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Abstract

Let G be a simple graph on n vertices. LetH be either the complete graph
Km or the complete bipartite graph Kr,s on a subset of the vertices in G.
We show that G contains H as a subgraph if and only if βi,α(H) ≤ βi,α(G)
for all i ≥ 0 and α ∈ Z

n. In fact, it suffices to consider only the first
syzygy module. In particular, we prove that β1,α(H) ≤ β1,α(G) for all
α ∈ Z

n if and only if G contains a subgraph that is isomorphic to either
H or a multipartite graph K2,...,2,a,b.

1 Introduction

A graph is planar if it can be embedded in the plane, i.e., if it can be drawn on
the plane in such a way that edges do not intersect in their interiors. This class of
graphs is exceptional in many ways; particularly, in the famous Four Color Theorem.
Kuratowski’s celebrated criterion (cf. [15]) stated that a graph G is planar if and
only if it does not contain any subgraph homeomorphic to K5 or K3,3. In this short
note, we examine an algebraic interpretation of this criterion.

Our framework will be via the edge ideal construction. This construction gives
a one-to-one correspondence between simple graphs and squarefree monomial ideals
generated in degree 2. More specifically, let G = (V,E) be a simple graph over the
vertex set V = {x1, . . . , xn}. Let k be a field and identify the vertices in G with
variables in the polynomial ring R = k[x1, . . . , xn]. The edge ideal of G is defined to
be

I(G) = 〈xixj | {xi, xj} ∈ E〉 ⊆ R.

We shall investigate the graded Betti numbers of I(G) when G contains a subgraph
that is homeomorphic to K5 or K3,3.
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A graph that is homeomorphic toK5 orK3,3 can be realized as a subdivision ofK5

or K3,3. Here, a subdivision of a graph results from inserting new vertices into edges.
Algebraically, this corresponds to a sequence of replacing a minimal generator xy of
the edge ideal by two generators xz and zy, where z is a new indeterminate. The
reverse-engineering of this process is simple (i.e., finding a variable z that belongs
to exactly two minimal generators xz and zy, replacing these generators by xy,
and deleting z altogether). Hence, we shall focus on the study of the graded Betti
numbers of I(G) when G contains K5 or K3,3 as a subgraph or, more generally, when
G contains Km or Kr,s as a subgraph. Our results shall give algebraic interpretations
of when G contains Km or Kr,s as a subgraph at specified vertices.

Consider the naturally equipped Z
n-graded structure of R = k[x1, . . . , xn]. For a

multidegree α ∈ Z
n, let βi,α(G) denote the ith Z

n-graded Betti number of I(G) in
degree α. In general, for a subgraph H of G it is not necessarily true that βi,α(H) ≤
βi,α(G) for all i ≥ 0 and α ∈ Z

n (see Example 2.9). Our motivating question is: for
which graphs H if H is a subgraph of G then

βi,α(H) ≤ βi,α(G) for all i ≥ 0 and α ∈ Z
n?

Our results show that the complete and complete bipartite graphs belong to this
class. Our first main theorem is stated as follows.

Theorem 1.1 (Theorem 3.1) Let G be a simple graph on n vertices. Let H be
either the complete graph Km or the complete bipartite graph Kr,s on a subset of the
vertices in G. Then G contains H as a subgraph if and only if for all i ≥ 0 and
α ∈ Z

n,

βi,α(H) ≤ βi,α(G), (�)

Furthermore, if H = Km then we have the equality in (�) whenever supp(α) is a
subset of the vertices in H.

In general, graded Betti numbers of an ideal carry rich structures and many
properties of the ideal. Having βi,α(H) ≤ βi,α(G) for all i ≥ 0 and α ∈ Z

n is much
more than what would characterize the property that G contains Km or Kr,s as a
subgraph. In fact, it suffices to consider only the first syzygy module of the edge
ideals. Observe that if G contains Km as a subgraph then Km is actually an induced
subgraph of G. As we shall see in Lemma 3.8, in this case, multigraded Betti numbers
of Km agree with corresponding multigraded Betti numbers of G. Furthermore, we
prove the following theorem.

