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Abstract

For a graph property P and a graph G, a subset S of the vertices of G is
a P-set if the subgraph induced by S has the property P. A P-Roman
dominating function on a graph G is a labeling f : V (G) → {0, 1, 2} such
that every vertex with label 0 has a neighbor with label 2 and the set of all
vertices with label 1 or 2 is a P-set. The P-Roman domination number
γPR(G) of G is the minimum of Σv∈V (G)f(v) over such functions. In this
paper we present results on changing and unchanging of γPR(G) when a
graph is modified by deleting an edge or a vertex. Some known results
for the ordinary Roman domination number are extended and generalized
to γPR(G). The P-Roman bondage number bPR(G) is the cardinality of
a smallest set of edges whose removal from G results in a graph with
P-Roman domination number not equal to γPR(G). We obtain upper
bounds in terms of (a) edge degree and maximum degree, (b) average de-
gree and maximum degree, (c) orientable/non orientable genus and max-
imum degree, and (d) Euler characteristic, girth and maximum degree,
for the P-Roman bondage number of a graph on topological surfaces.
We also prove that for any graph G, which admits a 2-cell embedding on
a surface with non-negative Euler characteristic, either bPR(G) ≤ 15 or
15 < bPR(G) ≤ Δ(G)− 3.

1 Introduction

All graphs considered in this article are finite, undirected, without loops or multi-
ple edges. We denote the vertex set and the edge set of a graph G by V (G) and
E(G), respectively. The subgraph induced by S ⊆ V (G) is denoted by G[S]. The
complement of a graph G is denoted by G. Let Pn, Cn and Kn denote the path,
cycle and complete graph with n vertices, respectively. For any vertex x of a graph
G, NG(x) denotes the set of all neighbors of x in G, NG[x] = NG(x) ∪ {x} and the
degree of x is dG(x) = |NG(x)|. For a subset A ⊆ V (G), let NG(A) = ∪x∈ANG(x)
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and NG[A] = NG(A) ∪ A. For a graph G, let x ∈ X ⊆ V (G). A vertex y ∈ V (G) is
an X-private neighbor of x if NG[y] ∩X = {x}. The X-private neighborhood of x,
denoted pnG[x,X], is the set of all X-private neighbors of x. The distance between
two vertices x, y ∈ V (G) is denoted by dG(x, y).

Let I denote the set of all mutually nonisomorphic graphs. A graph property is
any non-empty subset of I. We say that a graph G has the property P whenever
there exists a graph H ∈ P which is isomorphic to G. For example, we list some
graph properties:

• O = {H ∈ I : H is totally disconnected};
• C = {H ∈ I : H is connected};
• T = {H ∈ I : H is without isolates};
• F = {H ∈ I : H is a forest};
• UK = {H ∈ I : each component of H is complete};
• Dk = {H ∈ I : Δ(H) ≤ k}.
A graph property P is called hereditary (induced-hereditary), if from the fact that

a graph G has the property P, it follows that all subgraphs (induced subgraphs) of
G also belong to P. A property is called additive if it is closed under taking disjoint
unions of graphs. A property P is called nondegenerate if O ⊆ P. Note that:
(a) O, F and Dk are nondegenerate, additive and hereditary properties; (b) UK is
nondegenerate, additive, induced-hereditary and is not hereditary; (c) C is neither
additive nor induced-hereditary nor nondegenerate; (d) T is additive but neither
induced-hereditary nor nondegenerate. Further, an additive and induced-hereditary
property is always nondegenerate. Any set S ⊆ V (G) such that the subgraph G[S]
possesses the property P is called a P-set. For a survey on this subject we refer to
Borowiecki et al. [4].

A dominating set for a graph G is a subset D ⊆ V (G) of vertices such that every
vertex not in D is adjacent to at least one vertex in D. The minimum cardinality of
a dominating set is called the domination number of G and is denoted by γ(G). The
concept of domination in graphs has many applications to several fields. Domination
naturally arises in facility location problems, in problems involving finding sets of
representatives, in monitoring communication or electrical networks, and in land
surveying. Many variants of the basic concepts of domination have appeared in the
literature. We refer to [13, 14] for a survey of the area.

The domination number with respect to the graph property P, denoted by γP(G),
is the smallest cardinality of a dominating P-set of a graph G. Note that there
may be no dominating P-set of G at all. For example, all graphs having at least
two isolated vertices are without dominating P-sets, where P ∈ {C, T }. On the
other hand, if a property P is nondegenerate then every maximal independent set
is a dominating P-set and thus γP(G) exists. This fact will be used in the sequel,
without specific reference. A dominating P-set of G with cardinality γP(G) is called
a γP(G)-set. The concept of domination with respect to any graph property P was
introduced by Goddard et al. [6] and has been studied, for example, in [15], [24],
[25] and elsewhere. Note that γO(G), γC(G), γT (G), γF(G) and γDk(G), are the
well known as the independent domination number i(G), the connected domination
number γc(G), the total domination number γt(G), the acyclic domination number
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γa(G) and the k-dependent domination number γk(G), respectively (see [13]).
A variation of domination called Roman domination was introduced by ReVelle

[20, 21]. Also see ReVelle and Rosing [22] for an integer programming formulation
of the problem. The concept of Roman domination can be formulated in terms of
graphs. A Roman dominating function (RDF) on a graph G is a vertex labeling
f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label
2. For an RDF f , let V f

i = {v ∈ V (G) : f(v) = i} for i = 0, 1, 2. Since this
partition determines f , we can equivalently write f = (V f

0 ;V
f
1 ;V

f
2 ). The weight

f(V (G)) of an RDF f on G is the value Σv∈V (G)f(v), which equals |V f
1 |+2|V f

2 |. Let
P be nondegenerate property and let G be a graph. We define a Roman dominating
function f = (V f

0 ;V
f
1 ;V

f
2 ) on G to be a P-Roman dominating function, or just P-

RDF, if V f
1 ∪ V f

2 is a P-set. The P-Roman domination number γPR(G) of G is the
minimum weight of a P-RDF onG. A P-RDF with minimum weight in a graphG will
be referred to as a γPR-function onG. Note that γIR(G), γOR(G), γCR(G) and γT R(G)
are well known as the Roman domination number [5], the independence Roman
domination number (denoted by iR(G)) [1, 16], the connected Roman domination
number [11] and the total Roman domination number [11].

