bača and Miller [1], and Marr and
Wallis [6] are excellent sources of information for those who are interested in the
subject of graph labeling.

2 Basic Results

In this section, we first present some necessary conditions for a graph to have fi-
nite (strong) beta-number. As a consequence of these, we also provide sufficient
conditions for a graph to have infinite (strong) beta-number.

Golomb [4] showed that if G is a graceful graph of size q, then there exists a
partition of V (G) into two subsets V1 and V2 such that the number of edges joining
V1 and V2 is exactly 	q/2
. This is easily extended to the following result.

Lemma 2.1 If G is a graph of size q such that βs (G) < +∞, then there exists a
partition of V (G) into two subsets V1 and V2 such that the number of edges joining
V1 and V2 is exactly 	q/2
.

Proof: Let a vertex labeling of G such that βs (G) < +∞ be given. Denote the set
of vertices labeled with an even integer by V1 and the set of vertices labeled with an
odd integer by V2. All edges labeled with an odd integer must then join a vertex of
V1 and a vertex of V2. Since there are exactly 	q/2
 such edges, the result follows. �

A similar argument used in the proof of Lemma 2.1 can also be applied to establish
the following result which we state next without proof.

Lemma 2.2 If G is a graph of size q such that β (G) < +∞, then there exists a
partition of V (G) into two subsets V1 and V2 such that the number of edges joining
V1 and V2 is either �q/2� or 	q/2
.

If G is a graph of size q such that β (G) < +∞, then there exists an injective
function f : V (G) → [0, β (G)] such that each uv ∈ E (G) is labeled |f (u)− f (v)|
and the resulting set of edge labels is [c, c+ q − 1] for some positive integer c. Observe
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that if c is even and q is odd, then the set [c, c+ q − 1] contains exactly �q/2� odd
integers. This is the reason why �q/2� arises in the conclusion of Lemma 2.2.

An Eulerian circuit of G is a circuit containing all of the edges and vertices of G.
A graph possessing an Eulerian circuit is called an Eulerian graph. The necessary
condition for an Eulerian graph to have finite strong beta-number is stated next. Its
proof is entirely analogous to the one provided by Rosa [7].

Theorem 2.3 If G is an Eulerian graph of size q such that βs (G) < +∞, then
q ≡ 0 or 3 (mod 4).

An analogous argument to the proof of Theorem 2.3 can be developed to obtain
the following result which we state next without proof.

Theorem 2.4 Let G be an Eulerian graph of size q. If there exists an injective
function f : V (G) → [0, n] such that

{|f (u)− f (v)| : uv ∈ E (G)} = [c, c+ q − 1]

for some positive integers n and c, then q ≡ 0 (mod 4), q ≡ 1 (mod 4) and c is
even, or q ≡ 3 (mod 4) and c is odd.

As we stated in Lemma 1.1, the inequality β (G) ≤ βs (G) holds for any graph
G. Combining this with Lemma 2.2, we have the following result.

Corollary 2.5 If G is a graph of size q with the property that for any partition of
V (G) into two subsets V1 and V2, the number of edges joining V1 and V2 is neither
�q/2� nor 	q/2
, then βs (G) = β (G) = +∞.

The above result shows that relaxing the range of possible vertex labels to a
graph that is nongraceful does not need to provide finite (strong) beta-number.
This might be unexpected in light of the aforementioned fact that every graph
has finite gracefulness. Indeed, it is not difficult to construct a graph G such that
β (G)−grac(G) = +∞ (see Theorem 3.1) or βs (G)−grac(G) = +∞ (see Corollary
3.2).

The contrapositive of Theorem 2.3 is particularly useful to show that certain
Eulerian graphs have infinite strong beta-number.

Corollary 2.6 If G is an Eulerian graph of size q such that q ≡ 1 or 2 (mod 4),
then βs (G) = +∞.

As a possible generalization of Corollary 2.6, we obtain the following result.