Theorem 1.2 (Theorem 4.1) Let G be a simple graph on n vertices. Let H be the
complete graph Km on a subset of the vertices in G. Then

β1,α(H) ≤ β1,α(G) for all multidegrees α ∈ Z
n

if and only if G contains H = Km as a subgraph.
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The story for complete bipartite graphs is more subtle. The graph G may contain
Kr,s as a subgraph but not as an induced subgraph. In this case, with one exception,
it is still enough to consider only the first syzygy module. Our next main result is
stated as follows.

Theorem 1.3 (Theorem 4.2) Let G be a simple graph on n vertices. Let H be the
complete bipartite graph Kr,s on a subset of the vertices in G. Then

β1,α(H) ≤ β1,α(G) for all multidegrees α ∈ Z
n

if and only if G contains either H = Kr,s or a K2, . . . , 2︸ ︷︷ ︸
t times

,a,b, where t ≥ 1 and a+ b+

2t = r + s, as a subgraph.

Our results fit well in a current on-going research program in combinatorial com-
mutative algebra, that investigates the correspondence between algebraic invariants
of squarefree monomial ideals and combinatorial structures of graphs. Work along
this line includes finding algebraic algorithms to detect the existence of odd cycles in
a graph (cf. [3, 13]) and to detect perfect graphs (cf. [5, 14]), and studying coloring
properties of graphs via associated primes of their edge ideals (cf. [4, 5, 11]) and the
packing and max-flow-min-cut properties of hypergraphs (cf. [6, 7, 8]).

The paper is outlined as follows. In the next section, we collect notation and
terminology in graph theory and commutative algebra that we shall use. In par-
ticular, we recall Hochster’s formula which relates multigraded Betti numbers of a
squarefree monomial ideal to reduced cohomology groups of certain simplicial com-
plexes. In Section 3, we focus on the case where H is either the complete or the
complete bipartite graph, and examine an algebraic interpretation via multigraded
Betti numbers of the property that G contains H as a subgraph. We give explicit
formulae for the multigraded Betti numbers of complete and complete multipartite
graphs. Our first main result, Theorem 1.1, is proved in this section. The paper
concludes with Section 4, where we restrict our attention to the first syzygy module
of corresponding edge ideals. We prove our main results, Theorems 1.2 and 1.3, in
this section.

2 Preliminaries

We shall follow standard texts in commutative algebra and graph theory (cf. [2, 10,
12]).

2.1 Graphs and edge ideals

Throughout the paper, G = (V,E) will denote a finite simple graph over the vertex
set V = {x1, . . . , xn}, that is, a graph with no loops nor multiple edges. For simplicity
of notation, we shall use the monomial notation for edges of a graph. That is, we
shall write xy for the edge connecting the vertices x and y.
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Definition 2.1 Let G = (V,E) be a simple graph and let l ≥ 2 be an integer.

1. G is called a complete graph if any pair of its vertices are connected by an edge.
The complete graph on m vertices is denoted by Km.

2. G is called a complete bipartite graph if there is a bipartition of the vertices in
G, V = X ·∪ Y , such that edges of G connect a vertex in X with every vertices
in Y , and only those, i.e.,

E = {xy ∣∣ x ∈ X and y ∈ Y }.

The complete bipartite graph where |X| = r and |Y | = s is denoted by Kr,s.

3. More generally, G is called a complete l-partite (or complete multipartite) graph
if there is a partition of the vertices in G, V = X1 ·∪ . . . ·∪ Xl such that the
edges in G are

E = {xy ∣∣ x ∈ Xi, y ∈ Xj for any 1 ≤ i 
= j ≤ l}.

The complete l-partite graph where |Xt| = rt, for t = 1, . . . , l, is denoted by
Kr1,...,rl.

K5 K3,3

Figure 1: Complete and complete bipartite graphs.

A graph H is called a subgraph of G if the vertices of H are vertices in G and the
edges of H are edges in G.

Definition 2.2 A subgraph H of G is called an induced subgraph if for any two
vertices x, y in H , xy is an edge in H if and only if xy is an edge in G.

For a graph G = (V,E), the complement graph of G, denoted by Gc, is the graph
over the same vertex set V , and for any x, y ∈ V , xy is an edge in Gc if and only if
xy is not an edge in G.