In this paper we concentrate on P-Roman domination when a property P is
nondegenerate. From the above definitions we immediately obtain the following
observation.

Observation 1. Let O ⊆ P2 ⊆ P1 ⊆ I and let G be a graph. Then

γR(G) = γIR(G) ≤ γP1R(G) ≤ γP2R(G) ≤ γOR(G) = iR(G). (1)

For convenience we omit the subscript I.
The rest of the paper is organized as follows. Sections 2 and 3 contain known

and preliminary results, respectively. It is often of interest to know how the value
of a graph parameter is affected when a small change is made in a graph. In this
connection, here we consider this question in the case γPR(G) when a vertex or an
edge is deleted from G. In Section 4 some known results for the ordinary Roman
domination number are extended and generalized to γPR(G). We also give necessary
and sufficient conditions for a graph G to satisfy γPR(G−v) < γPR(G) for each vertex
v of G. In Section 5, we find all graphs G for which γPR(G− e) > γPR(G) for every
edge e ∈ E(G). One measure of the stability of the P-Roman domination number of
a graph G under edge removal is the P-Roman bondage number bPR(G) which is the
cardinality of a smallest set of edges whose removal from G results in a graph with P-
Roman domination number not equal to γPR(G). We obtain upper bounds in terms
of (a) edge degree and maximum degree, (b) average degree and maximum degree, (c)
orientable/non orientable genus and maximum degree, and (d) Euler characteristic,
girth and maximum degree, for the P-Roman bondage number of a graph. We also
prove that for any graph G, which admits a 2-cell embedding on a surface with non
negative Euler characteristic, either bPR(G) ≤ 15 or bPR(G) ≤ Δ(G)− 3.
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2 Known results

The following results are important for our investigations.
An orientable compact 2-manifold Sh or orientable surface Sh (see [23]) of genus h

is obtained from the sphere by adding h handles. Correspondingly, a non-orientable
compact 2-manifold Nq or non-orientable surface Nq of genus q is obtained from
the sphere by adding q crosscaps. Compact 2-manifolds are called simply surfaces
throughout the paper. The Euler characteristic is defined by χ(Sh) = 2− 2h, h ≥ 0,
and χ(Nq) = 2−q, q ≥ 1. The Euclidean plane S0, the projective plane N1, the torus
S1, and the Klein bottle N2 are all the surfaces of nonnegative Euler characteristic.

Let

h1(x) =

{
2x+ 13 for 0 ≤ x ≤ 3
4x+ 7 for x ≥ 3

, h2(x) =

{
8 for x = 0
4x+ 5 for x ≥ 1

,

k1(x) =

⎧⎨
⎩

2x+ 11 for 1 ≤ x ≤ 2
2x+ 9 for 3 ≤ x ≤ 5
2x+ 7 for x ≥ 6.

and k2(x) =

{
8 for x = 1
2x+ 5 for x ≥ 2.

Theorem A (Ivančo [8]). If G is a connected graph of orientable genus g and min-
imum degree at least 3, then G contains an edge e = xy such that dG(x) + dG(y) ≤
h1(g). Furthermore, if G does not contain 3-cycles, then G contains an edge e = xy
such that dG(x) + dG(y) ≤ h2(g).

Theorem B (Jendrol′ and Tuhársky [9]). If G is a connected graph of minimum
degree at least 3 on a nonorientable surface of genus g ≥ 1, then G contains an edge
e = xy such that dG(x)+dG(y) ≤ k1(g). Furthermore, if G does not contain 3-cycles,
then dG(x) + dG(y) ≤ k2(g).

Theorem C. Let G be a connected graph embeddable on a surface M whose Euler
characteristic χ(M) is as large as possible and let δ(G) ≥ 5. Then G contains an
edge e = xy with dG(x) + dG(y) ≤ 11 if one of the following holds:

(i) (Wernicke [28] and Sanders [27], respectively) M ∈ {S0,N1}.

(ii) (Jendrol’ and Voss [10]) M ∈ {S1,N2} and Δ(G) ≥ 7.

A path u, v, w is a path of type (i, j, k) if dG(u) ≤ i, dG(v) ≤ j, and dG(w) ≤ k.

Theorem D (Borodin, Ivanova, Jensen, Kostochka and Yancey [3]). Let G be a
planar graph with δ(G) ≥ 3. If no 2 adjacent vertices have degree 3 then G has a
3-path of one of the following types:

(3, 4, 11) (3, 7, 5) (3, 10, 4) (3, 15, 3) (4, 4, 9) (6, 4, 8) (7, 4, 7) (6, 5, 6).

Observation E (Rad and Volkmann [19]). If G is a graph, then γR(G− e) ≥ γR(G)
for any edge e ∈ E(G).

Theorem F (Rad and Volkmann [18]). If G is a claw-free graph, then γR(G) =
iR(G).
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Theorem G (Adabi, Targhi, Rad and Moradi [1]). For any graph G of order n,
iR(G) ≤ n. Further, the equality holds if and only if G = mK2 ∪K l for some non
negative integers m, l with n = 2m+ l.

The average degree ad(G) of a graph G is defined as ad(G) = 2|E(G)|/|V (G)|.

Theorem H. (Hartnell and Rall [7]) For any connected nontrivial graph G, there
exists a pair of vertices, say u and v, that are either adjacent or at distance 2 from
each other, with the property that dG(u) + dG(v) ≤ 2ad(G).

The girth of a graph G is the length of a shortest cycle in G; the girth of a forest
is ∞.

Lemma I (Samodivkin [26]). Let G be a connected graph embeddable on a surface
M whose Euler characteristic χ is as large as possible and let the girth of G is k < ∞.
Then:

ad(G) ≤ 2k

k − 2
(1− χ

|V (G)|).

3 Preliminary results

Observation 2. Let G1, G2, . . . , Gk be mutually vertex disjoint graphs and G =
∪k
i=1Gi, k ≥ 2.

(a) If P is nondegenerate and additive then γPR(G) ≤
∑k

i=1 γPR(Gi).

(b) If P is nondegenerate and induced-hereditary then γPR(G) ≥
∑k

i=1 γPR(Gi).

(c) If P is additive and induced-hereditary then γPR(G) =
∑k

i=1 γPR(Gi).