Corollary 2.7 If G is a graph of size q such that every vertex has even degree and
q ≡ 2 (mod 4), then βs (G) = β (G) = +∞.
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Proof: Since every vertex of G has even degree, it follows that every component of
G is Eulerian. Let G1, G2, . . . , Gk (k ≥ 1) be the components of G. For each i ∈ [1, k],
let qi = |E (Gi)|, and let Ci : v

i
0, v

i
1, . . . v

i
qi−1, v

i
qi

= vi0 be an Eulerian circuit of Gi.
Furthermore, assume that β (G) = n for some positive integer n. Then there exists
an injective function f : V (G) → [1, n] such that {|f (u)− f (v)| : uv ∈ E (G)} =
[c, c+ |E (G)| − 1] for some positive integer c, and f

(
vij
)
= aij for each i ∈ [1, k] and

j ∈ [0, qi], where ais = ait if v
i
s = vit. Thus, the label of edge vij−1v

i
j is

∣∣aij − aij−1

∣∣.
Notice that ∣∣aij − aij−1

∣∣ ≡ (
aij − aij−1

)
(mod 2)

for all i ∈ [1, k] and j ∈ [0, qi]. Thus, the sum of the labels of edges of G is

k∑
i=1

qi∑
j=1

∣∣aij − aij−1

∣∣ ≡
k∑

i=1

qi∑
j=1

(
aij − aij−1

) ≡ 0 (mod 2),

that is, the sum of the edge labels of G is even. However, the sum of the edge
labels is

∑c+q−1
i=c i = q (2c+ q − 1) /2, where q = |E (G)|; so q (2c+ q − 1) /2 is even.

Consequently, 4|q (2c+ q − 1), which implies that 4|q or 4|2c + q − 1 so that q ≡ 0
(mod 4), q ≡ 1 (mod 4) and c is even, or q ≡ 3 (mod 4) and c is odd. This implies
that βs (G) = β (G) = +∞ for q ≡ 2 (mod 4). �

3 The Beta-Number and Strong Beta-Number of Some
Graphs

As is often the case, when no general formula exists for the value of a parameter
for an arbitrary graph, formulas (or partial formulas) are established for certain
classes of graphs. Ordinarily, the first classes to be considered are the cycles and the
complete graphs. In this section, we determine the formulas for the (strong) beta-
number of graphs in these classes as well as all 2-regular graphs with two isomorphic
components.

Rosa [7] proved that the cycle Cn is graceful if and only if n ≡ 0 or 3 (mod 4).
Combining this with Corollary 2.6, we have the following result.

Theorem 3.1 For every integer n ≥ 3,

βs (Cn) =

{
n, if n ≡ 0 or 3 (mod 4);
+∞, if n ≡ 1 or 2 (mod 4).

.

With the aid of the results in the previous section and Theorem 3.1, we are now
able to compute the beta-number for all cycles.

Corollary 3.2 For every integer n ≥ 3,

β (Cn) =

⎧⎨
⎩

n, if n ≡ 0 or 3 (mod 4);
n+ 1, if n ≡ 1 (mod 4);
+∞, if n ≡ 2 (mod 4).
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Proof: It follows from Lemma 1.1 and Theorem 3.1 that β (Cn) = n for n ≡ 0 or 3
(mod 4). It also follows from Corollary 2.7 that β (Cn) = +∞ for n ≡ 2 (mod 4). As
we mentioned above, the cycle Cn is not graceful for n ≡ 1 (mod 4). This together
with Lemma 1.1 provides that β (Cn) ≥grac(Cn) ≥ n+ 1 for n ≡ 1 (mod 4).

To complete the proof, we will show that β (Cn) ≤ n + 1 for n ≡ 1 (mod 4). For
this, define the cycle Cn with

V (Cn) = {vi : i ∈ [1, n]}
and

E (Cn) = {vivi+1 : i ∈ [1, n− 1]} ∪ {v1vn} ,
and consider the vertex labeling f : V (Cn) → [0, n+ 1] such that

f (x) =

⎧⎨
⎩

n+ 2− i, if x = v2i−1 and i ∈ [1, (n+ 1) /2] ;
i− 1, if x = v2i and i ∈ [1, (n+ 3) /4] ;
i, if x = v2i and i ∈ [(n + 3) /4 + 1, (n− 1) /2] .