Definition 2.3 Let G = (V,E) be a simple graph.
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1. A collection W ⊆ V of the vertices in G is called an independent set if no two
vertices in W are connected by an edge.

2. The independence complex of G, denoted by Δ(G), is the simplicial complex
over the vertex set V , whose faces are independent sets in G.

Let k be a field and identify the variables of the polynomial ring R = k[x1, . . . , xn]
with the vertices in V = {x1, . . . , xn}.

Definition 2.4 Let G = (V,E) be a simple graph. The edge ideal of G, denoted by
I(G), is defined to be the squarefree monomial ideal

I(G) =
〈
xy

∣∣ xy ∈ E
〉 ⊆ R.

Example 2.5 Let G be the graph given in Figure 2. Then the edge ideal of G is

I(G) = (x1x2, x2x3, x3x4, x4x5, x1x6) ⊆ R = k[x1, . . . , x6].

x1 x2

x3x4

x5

x6

Figure 2: An example of graph and its edge ideal.

2.2 Multigraded Betti numbers

Let ei be the ith standard unit vector in Z
n, for i = 1, . . . , n. The polynomial

ring R = k[x1, . . . , xn] is naturally equipped with a Z
n-graded structure, given by

deg(xi) = ei.

Let M be a finitely generated Z
n-graded R-module. The minimal free resolution

of M is of the form

0 −→
⊕
α∈Zn

R(−α)βp,α(M) −→ . . . −→
⊕
α∈Zn

R(−α)β0,α(M) −→ M −→ 0.

The numbers βi,α(M) are called the Zn-graded (or multigraded) Betti numbers of M .

Remark 2.6 Let G be a simple graph on n vertices V = {x1, . . . , xn}. The multi-
graded Betti numbers of G are defined to be those of its edge ideal over the cor-
responding polynomial ring R = k[x1, . . . , xn]. In particular, we shall often write
βi,α(G) for βi,α(I(G)).
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Remark 2.7 For α = (α1, . . . , αn) ∈ Z
n, let supp(α) = {xi | αi 
= 0}, |α| = ∑n

i=1 αi,
and let xα denote the monomial xα1

1 . . . xαn
n . We shall sometimes write βi,xα(G) in

place of βi,α(G), especially when it is more natural to identify the monomial xα. For
instance, for the graph G over 6 vertices {x1, . . . , x6} in Example 2.5, we may write
β2,x5

1x
2
3x

3
6
(G) for the multigraded Betti number β2,(5,0,2,0,0,3)(G).

Remark 2.8 Consider a graph H whose vertex set is a subset of the vertices in G.
Assume, for simplicity, that the vertices in H are {x1, . . . , xm} for some m ≤ n. Let
S = k[x1, . . . , xm] be the polynomial ring corresponding to H . By the ring extension
S ↪→ R = k[x1, . . . , xn], we can consider I(H) as both an S-module and an R-
module. Since S ↪→ R is a flat extension, the minimal free resolution of I(H)R as an
R-module is obtained by tensoring that of I(H) as an S-module with R. Therefore,

βi,α(I(H)R) =

⎧⎨
⎩

βi,γ(H) if γ = (γ1, . . . , γm) ∈ Z
m, and α = (γ1, . . . , γm︸ ︷︷ ︸

γ

, 0, . . . , 0︸ ︷︷ ︸
n−m 0’s

)

0 otherwise.

This allows us to abuse notation and use βi,α(H) to denote both βi,α(I(H)R) and
βi,γ(I(H)), where γ = (γ1, . . . , γm) ∈ Z

m, and α = (γ1, . . . , γm︸ ︷︷ ︸
γ

, 0, . . . , 0︸ ︷︷ ︸
n−m 0’s

). In particu-

lar, this also makes sense of statements of the form βi,α(H) ≤ βi,α(G) for α ∈ Z
n.

Example 2.9 Consider the graph G given in Example 2.5. Clearly, G is a subgraph
of the complete graph K6. Let R = k[x1, . . . , x6] be the corresponding polynomial
ring. The minimal graded free resolution of I(G) is given by

0 −→ R(−6) −→ R4(−5) −→ R4(−3)⊕ R3(−4) −→ R5(−2) −→ I(G) −→ 0.