Proof. (a) Let fi = (V fi
0 ;V fi

1 ;V fi
2 ) be a γPR-function on Gi, i = 1, 2, . . . , k. Since P is

additive, f = (∪k
s=1V

fi
0 ;∪k

s=1V
fi
1 ;∪k

s=1V
fi
2 ) is a P-RDF on G and γP(G) ≤ f(V (G)) =∑k

i=1 fi(V (Gi)) =
∑k

i=1 γPR(Gi).

(b) Let f be a γPR(G)-function and let fi = (V f
0 ∩V (Gi), V

f
1 ∩V (Gi), V

f
2 ∩V (Gi)),

i = 1, 2, . . . , k. Since P is induced-hereditary, fi is a P-RDF on Gi. This implies
γP(G) = f(V (G)) =

∑k
i=1 f(V (Gi)) =

∑k
i=1 fi(V (Gi)) ≥

∑k
i=1 γPR(Gi).

(c) Any additive and induced-hereditary property is clearly nondegenerate. It
immediately follows by (a) and (b) that γPR(G) =

∑k
i=1 γPR(Gi).

By similar way we obtain:

Observation 3. Let G1 and G2 = Ks (s ≥ 1) be vertex disjoint graphs and G =
G1 ∪G2.

(a) If P is nondegenerate and closed under union with K1 then γPR(G) ≤
γPR(G1) + s.

(b) If P is nondegenerate and induced-hereditary then γPR(G) ≥ γPR(G1) + s.
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(c) If P is closed under union with K1 and induced-hereditary then γPR(G) =
γPR(G1) + s.

The next lemma plays a key role in the proofs of the many of our results.

Lemma 4. Let a property P be nondegenerate and induced-hereditary. Let G be
a graph and f = (V f

0 ;V
f
1 ;V

f
2 ) a P-RDF on G with V f

1 
= V (G). Then there is a
P-RDF g = (V g

0 ;V
g
1 ;V

g
2 ) on G such that g(V (G)) ≤ f(V (G)), V f

0 ⊆ V g
0 , V

g
1 ⊆ V f

1 ,
V f
2 ⊆ V g

2 and E(G[V g
1 ∪ V g

2 ]) = E(G[V f
2 ]). Furthermore:

(i) V g
2 is a P-set,

(ii) if f is a γPR-function on G then g is a γPR-function on G, and

(iii) if V f
2 is a Q-set, where Q ⊆ I and Q is closed under union with K1 then both

V g
2 and V g

1 ∪ V g
2 are Q-sets and g is a Q-RDF on G.

Proof. Since P is induced-hereditary, V f
2 is a P-set. Let h1 = (V h1

0 ;V h1
1 ;V h1

2 ), where
V h1
0 = NG(V

f
2 ) − V f

2 , V
h1
1 = V f

1 − NG(V
f
2 ) and V h1

2 = V f
2 . Hence h1 is an RDF on

G with V f
0 ⊆ V h1

0 , V h1
1 ⊆ V f

1 , f(V (G)) ≥ h1(V (G)) and no edge joins V h1
1 and V h1

2 .
Since P is induced-hereditary, h1 is a P-RDF on G and V h1

2 is a P-set. If V h1
1 is

empty or independent then g = h1. Assume there are adjacent u, v ∈ V h1
1 . Then a

function h2 = (V h2
0 ;V h2

1 ;V h2
2 ), where V h2

0 = V h1
0 ∪ (NG(v)∩V h1

1 ), V h2
1 = V h1

1 −NG[v]
and V h2

2 = V h1
2 ∪{v} is a P-RDF on G such that V h1

0 � V h2
0 , V h2

1 � V h1
1 , V h1

2 � V h2
2 ,

h2(V (G)) ≤ h1(V (G)), no edge of G joins V h2
1 and V h2

2 , |V h2
1 | < |V h1

1 | and G[V h2
2 ]

is isomorphic to G[V h1
2 ] ∪ K1. If V h2

1 is not independent we continue this process
until we get a P-RDF hk = (V hk

0 ;V hk
1 ;V hk

2 ) on G, where V hk
1 is either empty or

independent. Set g = hk.
(i) Since V g

2 ⊆ V f
1 ∪ V f

2 and V f
1 ∪ V f

2 is a P-set, V g
2 is a P-set too (P is induced-

hereditary).
(ii) γPR(G) ≤ g(V (G)) ≤ f(V (G)) = γPR(G).
(iii) We already know that V f

2 ⊆ V g
2 and E(G[V g

1 ∪ V g
2 ]) = E(G[V f

2 ]). Since Q is
closed under union with K1, both V g

2 and V g
1 ∪ V g

2 are Q-sets.

Corollary 5. Let O ⊆ P1 ⊆ P2 ⊆ I and let G be a graph. Let P1 be closed
under union with K1 and P2 induced-hereditary. If there is a γP2R-function f =
(V f

0 ;V
f
1 ;V

f
2 ) on G such that V f

2 is a P1-set then γP1R(G) = γP2R(G).

Proof. By Lemma 4, there is a γP2R-function g = (V g
0 ;V

g
1 ;V

g
2 ) on G such that V f

0 ⊆
V g
0 , V

f
2 ⊆ V g

2 , V
g
1 ∪V g

2 −V f
2 is independent and no edge of G joins V g

1 ∪V g
2 −V f

2 and
V f
2 . Since P1 is closed under union with K1 and V f

2 is a P1-set, V
g
1 ∪ V g

2 is a P1-set
which implies g is a P1-RDF. Hence γP2R(G) ≤ γP1R(G) ≤ g(V (G)) = γP2R(G).

Observation 6. ([5] when P = I) Let a property P be nondegenerate and induced-
hereditary. Let f = (V f

0 ;V
f
1 ;V

f
2 ) be any γPR(G)-function. Then Δ(G[V f

1 ]) ≤ 1 and
no edge of G joins V f

1 and V f
2 . If |V

f
1 | is a minimum then V f

1 is independent and if
in addition G is isolate-free then V f

0 ∪ V f
2 is a vertex cover.
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Proof. Suppose u, v, w ∈ V f
1 and uv, vw ∈ E(G). Then g = (V f

0 ∪ {u, w};V f
1 −

{u, v, w};V f
2 ∪ {v}) is an RDF on G with g(V (G)) = f(V (G)) − 1. Since P is

induced-hereditary, g is a P-RDF on G, a contradiction. Thus Δ(G[V f
1 ]) ≤ 1. If

x ∈ V f
1 and y ∈ V f

2 are adjacent then h = (V f
0 ∪ {x};V f

1 − {x};V f
2 ) is a P-RDF

on G with h(V (G)) = f(V (G)) − 1, a contradiction. If z, t ∈ V f
1 are adjacent then

l = (V f
0 ∪ {z};V f

1 − {z, t};V f
2 ∪ {t}) is a P-RDF on G with l(V (G)) = f(V (G))

and |V l
1 | < |V f

1 |. Hence if |V f
1 | is a minimum then V f

1 is independent. Since the
complement of an independent set of an isolate-free graph is a vertex cover, the
result follows.