Notice that

{f (v) : v ∈ V (Cn)} = [0, n+ 1] \ {(n+ 3) /4, (n+ 1) /2} ,
which implies that f is an injective function. Notice also that

{|f (vi)− f (vi+1)| : i ∈ [(n + 3) /2 + 1, n− 1]} ∪ {|f (v1)− f (vn)|} = [2, (n− 1) /2]

and
{|f (vi)− f (vi+1)| : i ∈ [1, (n+ 3) /2]} = [(n− 1) /2 + 1, n+ 1] .

This implies that

{|f (u)− f (v)| : uv ∈ E (Cn)} = [2, |E (Cn)|+ 1] ,

and therefore β (Cn) ≤ n+ 1 for n ≡ 1 (mod 4). �

Kotzig [5] proved that the 2-regular graph 2Cn is graceful if and only if n ≥ 4 and
n is even. Combining this with Lemma 1.1 and Corollary 2.7, we have the following
result.

Corollary 3.3 For every integer n ≥ 3,

βs (2Cn) = β (2Cn) =

{
2n, if n is even;
+∞, if n is odd.

Recall that ifH is a subgraph of a graph G, then the inequality grac(H) ≤grac(G)
holds. However, neither βs (H) ≤ βs (G) nor β (H) ≤ β (G) hold in general, since we
know that βs (2Cn) = β (2Cn) = 2n (see Corollary 3.3) and βs (Cn) = β (Cn) = +∞
(see Theorem 3.1 and Corollary 3.2) when n is a positive integer such that n ≡ 2
(mod 4).

It is easy to see that Kp is graceful for each p ∈ [2, 4]. The following result of
Golomb [4] shows that there are no other graceful complete graphs.
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Theorem 3.4 The complete graph Kp, p ≥ 2, is graceful if and only if p ≤ 4.

The above theorem allows us to compute the (strong) beta-number for all com-
plete graphs.

Theorem 3.5 For every integer p ≥ 2,

βs (Kp) = β (Kp) =

{
p (p− 1) /2, if p ∈ [2, 4] ;
+∞, if p ≥ 5.

Proof: For each p ∈ [2, 4], the result follows from Theorem 3.4. In light of Lemma
1.1, it suffices to show that β (Kp) = +∞ for all p ≥ 5. Thus, assume that p ≥ 5
and suppose, to the contrary, that β (Kp) = n > q for some positive integer n, where
q = p (p− 1) /2. Hence, there exists an injective vertex labeling f : V (Kp) → [0, n]
such that {|f (u)− f (v)| : uv ∈ E (Kp)} = [c, c+ q − 1] for some positive integer c.
Since such a vertex labeling of a graph of size q requires 0 and n to be vertex labels,
it follows that n = c+ q − 1. Thus, some edge of Kp must be labeled n− 1.

To have an edge labeled n−1, we must have adjacent vertices labeled either 0, n−1
or 1, n. If a vertex is labeled either 1 or n− 1, then we have an edge labeled 1, that
is, we have c = 1 or, equivalently, n = q. This implies that f is a graceful labeling of
Kp, which is impossible by Theorem 3.4. Therefore, we conclude that β (Kp) = +∞
for all p ≥ 5. �

4 The Strong Beta-Number of Forests

It has been conjectured by Kotizg (see [7]) that every nontrivial tree is graceful.
In light of this conjecture, it seems natural to ask the question of whether one can
compute or at least bound βs (T ) for a nontrivial tree T . Indeed, we prove in the
following result that every forest has finite strong beta-number. Our proof uses the
concept of distance in a graph. For a connected graph G and a pair of u, v ∈ V (G),
the distance d (u, v) between u and v is the length of a shortest u− v path in G.

Theorem 4.1 If F is a forest, then βs (F ) < +∞.