We shall also see in Lemma 3.5 that the edge ideal of K6 has a linear resolution.
Thus, the minimal free resolution of I(G) is not a subcomplex of that of I(K6). In
particular, graded Betti numbers of I(G) are not bounded above by that of I(K6).

This is also true for multigraded Betti numbers. In particular, we have

β1,x1x4x5x6(G) > β1,x1x4x5x6(K6).

This example shows that, in general, if H is a subgraph of G, then it is not necessarily
true that βi,α(H) ≤ βi,α(G) for all i ≥ 0 and α ∈ Z

n.

We shall often make use of the following formula of Hochster (cf. [10, Corollary

5.12]). Here, H̃• stands for simplicial cohomology.

Proposition 2.10 (Hochster’s formula) Let G be a simple graph and let Δ =
Δ(G) be its independence complex. Then the nonzero multigraded Betti numbers of
I(G) lie only in squarefree multidegrees α ∈ {0, 1}n, and we have

βi,α(I(G)) = dimk H̃
|α|−i−2(Δ

∣∣
α
; k),

where Δ
∣∣
α
denotes the restriction of Δ on supp(α), i.e.,

Δ
∣∣
α
= {τ ∈ Δ | τ ⊆ supp(α)}.
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3 Multigraded Betti numbers

In this section, we shall give an algebraic characterization for the property that a
graph contains a subgraph that is isomorphic to either the complete graph Km or
the complete bipartite graph Kr,s. Our main theorem is stated as follows.

Theorem 3.1 Let G be a simple graph on n vertices. Let H be either the complete
graph Km or the complete bipartite graph Kr,s on a subset of the vertices in G. Then
G contains H as a subgraph if and only if for all i ≥ 0 and α ∈ Z

n,

βi,α(H) ≤ βi,α(G). (�)

Furthermore, if H = Km then we have the equality in (�) whenever supp(α) is a
subset of the vertices in H.

Before proving Theorem 3.1, we shall need a number of auxiliary results. We
first start with an observation that addresses the linear strand of the resolution of
subgraphs.

Lemma 3.2 Let G be a simple graph on n vertices, and let H be a subgraph of G.
Then, for any i ≥ 0 and α ∈ Z

n such that |α| = i+ 2, we have

βi,α(H) ≤ βi,α(G).

Proof. By Hochster’s formula, Proposition 2.10, when |α| = i + 2, the multigraded
Betti numbers βi,α(H) and βi,α(G) measure the number of connected components of
Δ(H)

∣∣
α
and Δ(G)

∣∣
α
. Observe further that since H is a subgraph of G, independent

subsets in G are also independent subsets in H . Thus, Δ(G)
∣∣
α
is a subcomplex (not

necessarily induced) of Δ(H)
∣∣
α
. Hence, the number of connected components in

Δ(G)
∣∣
α
is always bounded below by that of Δ(H)

∣∣
α
. �

Remark 3.3 Since the edge ideal I(G) is generated in degree 2, the multigraded
Betti numbers βi,α(I(G)) when |α| = i + 2, under the natural graded structure,
account for linear syzygies in the resolution of I(G).

Corollary 3.4 Let G be a simple graph on n vertices, and let H be a subgraph of G.
Suppose that, under the natural graded structure of R = k[x1, . . . , xn], the edge ideal
I(H) has a linear resolution. Then, for any i ≥ 0 and α ∈ Z

n, we have

βi,α(H) ≤ βi,α(G).

Proof. Since I(H) has a linear resolution, nonzero multigraded Betti numbers of I(H)
only appear at βi,α(H) where |α| = i+ 2. The conclusion is a direct consequence of
Lemma 3.2. �
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The next two lemmas give explicit formulae for the multigraded Betti numbers
for complete and complete bipartite graphs. Similar formulae in the naturally graded
case were obtained in [9, Theorems 5.1.1 and 5.3.8] (see also [1]). Our arguments for
the multigraded case are along the same line, which we shall include for completeness.

Lemma 3.5 Let Kn be the complete graph over n vertices V = {x1, . . . , xn}. Then
the multigraded Betti numbers of I(Kn) are given as follows:

βi,α(Kn) =

{
i+ 1 if α ∈ {0, 1}n and |α| = i+ 2
0 otherwise.