Observations 1, 2, 3 and 6 will be used in the sequel without specific reference.

Proposition 7. Let a property P be nondegenerate. For any graph G of order n,
1 ≤ γPR(G) ≤ n. Moreover: (a) γPR(G) = 1 if and only if G = K1, (b) γPR(G) = 2
if and only if either G = K2 or Δ(G) = n− 1 ≥ 1, and (c) γPR(G) = n if and only
if Δ(G) ≤ 1.

Proof. (a) and (b): Obvious.
(c) If Δ(G) ≤ 1 then clearly γPR(G) = n. If γPR(G) = n then iR(G) = n and the

result follows by Theorem G.

Observation 8. Let a property P be nondegenerate. Then γPR(Cn) = �2n/3� and
γPR(Pm) = �2m/3�.

Proposition 9. Let a property P be nondegenerate. For any graph G, ([5] when
P = I) γP(G) ≤ γPR(G) ≤ 2γP(G). Moreover, γP(G) = γPR(G) if and only if G
has no edges.

Proof. Let f = (V f
0 ;V

f
1 ;V

f
2 ) be any γPR(G)-function. Then V f

1 ∪V f
2 is a dominating

P-set ofG. Hence, γP(G) ≤ |V f
1 |+|V f

2 | ≤ |V f
1 |+2|V f

2 | = γPR(G). If γP(G) = γPR(G)
then V f

2 = ∅ which implies V f
0 = ∅. Therefore γP(G) = γPR(G) = |V f

1 | = |V (G)|.
But then G has no edges. Clearly, if G has no edges then γP(G) = γPR(G) = |V (G)|.

Now, let D be a minimum dominating P-set of G. Then g = (V (G)−D, ∅, D) is
a P-RDF on G and 2γP(G) = 2|D| ≥ γPR(G).

We will say that a graph G is a P-Roman graph (P is nondegenerate) if γPR(G) =
2γP(G). Any nonempty n-order graph having a vertex of degree n−1 is a P-Roman
graph. All Roman paths and cycles are P3k, C3k, P3k+2, and C3k+2 (by Observation
8). Results on Roman graphs (P = I) may be found in [5].

4 Vertex removal

In this section we examine the effects on the P-Roman domination number when a
graph is modified by deleting a vertex. According to the effects of vertex removal on
the P-Roman domination number of a graph G, let

• V +
PR(G) = {v ∈ V (G) | γPR(G− v) > γPR(G)},

• V −
PR(G) = {v ∈ V (G) | γPR(G− v) < γPR(G)},
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• V 0
PR(G) = {v ∈ V (G) | γPR(G− v) = γPR(G)}.

Clearly {V −
PR(G), V 0

PR(G), V +
PR(G)} is a partition of V (G).

Theorem 10. Let a property P be induced-hereditary and closed under union with
K1, and let G be a graph of order at least 2. For any vertex v in a graph G, γPR(G)−
1 ≤ γPR(G− v). Moreover:

(i) If γPR(G)− 1 = γPR(G− v) then there is a γPR-function f = (V f
0 ;V

f
1 ;V

f
2 ) on

G− v such that all vertices in V f
1 are isolated in (G− v)[V f

1 ∪ V f
2 ] and one of

the following holds:

(i.1) NG(v) ⊆ V f
0 and g = (V f

0 ;V
f
1 ∪ {v};V f

2 ) is a γPR-function on G;

(i.2) all neighbors of v but one, say w, belong to V f
0 , f(w) = 1, g = (V f

0 ∪
{w};V f

1 −{w};V f
2 ∪{v}) is a γPR-function on G and pnG[v, V

g
2 ] = {v, w}.

(ii) If there is a γPR-function f = (V f
0 ;V

f
1 ;V

f
2 ) on G such that f(v) = 1 then

γPR(G− v) = γPR(G)− 1.

(iii) Let f = (V f
0 ;V

f
1 ;V

f
2 ) be a γPR-function on G such that f(v) = 2 and

pnG[v, V
f
2 ] = {v, u}. Then γPR(G − v) = γPR(G) − 1, NG−v[u] ⊆ V f

0 , h =
(V f

0 − {u};V f
1 ∪ {u};V f

2 − {v}) is a γPR-function on G − v, and l = (V f
0 ∪

{v}−{u};V f
1 ;V

f
2 ∪{u}−{v}) is a γPR-function on G with pnG[u, V

l
2 ] = {u, v}.

If P is closed under union with K2 then p = (V f
0 −{u};V f

1 ∪ {u, v};V f
2 −{v})

is a γPR-function on G.

Proof. Theorem 10 is true when γPR(G) = |V (G)|, because of Proposition 7(c). So,
let γPR(G − v) < γPR(G) < |V (G)|. We shall prove simultaneously that γPR(G −
v) = γPR(G) − 1 and that (i) holds. Since γPR(G − v) < |V (G − v)|, there is
a γPR-function on G − v, say t0, with nonempty V t0

2 . Note that no edge joins
v and V t

2 for each γPR-function t on G − v - otherwise t1 = (V t
0 ∪ {v};V t

1 ;V
t
2 )

is a P-RDF on G with t1(V (G)) = t(V (G − v)), a contradiction. By Lemma 4
there exists a γPR-function h = (V h

0 ;V
h
1 ;V

h
2 ) on G − v such that all vertices in

V h
1 are isolated in (G − v)[V h

1 ∪ V h
2 ]. If all neighbors of v are in V h

0 then since
P is closed under union with K1, l = (V h

0 ;V
h
1 ∪ {v};V h

2 ) is a P-RDF on G with
l(V (G)) = γPR(G − v) + 1 ≤ γPR(G). Hence γPR(G) − 1 = γPR(G − v) and (i.1)
holds. Now, let NG(v)∩V h

1 = {x1, . . . , xk}. Since P is induced-hereditary and closed
under union withK1, g = (V h

0 ∪{x1, . . . , xk};V h
1 −{x1, . . . , xk};V h

2 ∪{v}) is a P-RDF
on G and γPR(G) ≤ g(V (G)) = γPR(G− v)− k + 2 < γPR(G)− k + 2. Hence k = 1
which leads to γPR(G)− 1 = γPR(G− v) and g is a γPR-function on G. By the very
definition of g it immediately follows that pnG[v, V

g
2 ] = {v, x1}. Thus (i.2) holds.