Proof: Let F ∼= ⋃n
i=1 Ti be a forest that is the vertex disjoint union of n nontrivial

trees T1, T2, . . . , Tn such that each tree has been drawn in the plane as a rooted
tree. For each tree Ti (i ∈ [1, n]), choose a distinguished vertex to be the root of Ti.
We will denote such a vertex by ri. Of course, if a tree Ti is drawn as a rooted tree
in the plane, then by letting

Si,d = {v ∈ V (Ti) : d = d (ri, v) ≥ 0} ,
each vertex of Si,d can be ordered from left to right using the integers 1, 2, . . . , |Si,d|.
Hence, Si,d can be written as

Si,d =

{
v1i,d, v

2
i,d, . . . , v

|Si,d|
i,d

}
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for each d running from 1 up to the ‘height’ of Ti, where the upper subscript of each
vertex in Si,d represents the order that the vertex occupies in Si,d starting from left
to right. If we let

Ei,d = {uv ∈ E (Ti) : u ∈ Si,d and v ∈ Si,d+1} ,
then the edges of Ei,d can be also ordered from left to right in increasing order starting
with 1 and ending up with |Ei,d|. Thus, we will write eji,d for the edge of Ei,d, where

j denotes the position of the edge in Ei,d. This means that if eji,d, e
k
i,d ∈ Ei,d with

j < k, then eji,d is located to the left of eki,d in the drawing of Ti in the plane.

From now on, for any vertex labeling f : V (F ) → N∪{0}, we will consider the edge
labeling g : E (F ) → N defined by g (uv) = |f (u)− f (v)| for any uv ∈ E (F ). At
this point, consider the vertex labeling f : V (F ) → N∪{0} defined by f (r1) = 0
and f

(
vj1,1

)
= j for any j ∈ [1, |S1,1|]. This implies that

{g (uv) : uv ∈ E1,0} = [1, |S1,1|] .

Next, we describe how to label the remaining vertices of T1. Consider a vertex of
the form v11,d and assume that any other vertex v11,δ (δ ∈ [0, d− 1]) has been already
labeled. Then let a = max {g (uv) : uv ∈ E1,d−2} and label the vertex v11,d in such a

way that g
(
e11,d−1

)
= a+ 1. The remaining vertices of S1,d are labeled so that

g
(
ej1,d−1

)− g
(
ej−1
1,d−1

)
= 1

for any j ∈ [2, |S1,d|]. This establishes the vertex labeling of T1.

To complete the proof, we explain how to label the vertices of Ti for an arbitrary
i ∈ [2, n]. Thereby, for the remainder of the proof, assume that i ∈ [2, n]. Now, let
bi−1 = max {f (v) : v ∈ V (Ti−1)} and label the root ri of Ti with bi−1 + 1. Also, let
ai−1 = max {g (uv) : uv ∈ E (Ti−1)} and label the vertices of Si,1 in such a way that

g
(
e1i,0

)
= ai−1 + 1 and g

(
eji,0

)− g
(
ej−1
i,0

)
= 1

for any j ∈ [2, |Si,1|]. Moreover, consider a vertex of the form v1i,d and assume

that any other vertex vji,δ (δ ∈ [0, d− 1]) has been already labeled. Then let ci =

max {g (uv) : uv ∈ Ei,d−2} and label each vertex v1i,d in such a way that g
(
e1i,d−1

)
=

ci + 1. The remaining vertices of Si,d are labeled so that

g
(
eji,d−1

)− g
(
ej−1
i,d−1

)
= 1

for any j ∈ [2, |Si,d|]. This establishes the vertex labeling of Ti for an arbitrary
i ∈ [2, n]. Consequently, this completes the vertex labeling f of F . It is now obvious
that f is an injective function and

{g (uv) : uv ∈ E (F )} = [1, |E (F )|] .
Therefore, we conclude that βs (F ) < +∞ for any forest F . �
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A tree can be considered as a forest with one component. Thus, the next result
immediately follows from the proof of Theorem 4.1.

Corollary 4.2 If T is a nontrivial tree, then βs (T ) < +∞.

The remainder of this section concerns the (strong) beta-number of two kinds of
forests. We start with the forest that consists of two disjoint copies of a star. For
this, let Sm denote the star with m + 1 vertices. Before presenting our next result,
we require another definition here. The neighborhood N (v) of a vertex v in a graph
G is the set of all vertices of G that are adjacent to v.