Proof. Observe that the independence complex Δ = Δ(Kn) consists of isolated

vertices. Thus, the only nonzero reduced cohomology group of Δ
∣∣
α
is H̃0(Δ

∣∣
α
; k).

This, together with Hochster’s formula in Proposition 2.10, implies that βi,α(Kn) 
= 0
only if α ∈ {0, 1}n and |α| = i+2. In this case, Δ

∣∣
α
consists of i+2 isolated vertices,

which give i+ 2 connected components. Therefore,

dimk H̃
0(Δ

∣∣
α
; k) = i+ 1,

and the lemma is proved. �

Lemma 3.6 Let G = Kr1,...,rl be the complete multipartite graph with V = X1 ·∪
. . . ·∪Xl as the l-partition of its vertices, where |Xt| = rt for t = 1, . . . , l. Then, the
multigraded Betti numbers of I(G) are given as follows:

βi,α(G) =

{
cα − 1 if α = (γ1, . . . , γl)∈ {0, 1}r1×· · ·×{0, 1}rl and ∑l

t=1 |γt| = i+2
0 otherwise,

where cα denotes the number of values t such that supp(γt) 
= ∅.

Proof. Observe that the independence complex Δ = Δ(G) is the disjoint union
of l simplices over the vertices X1, . . . , Xl. Therefore, the only nonzero reduced
cohomology group of Δ

∣∣
α
is again H̃0(Δ

∣∣
α
; k). Coupled with Hochster’s formula,

Proposition 2.10, it follows that βi,α(G) 
= 0 only if α = (γ1, . . . , γl) ∈ {0, 1}r1 ×· · ·×
{0, 1}rl and |α| = ∑l

t=1 |γt| = i + 2. In this case, Δ
∣∣
α
is the disjoint union of cα

simplices, and thus, has cα connected components. Hence,

dimk H̃
0(Δ

∣∣
α
; k) = cα − 1,

and the assertion is proved. �

Corollary 3.7 Let Kr,s be the complete bipartite graph with r, s ≥ 1. Then the
multigraded Betti numbers of I(Kr,s) is given as follows:

βi,α(Kr,s) =

{
1 if α =(γ, η), 0 
= γ ∈ {0, 1}r, 0 
= η ∈ {0, 1}s, and |γ|+|η| = i+ 2
0 otherwise.
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Proof. The conclusion is a direct consequence of Lemma 3.6 by taking l = 2. �

The next lemma shows that for an induced subgraph, at appropriate multidegrees,
its Betti numbers agree with those of the bigger graph.

Lemma 3.8 Let G = (V,E) be a simple graph over n vertices and let H = (V ′, E ′)
be an induced subgraph of G on a subset V ′ ⊆ V of the vertices. Then for any i ≥ 0
and α ∈ Z

n, we have
βi,α(H) ≤ βi,α(G).

Moreover, for any i ≥ 0 and any multidegree α = (α1, . . . , αn) ∈ Z
n such that

supp(α) ⊆ V ′, we have
βi,α(G) = βi,α(H).

Proof. Observe that since H is an induced subgraph of G, the independence complex
Δ(H) is an induced subcomplex of the independence complex Δ(G). In particular,
for any α ∈ Z

n, Δ(H)
∣∣
α
is an induced subcomplex of Δ(G)

∣∣
α
. The first statement

of the lemma thus follows from Hochster’s formula in Proposition 2.10.

For the second statement of the lemma, it suffices to observe further that if supp(α) ⊆
V ′ then Δ(H)

∣∣
α
= Δ(G)

∣∣
α
, and therefore have the same cohomology groups. The

conclusion again follows from Hochster’s formula in Proposition 2.10. �

We are now ready to prove our first main result, Theorem 3.1.

Proof of Theorem 3.1. To prove the (⇐) implication, observe that the 0th Betti
numbers of the edge ideal represent edges of the graph. Thus, if β0,α(H) ≤ β0,α(G)
for all α ∈ Z

n then, in particular, edges of H are edges in G, and we are done.