(ii) Define h = (V f
0 ;V

f
1 − {v};V f

2 ). Then h is a P-RDF on G− v with h(V (G−
v)) = γPR(G)− 1.

(iii) Since v ∈ pnG[v, V
f
2 ], v is isolated in G[V f

1 ∪V f
2 ]. Since u ∈ pnG[v, V

f
2 ], uv is

the only one edge, which joins u and V f
2 . Assume M is the set of all neighbors of u

which belong to V f
1 . If M 
= ∅ then g = (V f

0 ∪M∪{v}−{u};V f
1 −M ;V f

2 ∪{u}−{v})
is a P-RDF on G with g(V (G)) < f(V (G)) = γPR(G) - a contradiction. Hence
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NG−v[u] ⊆ V f
0 . But then h is a P-RDF on G− v with h(V (G− v)) = g(V (G))−1 =

γPR(G) − 1 = γPR(G − v) and l is a P-RDF on G with l(V (G − v)) = f(V (G)) =
γPR(G). By the definition of l and pnG[v, V

f
2 ] = {v, u} it follows pnG[u, V

l
2 ] =

{v, u}. If P is closed under union with K2 then since NG({u, v})− {u, v} ⊆ V f
0 and

pnG[v, V
f
2 ] = {v, u}, it follows that p is a P-RDF on G with p(V (G)) = f(V (G)) =

γPR(G).

For each nondegenerate property P we define the following class of graphs G:
CV k

PR: γPR(G− S) < γPR(G) for any set S � V (G) with |S| = k.

Remark 11. Let a property P be nondegenerate. Any n-order graph G, n ≥ 2, with
γPR(G) = n is in CV k

PR for every k, 1 ≤ k ≤ n− 1 (by Proposition 7(c)). All cycles
belonging to the class CV 1

PR are C3k+1 and C3k+2 (by Observation 8).

An immediate consequence of Theorem 10 is the following characterization of the
class CV 1

PR.

Corollary 12. Let a property P be induced-hereditary and closed under union with
K1. A graph G is in CV 1

PR if and only if for every vertex v ∈ V (G) one of the
following holds:

(i) there is a γPR-function fv on G with fv(v) = 1;

(ii) there is a γPR-function hv on G such that hv(v) = 2 and pnG[v, V
hv
2 ] = {v, u}.

If, in addition, P is closed under union with K2 then G is in CV 1
PR if and only

if (i) holds for every vertex v of a graph G.

The class CV 1
R was introduced by Rad and Volkmann [19]. Since I is induced-

hereditary and closed under union with K1 and with K2, as an immediately conse-
quence of Corollary 12 we have the following result due to Hansberg et al. [12]: G is
in CV 1

R if and only if (i) holds for every vertex v of a graph G.

Proposition 13. ([19] when P = I) Let a property P be induced-hereditary and
closed under union with K1, and let v be a vertex of a graph G. If v ∈ V +

PR(G) then
for every γPR-function f = (V f

0 ;V
f
1 ;V

f
2 ) on G, f(v) = 2 and |pnG[v, V

f
2 ] ∩ V f

0 | ≥ 3.

Proof. Let f = (V f
0 ;V

f
1 ;V

f
2 ) be any γPR-function on G. If v 
∈ V f

2 then f1 = (V f
0 −

{v};V f
1 −{v};V f

2 ) is a P-RDF on G− v of weight at most γPR(G) - a contradiction.
Assume |M | ≤ 2, where M = pnG[v, V

f
2 ]∩V f

0 . Then f2 = (V f
0 −M ;V f

1 ∪M ;V f
2 −

{v}) is an RDF on G − v and f2(V (G − v)) ≤ γPR(G). If V f2
1 = V (G − v) then

γPR(G − v) ≤ |V (G − v)| = f2(V (G − v)) ≤ γPR(G), a contradiction. Thus V f2
2 is

not empty and it clearly is a P-set. But then there is a P-RDF f3 on G − v with
f3(V (G− v)) ≤ f2(V (G− v)) (by Lemma 4) - a contradiction.

Corollary 14. ([19] when P = I) Let a property P be induced-hereditary and closed
under union with K1. If u and v are vertices of a graph G, v ∈ V −

PR(G) and u ∈
V +
PR(G) then u and v are nonadjacent.
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Proof. Proposition 13 implies f(u) = 2 for every γPR-function f on G. By Theorem
10 it follows that all neighbors of v belong to V g

0 for some γPR-function g on G.

In the case when a property P is induced-hereditary and closed under union with
K1, Corollary 14 allow us to give a new definition of the class CV 1

PR:
CV 1

PR: γPR(G− v) 
= γPR(G) for each v ∈ V (G).

5 Edge removal

Here we present results on changing of γPR(G) when an edge is deleted fromG. When
we remove an edge from a graph G, the Roman domination number with respect to
the property P can increase or decrease. For instance, if G is a star K1,p, p ≥ 3, and
{K1, 2K1} ⊆ P ⊆ I then γPR(G) = 2 and γPR(G − e) = 3 for all e ∈ E(G). If a
graph G is obtained by three stars K1,p and three edges e1, e2, e3 joining their centers
then γFR(G) = 4 + p and γFR(G − ei) = 6, i = 1, 2, 3. So the edge set of G can be
partitioned into

• E+
PR(G) = {e ∈ E(G) | γPR(G− e) > γPR(G)},

• E−
PR(G) = {e ∈ E(G) | γPR(G− e) < γPR(G)},

• E0
PR(G) = {e ∈ E(G) | γPR(G− e) = γPR(G)}.

Note that Observation E implies E+
R (G) is empty for every graph G.

Theorem 15. Let a property P be hereditary and closed under union with K1. Let
e = xy be an edge of a graph G.

(i) Then γPR(G− e) ≤ γPR(G) + 1.

(ii) If there is a γPR-function f on G − e such that (f(x), f(y)) 
= (2, 2) then
γPR(G) ≤ γPR(G− e).