Theorem 4.3 For every two positive integers m and n,

βs (Sm ∪ Sn) = β (Sm ∪ Sn) =

{
m+ n+ 1, if mn is even;
m+ n+ 2, if mn is odd.

.

Proof: Let m and n be positive integers, and define the forest F ∼= Sm ∪ Sn with

V (F ) = {x, y} ∪ {zi : i ∈ [1, m]} ∪ {wi : i ∈ [1, n]}
and

E (F ) = {xzi : i ∈ [1, m]} ∪ {ywi : i ∈ [1, n]} .
First, suppose that mn is even. By Lemma 1.1, we obtain that βs (F ) ≥ β (F ) ≥
m + n + 1. Next, we show that β (F ) ≤ βs (F ) ≤ m + n + 1. To do this, without
loss of generality, we may assume that m is even, and consider the vertex labeling
f : V (F ) → [0, m+ n + 1] such that f (x) = 0; f (y) = m+ n+ 1;

f (zi) =

{
i, if i ∈ [1, m/2] ;
n+ i, if i ∈ [m/2 + 1, m] ;

and f (wi) = m/2 + n + 1− i, if i ∈ [1, n]. Notice that f (x) = 0;

{f (zi) : i ∈ [1, m/2]} = [1, m/2] ;
{f (wi) : i ∈ [1, n]} = [m/2 + 1, m/2 + n] ;
{f (zi) : i ∈ [m/2 + 1, m]} = [m/2 + n+ 1, m+ n] ;

and f (y) = m+ n+ 1, which implies that f is a bijective function. Notice also that

{|f (x)− f (zi)| : i ∈ [1, m/2]} = [1, m/2] ;
{|f (y)− f (wi)| : i ∈ [1, n]} = [m/2 + 1, m/2 + n] ;
{|f (x)− f (zi)| : i ∈ [m/2 + 1, m]} = [m/2 + n+ 1, m+ n] .

Consequently,
{|f (u)− f (v)| : uv ∈ E (F )} = [1, |E (F )|] ,

and thus βs (F ) ≤ m + n + 1. Therefore, it follows from this and Lemma 1.1 that
βs (F ) = β (F ) = m+ n + 1 when mn is even.
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For the case where mn is odd, assume, to the contrary, that there exists an injective
function g : V (F ) → [0, m+ n + 1] such that β (F ) = m + n + 1. Since both
|V (F )| = m+ n + 2 and |E (F )| = m+ n are even, it follows that

|{v ∈ V (F ) : g (v) is even}| = |{v ∈ V (F ) : g (v) is odd}|
= (m+ n) /2 + 1

and

|{uv ∈ E(F ) : |g(u)− g(v)| is even}| = |{uv ∈ E(F ) : |g(u)− g(v)| is odd}|
= (m+ n)/2.

Now, consider the following three cases according to the parity of g (x) and g (y).

Case 1: Suppose that both g (x) and g (y) are odd. Then we have

|{v ∈ N (x) ∪N (y) : g (v) is odd}|
= |{uv ∈ E (F ) : |g (u)− g (v)| is even}| ,

implying that

|{uv ∈ E (F ) : |g (u)− g (v)| is even}| = (m+ n) /2− 1.

This contradicts the fact that

|{uv ∈ E (F ) : |g (u)− g (v)| is even}| = (m+ n) /2.

Case 2: Suppose that both g (x) and g (y) are even. Then we have

|{uv ∈ E (F ) : |g (u)− g (v)| is even}|
= |{v ∈ N (x) ∪N (y) : g (v) is even}| ,

and the value of |{v ∈ N (x) ∪N (y) : g (v) is even}| is integer and is also equal
to (m+ n) /2 − 1, since both m and n are odd. This contradicts the fact that
|{uv ∈ E (F ) : |g (u)− g (v)| is even}| = (m+ n) /2.

Case 3: Suppose that either g (x) or g (y) is even. Without loss of generality, we
may assume that g (x) is even and g (y) is odd. Then we have

|{uv ∈ E (F ) : |g (u)− g (v)| is even}|
= |{v ∈ N (x) : g (v) is even}|+ |{v ∈ N (y) : g (v) is odd}| .