Let us now prove the (⇒) implication. It follows from Lemmas 3.5 and 3.7 that
under the natural graded structure of R = k[x1, . . . , xn], both I(Km) and I(Kr,s)
have linear resolutions. Thus, by Corollary 3.4, if H is a subgraph of G then for all
i ≥ 0 and α ∈ Z

n, we have
βi,α(H) ≤ βi,α(G).

Consider furthermore the case that H = Km. As observed before, in this case, if
G contains H as a subgraph, then H is an induced subgraph of G. It then follows
from Lemma 3.8 that for α ∈ Z

n such that supp(α) is a subset of the vertices in H ,
we have

βi,α(H) = βi,α(G) for all i ≥ 0.

The theorem is proved. �

Example 3.9 Let G be the graph given in Figure 3. Then G contains K3,3 as a
subgraph. However, we have

2 = β1,x1x2x4(G) > β1,x1x2x4(K3,3) = 1.
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x4 x5 x6

x1 x2 x3

Figure 3: A graph containing K3,3 as a subgraph, having different corresponding
multigraded Betti numbers compared to that of K3,3.

This example illustrates that the second statement in Theorem 3.1 is not necessarily
true for H = Kr,s. The reason is that a Km subgraph is an induced subgraph, while
a Kr,s subgraph needs not be. The second statement in Theorem 3.1 would be true
if we assume that G is a bipartite graph.

4 Multigraded first syzygies

In this section, we shall show that to characterize the property that a graph contains
Km or Kr,s as a subgraph, with only one exception, it suffices to consider the first
syzygy module of their edge ideals.

We begin with our result for the complete graph.

Theorem 4.1 Let G be a simple graph on n vertices. Let H be the complete graph
Km on a subset of the vertices in G. Then

β1,α(H) ≤ β1,α(G) for all multidegrees α ∈ Z
n

if and only if G contains H = Km as a subgraph.

Proof. By Lemma 3.5, it can be seen that I(Km) has a linear resolution under the
natural graded structure of the corresponding polynomial ring. The (⇐) implication
thus follows from Lemma 3.2.

To prove the (⇒) implication, by considering the induced subgraph of G over the
vertices in H and making use of Lemma 3.8, we can first assume that G and H are
on the same vertex set (i.e. m = n). We shall now show that if

β1,α(H) ≤ β1,α(G) for all multidegrees α ∈ Z
n

then G is the complete graph Km.

The statement can be verified directly if n ≤ 2. Assume that n ≥ 3. Consider any
two vertices x, y in G, and suppose to the contrary that xy is not an edge in G. Let z
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be another vertex that is different from x and y. By Lemma 3.5 and the hypothesis,
we have

β1,xyz(G) ≥ β1,xyz(H) = 2.

On the other hand, since xy is not an edge in G, in the Taylor resolution of I(G)
(which is not necessarily minimal), there is at most one syzygy of degree xyz, which
if exists necessarily comes from edges yz and xz. This implies that

β1,xyz(G) ≤ 1.

We arrive at a contradiction, and the statement is proved. �

Our characterization in the case for the complete bipartite graph is stated in the
following theorem.

Theorem 4.2 Let G be a simple graph on n vertices. Let H be the complete bipartite
graph Kr,s on a subset of the vertices in G. Then

β1,α(H) ≤ β1,α(G) for all multidegrees α ∈ Z
n

if and only if G contains either H = Kr,s or a K2, . . . , 2︸ ︷︷ ︸
t times

,a,b, where t ≥ 1 and a+ b+

2t = r + s, as a subgraph.

Proof. By applying Lemma 3.8, we may assume that G and Kr,s share the same
vertex set (i.e., n = r + s). It can be seen from Lemma 3.6 that the edge ideal of a
multipartite graph has a linear resolution. Thus, the (⇐) implication follows from
Corollary 3.4.

To prove the (⇒) implication we shall use induction on n = r + s. The statement
is trivial for n ≤ 2. Assume that n ≥ 3. Let V = X ·∪ Y be the bipartition of
the vertices in Kr,s, where X = {x1, . . . , xr} and Y = {y1, . . . , ys}. It follows from
Corollary 3.7 that for any 1 ≤ i 
= j ≤ r and 1 ≤ l 
= m ≤ s,

β1,xiylxj
(Kr,s) 
= 0 and β1,ylxjym(Kr,s) 
= 0.