(iii) If (f(x), f(y)) = (2, 2) for some γPR-function f on G − e then γPR(G) −
min{dG(x), dG(y)}+ 3 ≤ γPR(G− e).

If e1 ∈ E(G) then γPR(G)− 1 ≤ γPR(G+ e1).

Proof. (i) Let f = (V f
0 ;V

f
1 ;V

f
2 ) be any γPR-function on G. If {f(x), f(y)} 
= {0, 2}

then since P is hereditary, f is a P-RDF on G − e which implies γPR(G − e) ≤
f(V (G − e)) = γPR(G). Let without loss of generality f(x) = 0 and f(y) = 2.
Then g = (V f

0 − {x};V f
1 ∪ {x};V f

2 ) is an RDF on G − xy, with g(V (G − xy)) =
f(V (G)) + 1 = γPR(G) + 1. Since P is hereditary, V f

2 is a P-set. Now by Lemma 4,
there is a P-RDF h on G− xy with h(V (G− xy)) ≤ g(V (G− xy)) = γPR(G) + 1.

By (i) it immediately follows that if e1 ∈ E(G) then γPR(G)− 1 ≤ γPR(G+ e1).
(ii) and (iii): Let l = (V l

0 ;V
l
1 ;V

l
2 ) be any γPR-function on G − xy. Hence l is

an RDF on G. If one of l(x) and l(y) is 0 then l is a P-RDF on G. If V l
1 = V (G)

then γPR(G) ≤ |V (G)| = |V l
1 | = γPR(G − e). So let V l

2 is not empty. If l(x) = 1
and l(y) 
= 0, or visa versa then by Lemma 4 it follows that there is a P-RDF l1 on
G with l1(V (G)) ≤ l(V (G)) = l(V (G − xy)). It remains the case l(x) = l(y) = 2.
Define an RDF l2 on G as follows: l2(x) = 0, l2(v) = 1 if v ∈ pnG[x, V

l
2 ] ∩ V l

0 and
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l2(v) = l(v) - otherwise. Hence l2(V (G)) = l(V (G−xy))−2+ |pnG−xy[x, V
l
2 ]∩V l

1 | ≤
γPR(G − xy) − 2 + dG−xy(x) = γPR(G − xy) − 3 + dG(x). The result follows, since
Lemma 4 implies the existence of a P-RDF l3 on G with l3(V (G)) ≤ l2(V (G)).

Corollary 16. Let a property P be hereditary and closed under union with K1.
Let e = xy be an edge of a graph G. If min{dG(x), dG(y)} ≤ 3 then γPR(G) ≤
γPR(G−e) ≤ γPR(G)+1. In particular, if Δ(G) ≤ 3 then E(G) = E+

PR(G)∪E0
PR(G).

For every graph G and every nondegenerate property P, we define the Roman
bondage (minus Roman bondage, plus Roman bondage, respectively) number with
respect to the property P, denoted bPR(G) (b−PR(G), b+PR(G), respectively) to be the
cardinality of a smallest set of edges U ⊆ E(G) such that γPR(G − U) 
= γPR(G)
(γPR(G − U) < γPR(G), γPR(G − U) > γPR(G), respectively). If γPR(G − U) ≥
γPR(G) ( γPR(G−U) ≤ γPR(G), respectively) for all U ⊆ E(G), we write b−PR(G) =
∞ (b+PR(G) = ∞, respectively).

Observation 17. Let P ⊆ I be nondegenerate and let G be a nonempty graph.

(i) Then b−IR(G) = ∞ and b+IR(G) = bIR(G) = bR(G).

(ii) If Δ(G) = 1 then b−PR(G) = b+PR(G) = bPR(G) = ∞.

(iii) If Δ(G) ≤ 2 then b−PR(G) = ∞ and b+PR(G) = b+IR(G) = bR(G).

(iv) If Δ(G) ≥ 2 then b+PR(G) < ∞ and bPR(G) < ∞.

(v) For the cycle of order n,

b−PR(Cn) = ∞ and b+PR(Cn) = bPR(Cn) =

{
3 if n ≡ 2 (mod 3),
2 otherwise.

,

(vi) For the path of order n ≥ 3,

b−PR(Pn) = ∞ and b+PR(Pn) = bPR(Pn) =

{
2 if n ≡ 2 (mod 3),
1 otherwise.

,

Proof. (i) By Observation E, γIR(G− e) ≥ γIR(G) for every edge e ∈ E(G).
(ii) The result immediately follows from Proposition 7(c).
(iii) If T is a graph with Δ(T ) ≤ 2 then γR(T ) = iR(T ) (by Theorem F) which

implies γR(T ) = γPR(T ). Hence b+PR(G) = b+IR(G) = bR(G) and b−PR(G) = b−IR(G) =
∞ (by (i)).

(iv) By Proposition 7(c), γPR(G) < |V (G)| = γPR(G−E(G)).
(v)–(vi) b−PR(Cn) = b−PR(Pn) = ∞ because of (iii). The required results for

b+PR(Cn) and b+PR(Pn) provided P = I due to Rad and Volkmann [17]. The rest
follows immediately by (iii).

The star Sn of order n, n ≥ 1, is a tree on n vertices with one vertex of degree
n− 1 and the other n− 1 having vertex degree 1.
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Theorem 18. Let a property P be hereditary and closed under union with K1. Let
G be a nonempty graph of order n, b+PR(G) = k < ∞ and the deletion of any k edges
results in a graph with increased P-Roman domination number. Then one of the
following holds.

(i) k = 1 and G is a nonempty forest in which each component is a star different
from S2.

(ii) k = 2 and G = K3 ∪Kn−3.

Proof. Case 1: k = 1. Let f be a γPR-function on G. If uv is an edge of G then
{f(u), f(v)} = {0, 2} - otherwise f is a P-RDF on G−uv, a contradiction. Assume,
without loss of generality, f(v) = 2 and f(u) = 0. It immediately follows that
NG(v) ⊆ V f

0 . If there are vertices w ∈ V (G) − {v} and x ∈ NG(v) which are
adjacent then f is a P-RDF on G− xw - a contradiction. Thus the components of
G are stars. Clearly G has no S2 as a component. Furthermore, if Sk, k ≥ 3, is a
component of G and e ∈ E(Sk) then obviously γPR(G) < γPR(G− e).