If we let l = |{v ∈ N (x) : g (v) is even}|, then we have

|{v ∈ N (y) : g (v) is odd}| = (m+ n) /2− (m− l) ,

which implies that

|{uv ∈ E (F ) : |g (u)− g (v)| is even}| = l + (m+ n) /2− (m− l) .
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The last equation together with

|{uv ∈ E (F ) : |g (u)− g (v)| is even}| = (m+ n) /2

yields the equality,

(m+ n) /2 = l + (m+ n) /2− (m− l) ,

implying that m = 2l. This contradicts our assumption that m is odd.

Hence, it follows from the above cases and Lemma 1.1 that βs (F ) ≥ β (F ) ≥ m+n+2
when mn is odd.

Next, we show that β (F ) ≤ βs (F ) ≤ m+n+2 when mn is odd. To do this, consider
the vertex labeling h : V (F ) → [0, m+ n + 2] such that h (x) = m+n+2; h (y) = 0;

h (zi) =

{
m+ n + 2− i, if i ∈ [1, (m+ 1) /2] ;
m+ 2− i, if i ∈ [(m+ 1) /2 + 1, m] ;

and h (wi) = (m+ 1) /2 + i, if i ∈ [1, n]. Notice that h (y) = 0;

{h (zi) : i ∈ [(m+ 1) /2 + 1, m]} = [2, (m+ 1) /2] ;
{h (wi) : i ∈ [1, n]} = [(m+ 1) /2 + 1, (m+ 1) /2 + n] ;
{h (zi) : i ∈ [1, (m+ 1) /2]} = [(m+ 1) /2 + n+ 1, m+ n+ 1] ;

and h (x) = m+n+2, which implies that h is an injective function. Notice also that

{|h (x)− h (zi)| : i ∈ [1, (m+ 1) /2]} = [1, (m+ 1) /2] ;
{|h (y)− h (wi)| : i ∈ [1, n]} = [(m+ 1) /2 + 1, (m+ 1) /2 + n] ;
{|h (x)− h (zi)| : i ∈ [(m+ 1) /2 + 1, m]} = [(m+ 1) /2 + n + 1, m+ n] .

Consequently,
{|h (u)− h (v)| : uv ∈ E (F )} = [1, |E (F )|] ,

and thus βs (F ) ≤ m + n + 2. Therefore, it follows from this and Lemma 1.1 that
βs (F ) = β (F ) = m+ n + 2 when mn is odd. �

Our final result in this section concerns forests that are disjoint unions of paths
and stars. For this, let Pm denote the path with m vertices.

Theorem 4.4 For every two integers m and n with m ≥ 2 and n ≥ 1,

βs (Pm ∪ Sn) = β (Pm ∪ Sn) =

⎧⎨
⎩

m+ n, if m = 2 and n is even
or m ≥ 3 and n ≥ 1;

m+ n+ 1, if m = 2 and n is odd.
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Proof: Let F ∼= Pm ∪Sn, where m and n are positive integers. For m = 2 or 3 and
n ≥ 1, the result directly follows from Theorem 4.3. Thus, in light of Lemma 1.1, it
suffices to show that βs (F ) ≤ m + n for m ≥ 4 and n ≥ 1. To do this, define the
forest F with

V (F ) = {xi : i ∈ [1, m]} ∪ {y} ∪ {zi : i ∈ [1, n]}
and

E (F ) = {xixi+1 : i ∈ [1, m− 1]} ∪ {yzi : i ∈ [1, n]} ,
and consider four cases for the vertex labeling f : V (F ) → [0, m+ n].

Case 1: For m = 4k, where k is a positive integer, let f (x1) = 4k + n; f (x3) =
4k + n− 2;

f (xj) =

⎧⎪⎪⎨
⎪⎪⎩

n− 1 + 2i, if j = 4i− 2 and i ∈ [1, k] ;
n− 2 + 2i, if j = 4i and i ∈ [1, k] ;
4k + n− 2− 2i, if j = 4i+ 1 and i ∈ [1, k − 1] ;
4k + n− 1− 2i, if j = 4i+ 3 and i ∈ [1, k − 1] ;

f (y) = 4k + n− 1; and f (zi) = i− 1, if i ∈ [1, n].