This implies that for any 1 ≤ i 
= j ≤ r and 1 ≤ l 
= m ≤ s,

β1,xiylxj
(G) 
= 0 and β1,ylxjym(G) 
= 0. (4.1)

Suppose that Kr,s is not a subgraph of G. Without loss of generality, assume that
x1y1 
∈ E. Then, by letting i = 1 and l = 1 in (4.1), we can conclude that for any
1 ≤ j ≤ r and any 1 ≤ m ≤ s, x1xj , x1ym, y1xj , y1ym are edges in G. In particular,
the vertices of G can be partitioned into V = X1 ·∪ V ′, where X1 = {x1, y1} and
V ′ = V \X1.

Now, let G′ be the induced subgraph of G on the vertex set V ′. Observe that the
induced subgraph of Kr,s on V ′ is the complete bipartite graph Kr−1,s−1. Consider
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any γ′ ∈ Z
|V ′| and let γ ∈ Z

n be the multidegree obtained from γ′ by inserting a 0
to the coordinates corresponding to x1 and y1. It follows from Lemma 3.8 that

β1,γ′(G′) = β1,γ(G) ≥ β1,γ(Kr,s) = β1,γ′(Kr−1,s−1).

By the induction hypothesis, G′ contains a subgraph H ′ that is either K2, . . . , 2︸ ︷︷ ︸
t−1 times

,a,b,

where 2(t− 1) + a+ b = r + s− 2, or Kr−1,s−1.

If H ′ isKr−1,s−1, then since x1 and y1 are connected to all the vertices of H ′, G clearly
contains Kr,s as a subgraph. If H ′ = K2, . . . , 2︸ ︷︷ ︸

t−1 times

,a,b then G contains K2, . . . , 2︸ ︷︷ ︸
t times

,a,b as a

subgraph. The theorem is proved. �

Theorem 4.2 restricted to K3,3, the case of interest for planar graphs, give the
following characterization. Note that K2,2,2 is a planar graph, while K3,3 is not.

X1

X2 X3

Figure 4: K2,2,2 — a planar graph having a nonzero first Betti number at every
multidegree that K3,3 does.

Corollary 4.3 Let G be a simple graph on n ≥ 6 vertices. Let H be the complete
bipartite graph K3,3 on a subset W of 6 vertices in G. Then

β1,α(H) ≤ β1,α(G) for all multidegrees α ∈ Z
n (†)

if and only if G contains either H = K3,3 or a K2,2,2 as a subgraph. In particular, if
the induced subgraph G

∣∣
W

of G on W is not a K2,2,2 then G
∣∣
W

contains a K3,3 as a
subgraph if and only if (†) holds.

Proof. Notice that K2,3,1 and K2,2,1,1 both contain K3,3 as a subgraph. The first
statement of our assertion is a direct consequence of Theorem 4.2. For the second
statement of our assertion, it suffices to observe that adding any extra edge to a
K2,2,2 always results in a graph that contains K3,3 as a subgraph. �
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Remark 4.4 Even though K2,2,2 has a nonzero Betti number at every multidegree
that K3,3 does, for |α| = 3 we in general have β1,α(K2,2,2) 
= β1,α(K3,3). Particu-
larly, for any three distinct vertices xi, xj and xk, where 1 ≤ i, j, k ≤ 6, we have
β1,xixjxk

(K3,3) = 2. On the other hand, in Figure 4, if xi, xj, xk belong to 3 distinct
subsets X1, X2 and X3 then β1,xixjxk

(K2,2,2) = 2 and if two of the vertices xi, xj , xk

belong to the same subset Xl, then β1,xixjxk
(K2,2,2) = 1.

Inspired by Example 2.9 and Corollary 3.4, we conclude the paper with the fol-
lowing problem.

Problem 4.5 Let G be a simple graph on n vertices. Identify classes of graphs H
on a subset of the vertices of G such that if G contains H as a subgraph then

β1,α(H) ≤ β1,α(G) for all α ∈ Z
n,

or more generally,

βi,α(H) ≤ βi,α(G) for all i ≥ 0 and α ∈ Z
n.
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