Case 2: k = 2. Then for each edge e ∈ E(G), G − e is a forest in which each
component is a star different from S2. Since k 
= 1, G has exactly one component,
say G1, which has edges; moreover G1 is not a star. First let G1 − e = Sr. If r ≥ 4
then k = 1, a contradiction. If r = 3 then G1 = K3. Since 2 = γ+

PR(K3) = γ+
PR(P3) <

γ+
PR(K2 ∪K1) = 3, the result follows.
Now let G1 − e = Sp ∪ Sq, where 1 ≤ p ≤ q, p 
= 2 and q ≥ 3. Since b+PR(P4) = 1,

(p, q) 
= (1, 3). If (p = 1 and q ≥ 4) or (p ≥ 3 and q ≥ 3) then for any pendent edge
e1 ∈ E(Sq − e), G− e1 is neither a star nor a union of stars - a contradiction.

Case 3: k ≥ 3. If k = 3 then for any edge e ∈ E(G), G − e = K3 ∪Kn−3; but
this is clearly impossible. Hence there are none for higher values of k.

For each nondegenerate property P we define the following class of graphs G:
CERPR: γPR(G− e) > γPR(G) for every edge e ∈ E(G).
The following reformulation of Theorem 18(i) gives a complete characterization

of the class CERPR.

Corollary 19. Let a property P be hereditary and closed under union with K1. A
graph G is in the class CERPR if and only if G is a nonempty forest in which each
component is a star different from S2.

For any subset U � V (G), by EU we denote the set of all edges each of which
joins U and V (G)− U .

Theorem 20. Let a property P be hereditary and closed under union with K1. Let
G be a connected graph.

(i) If v ∈ V 0
PR(G) ∪ V +

PR(G) then γPR(G− E{v}) > γPR(G).

(ii) If x ∈ V +
PR(G) then 1 ≤ γPR(G− x)− γPR(G) ≤ dG(x)− 2 and for any subset

S ⊆ E{x} with |S| ≥ dG(x)− γPR(G− v) + γPR(G), γPR(G− S) > γPR(G).
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(iii) If V −
PR(G) 
= V (G) then bPR(G) ≤ b+PR(G) ≤ min{dG(u)−γPR(G−u)+γPR(G) |

u ∈ V 0
PR(G) ∪ V +

PR(G)} ≤ Δ(G).

(iv) If b+PR(G) > Δ(G) then a graph G is in CV 1
PR.

Proof. (i) We have γPR(G− E{v}) = γPR(G− v) + 1 > γPR(G).
(ii) Assume p = γPR(G − x) − γPR(G). Let f be any γPR-function on G. Since

p > 0, by Proposition 13 it follows that f(x) = 2. Consider an RDF h = (V f
0 −

NG(x);V
f
1 ∪ (NG(x) − V f

2 );V
f
2 − {x}) on G − x. Since V h

2 is a P-set, Lemma 4
implies the existence of a P-RDF l on G − x with l(V (G − x)) ≤ h(V (G − x)).
But then γPR(G) + p = γPR(G − x) ≤ h(V (G − x)) ≤ γPR(G) + dG(x) − 2. Hence
1 ≤ p ≤ dG(x)−2. For any set S ⊆ E{x} with |S| ≥ dG(x)−p we have γPR(G−S) ≥
γPR(G−E{x})−|E{x}|+ |S| ≥ (γPR(G−x)+1)−dG(x)+(dG(x)−p) = γPR(G)+1,
where the first inequality follows from Theorem 15.

(iii) The result follows immediately by (i) and (ii).
(iv) Immediately by (iii).

We remark that Theorem 20(iv) shows that the class CV 1
PR will play an important

role in the study of the plus bondage number with respect to property P.
Given a graph G of order n, let Ĝ be the graph of order 5n obtained from G by

attaching the central vertex of a copy of P5, to each vertex of G.

Proposition 21. Let a property P be nondegenerate and let G be a graph of order
n. Then:

(i) Ĝ is a P-Roman graph with γP(Ĝ) = 2n and γPR(Ĝ) = 4n;

(ii) V (Ĝ) = V −
PR ∪ V 0

PR and V 0
PR = V (G);

(iii) [2] bR(Ĝ) = δ(G) + 2.

Proof. Clearly the set S of all support vertices of a graph Ĝ form a γP(Ĝ)-set. Hence

γP(Ĝ) = 2n and by Proposition 9, γPR(Ĝ) ≤ 4n. Since γPR(P5) = γPR(P2∪P2) = 4,

we have γPR(Ĝ) = 4n. Since f = (V (Ĝ)−S; ∅;S) is a γPR-function on Ĝ, Proposition

13 implies V (Ĝ) = V −
PR ∪ V 0

PR.

Proposition 21 shows that the bound in Theorem 20(iii) is attainable for all graphs

Ĝ when P = I.

Theorem 22. Let a property P be hereditary and closed under union with K1. Let G
be a connected graph and x, y, z a path of length 2 in G. Let H be the graph obtained
from G by removing the edges incident with x, y or z with exception of yz and all
edges between y and NG(x)∩NG(y). Then there is a vertex u ∈ NG(x)∩NG[y] such
that γPR(H + xu) < γPR(H). In particular ([17] when P = I),

bPR(G) ≤ |E(G)| − |E(H)| ≤ dG(x) + dG(y) + dG(z)− 3− |NG(x) ∩NG(y)|.
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Proof. Let f = (V f
0 ;V

f
1 ;V

f
2 ) be any γPR-function on H . Since x is isolated in

H , f(x) = 1. If f(y) = 2 then g = (V f
0 ∪ {x};V f

1 − {x};V f
2 ) is a P-RDF on

H + xy of weight less than γPR(H). If f(y) = 1 then f(z) = 1 and h = (V f
0 ∪

{x, z};V f
1 −{x, y, z};V f

2 ∪{y}) is a P-RDF on H+xy with weight less than γPR(H).
Suppose f(y) = 0. If f(z) = 1 then there is t ∈ NH(y) with f(t) = 2. But
then l = (V f

0 ∪ {x};V f
1 − {x};V f

2 ) is a P-RDF on H + xt with weight less than
γPR(H). It remains the case f(y) = 0 and f(z) = 2. Suppose T is the set of
all neighbors of y in H which belong to V f

1 . As NH(y) ∩ V f
2 = {z} then q =

(V f
0 ∪ T ∪ {x, z} − {y};V f

1 − T − {x};V f
2 ∪ {y} − {z}) is a P-RDF on H + xy with

weight less than γPR(H).
Thus, bPR(G) ≤ |E(G)| − |E(H)| and the result follows.