Case 2: For m = 4k + 1, where k is a positive integer, let f (x1) = 4k + n+ 1;

f (xj) =

⎧⎪⎪⎨
⎪⎪⎩

n− 1 + 2i, if j = 4i− 2 and i ∈ [1, k] ;
4k + n− 2i, if j = 4i− 1 and i ∈ [1, k] ;
n− 2 + 2i, if j = 4i and i ∈ [1, k] ;
4k + n+ 1− 2i, if j = 4i+ 1 and i ∈ [1, k] ;

f (y) = 4k + n; and f (zi) = i− 1, if i ∈ [1, n].

Case 3: For m = 4k + 2, where k is a positive integer, let f (x1) = 4k + n + 2;
f (x3) = 4k + n;

f (xj) =

⎧⎪⎪⎨
⎪⎪⎩

n− 1 + 2i, if j = 4i− 2 and i ∈ [1, k + 1] ;
n− 2 + 2i, if j = 4i and i ∈ [1, k] ;
4k + n− 2i, if j = 4i+ 1 and i ∈ [1, k] ;
4k + n+ 1− 2i, if j = 4i+ 3 and i ∈ [1, k − 1] ;

f (y) = 4k + n+ 1; and f (zi) = i− 1, if i ∈ [1, n].

Case 4: For m = 4k + 3, where k is a positive integer, let f (x1) = 4k + n + 3;
f (x3) = 4k + n+ 1;

f (xj) =

⎧⎪⎪⎨
⎪⎪⎩

n− 1 + 2i, if j = 4i− 2 and i ∈ [1, k] ;
n− 2 + 2i, if j = 4i and i ∈ [1, k] ;
4k + n+ 1− 2i, if j = 4i+ 1 and i ∈ [1, k] ;
4k + n+ 2− 2i, if j = 4i+ 3 and i ∈ [1, k] ;

f (x4k+2) = 2k + n; f (y) = 4k + n+ 2; and f (zi) = i− 1, if i ∈ [1, n].
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Hence, it follows from the above cases that

{f (zi) : i ∈ [1, n]} = [0, n− 1] ;
{f (xi) : i ∈ [2, m]} = [n,m+ n− 2] ;

f (y) = m+n− 1; and f (x1) = m+n, which implies that f is an injective function.
Finally, notice that

{|f (xi)− f (xi+1)| : i ∈ [1, m− 1]} = [1, m− 1] ;
{|f (y)− f (zi)| : i ∈ [1, n]} = [m,m+ n− 1] .

This implies that

{|f (u)− f (v)| : uv ∈ E (F )} = [1, |E (F )|] ,
and thus βs (F ) ≤ m+ n, which completes the proof. �

5 Conclusions

We conclude this paper with some remarks on bounds for the (strong) beta-number
and gracefulness of graphs, and three open problems.

For graceful graphs G, we have βs (G) = β (G) = |E (G)|. As we have seen in
Theorems 4.3 and 4.4, there are infinitely many forests F for which βs (F ) = β (F ) =
|V (F )| − 1. Thus, the lower bound presented in Lemma 1.1 is sharp. However, no
good upper bounds for the (strong) beta-numbers are known. This motivates us
to propose the following two problems. First, we state the problem for the strong
beta-number.

Problem 5.1 Let G be a graph such that βs (G) < +∞. Find a good upper bound
for βs (G).

There are infinitely many graphs G for which βs (G) = +∞ and β (G) < +∞ (see
Theorem 3.1 and Corollary 3.2). This leads us to propose the following problem.

Problem 5.2 Let G be a graph such that β (G) < +∞. Find a good upper bound
for β (G).

As we mentioned in the introduction, the value of grac(G) is always finite for any
graph G. In light of Lemma 1.1, the values of βs (G) and β (G) clearly provide us
upper bounds for grac(G). However, the values of βs (G) and β (G) are not necessary
finite as we have seen in the previous sections. This leads us to propose the following
problem.

Problem 5.3 Let G be a graph. Find a good upper bound for grac(G).
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