Theorem 23. Let a property P be hereditary and closed under union with K1. Let
G be a planar graph with minimum degree δ(G) ≥ 4.

(i) Then bPR(G) ≤ 15.

(ii) Let for each path x, y, z in G if dG(y) = 4 then neither {dG(x), dG(z)} = {6, 8}
nor dG(x) = dG(z) = 7. Then bPR(G) ≤ 14.

Proof. The results follow by combining Theorem D and Theorem 22.

For any edge e = xy ∈ E(G), let ξ(e) = dG(x)+dG(y)−2 and let ξ(G) = min{ξ(e)
: e ∈ E(G)}. The parameter ξ(G) is called the minimum edge-degree of G.

Theorem 24. Let a property P be hereditary and closed under union with K1 and
let G be a connected graph with Δ(G) ≥ 2.

(i) Then bPR(G) ≤ ξ(G) + Δ(G)− 1.

(ii) If G is of orientable genus g and δ(G) ≥ 3, then bPR(G) ≤ h1(g) + Δ(G)− 3.
Furthermore, if G does not contain 3-cycles, then bPR(G) ≤ h2(g)+Δ(G)− 3.

(iii) If G is of nonorientable genus g and δ(G) ≥ 3, then bPR(G) ≤ k1(g)+Δ(G)−3.
Furthermore, if G does not contain 3-cycles, then bPR(G) ≤ k2(g) +Δ(G)− 3.

(iv) Then bPR(G) ≤ 2ad(G) + Δ(G)− 3.

(v) Let G be embeddable on a surface M whose Euler characteristic χ is as large
as possible. If G has order n and girth k < ∞ then:

bPR(G) ≤ 4k

k − 2
(1− χ

n
) + Δ(G)− 3.

Proof. (i) Since Δ(G) ≥ 2, there is a path x, y, z in G such that ξ(xy) = ξ(G). Now,
by Theorem 22 we have bPR(G) ≤ dG(x) + dG(y) + dG(z)− 3 ≤ ξ(G) + dG(z)− 1 ≤
ξ(G) + Δ(G)− 1.

(ii) Combining (i) and Theorem A we obtain the required.
(iii) The result follows by combining Theorem B and (i).
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(iv) If G is a complete graph then clearly bPR(G) ≤ Δ(G). Hence we may assume
G has nonadjacent vertices. Theorem H implies that there are 2 vertices, say x
and y, that are either adjacent or at distance 2 from each other, with the property
that dG(x) + dG(y) ≤ 2ad(G). Since G is connected and Δ(G) ≥ 2, there is a
vertex z such that xyz or xzy is a path. In either case by Theorem 22 we have
bPR(G) ≤ dG(x) + dG(y) + dG(z)− 3 ≤ 2ad(G) + Δ(G)− 3.

(v) Lemma I and (iv) together imply the result.

Theorem 25. Let a property P be hereditary and closed under union with K1.
Let G be a connected graph 2-cell embedded on a surface with non negative Eu-
ler characteristic. Let V≤5 = {v ∈ V (G) | dG(v) ≤ 5}, G≥6 = G − V≤5 and
Ak = {u ∈ V (G≥6) | dG≥6

(u) ≤ 6 and |NG(u) ∩ V≤5| = k}. Then exactly one of
the following holds:

(i) bPR(G) ≤ 15;

(ii) A2 = ∅, A≥3 = ∪i≥3Ai 
= ∅ and 15 < bPR(G) ≤ min{dG(u) | u ∈ A≥3} − 3 ≤
Δ(G)− 3.

Proof. If 2 ≤ Δ(G) ≤ 6 or A2 is not empty then Theorem 22 implies bPR(G) ≤ 15.
Assume now that each vertex of degree at most 6 in G≥6 has no more than one
neighbor in V≤5. It immediately follows that δ(G≥6) ≥ 5. First assume δ(G≥6) = 5.
By Theorem C, there is an edge xy ∈ E(G≥6) such that dG≥6

(x) + dG≥6
(y) ≤ 11.

Hence dG(x) + dG(y) ≤ 13. Let without loss of generality dG≥6
(x) ≤ dG≥6

(y). Then
x has exactly one neighbor in V≤5, say v. By Theorem 22 applied to the path v, x, y
we have bPR(G) ≤ 5+13−3 = 15. Now let δ(G≥6) ≥ 6. But then G≥6 is a 6-regular
triangulation on the torus or in the Klein bottle. If G = G≥6 then Theorem 22
leads to bPR(G) ≤ 13. If G 
= G≥6 then G has a path x, y, z where dG(z) ≤ 5, and
both x and y are in the same face of the triangulation. Again by Theorem 22 we
obtain bPR(G) ≤ 7 + 7 + 5 − 3 − 2 = 14. Assume now that Δ(G) ≥ 7, A2 = ∅,
A≥3 
= ∅ and 15 < bPR(G). Let u ∈ A≥3 and v1, v2, v3 ∈ NG(u) ∩ V≤5. Denote
by E1 the set of all edges of G which are incident to at least one of v1, v2 and v3.
Since bPR(G) ≥ 16, γPR(G − E1) = γPR(G). Clearly, for any γPR-function f on
G − E1, f(v1) = f(v2) = f(v3) = 1. If there is a γPR-function g on G − E1 with
g(u) 
= 0 then g1 = (V g

0 ∪ {v1, v2, v3};V g
1 − {u, v1, v2, v3};V g

2 ∪ {u}) is a P-RDF
on (G − E1) ∪ {uv1, uv2, uv3} with weight less than g(V (G − E1)) = γPR(G), a
contradiction. Thus, for any γPR-function g on G− E1, g(u) = 0.

Let Gu be the graph obtained from G by deleting all edges incident to u with
exception of uv1, uv2 and uv3. If h is a γPR-function on G − E1 then h1 = ((V h

0 ∪
{v1, v2, v3}) − {u};V h

1 − {v1, v2, v3};V h
2 ∪ {u}) is a P-RDF on Gu and γPR(G) =

h(V (G− E1)) > h1(V (Gu)).

We conclude with the following question.

Question 1. Let a graph G admit a 2-cell embedding on a surface with non negative
Euler characteristic and let a property P be hereditary and closed under union with
K1. Is it true that bPR(G) ≤ 15?
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Note that in [2], Akbari, Khatirinejad and Qajar recently proved that bR(G) ≤ 15
provided G is a planar graph.
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