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Abstract

Let S be a non-empty subset of a group G. We say S is product-free if
S ∩ SS = ∅, and S is locally maximal if whenever T is product-free and
S ⊆ T , then S = T . Finally S fills G if G∗ ⊆ S �SS (where G∗ is the set
of all non-identity elements of G), and G is a filled group if every locally
maximal product-free set in G fills G. Street and Whitehead [J. Combin.
Theory Ser. A 17 (1974), 219–226] investigated filled groups and gave a
classification of filled abelian groups. In this paper, we obtain some re-
sults about filled groups in the non-abelian case, including a classification
of filled groups of odd order. Street and Whitehead conjectured that the
finite dihedral group of order 2n is not filled when n = 6k + 1 (k ≥ 1).
We disprove this conjecture on dihedral groups, and in doing so obtain
a classification of locally maximal product-free sets of sizes 3 and 4 in
dihedral groups.

1 Introduction

A non-empty subset S of a finite group G is called product-free if xy = z does
not hold for any x, y, z ∈ S. Equivalently, writing SS for {xy : x, y ∈ S}, we
have S ∩ SS = ∅. Product-free sets were originally studied in abelian groups, and
therefore they are often referred to in the literature as sum-free (or sumfree) sets. If
S is product-free in G, and not properly contained in any other product-free subset
of G, then we call S a locally maximal product-free set (see [1], [6] and [8]). On the
other hand, a product-free set S is called maximal if no product-free set in G has
size bigger than |S|. In the latter direction, see [2], [5] and [7]. There has been a
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good deal of work on maximal product-free sets in abelian groups; for example Green
and Ruzsa in [5] were able to determine, for any abelian group G, the cardinality
of the maximal product-free sets of G. Gowers [4, Theorem 3.3] proved that if the
smallest nontrivial representation of G is of dimension k then G has no product-free
sets of size greater than k−1/3|G|. Much less is known about sizes of locally maximal
product-free sets, in particular the minimal size of a locally maximal product-free
set.

Since every product-free set is contained in a locally maximal product-free set, we can
gain information about product-free sets in a group by studying its locally maximal
product-free sets. In connection with group Ramsey Theory, Street and Whitehead
[8] noted that every partition of a group G (or in fact, of G∗) into product-free sets
can be embedded into a covering by locally maximal product-free sets, and hence
to find such partitions, it is useful to understand locally maximal product-free sets.
They remarked that many examples of these sets have the additional property that
G∗ ⊆ S ∪ SS, and with that in mind gave the following definition. A subset S of a
group G is said to fill G if G∗ ⊆ S �SS. The group G is called a filled group if every
locally maximal product-free set in G fills G. Street and Whitehead in [8] and [9]
classified the abelian filled groups and conjectured that the dihedral group of order
2n is not filled when n = 6k + 1 for k ≥ 1. One consequence of our results in this
paper is that this conjecture is false.

This paper is aimed at throwing more light on locally maximal product-free sets
(LMPFS for short) and filled groups in the non-abelian case. In Section 2 we look
at filled groups. We show (Theorem 2.6) that all non-abelian finite filled groups
have even order, and that all finite nilpotent filled groups of even order are 2-groups.
Using GAP [3] we have seen that for groups of order up to 32 the only examples
of non-abelian filled groups are 2-groups or dihedral (see Table 1). Therefore the
dihedral case is of interest. In Section 3, we study LMPFS in finite dihedral groups
and classify all LMPFS of sizes 3 and 4 in dihedral groups. (Groups containing a
locally maximal product-free set of size 1 or 2 were classified in [6].) In Section 4
we look at filled dihedral groups, give a counterexample to the conjecture of Street
and Whitehead and obtain some restrictions on the possible orders of filled dihedral
groups.

In the rest of this section we establish the notation we will need and gather together
some useful results. All groups in this paper are finite.

Given a positive integer n, we write Cn = 〈x| xn = 1〉 for the cyclic group of order n
and D2n = 〈x, y| xn = y2 = 1, xy = yx−1〉 for the dihedral group of order 2n (where
n > 1). In D2n the elements of 〈x〉 are called rotations and the elements of 〈x〉y are
called reflections. For any subset S of D2n, we write Rot(S) for S ∩ 〈x〉, the set of
rotations of S, and Ref(S) for S ∩ 〈x〉y, the set of reflections of S. Let S and V be
subsets of a finite group G. We define SV := {sv| s ∈ S, v ∈ V }, S−1 := {s−1|s ∈ S},
T (S) := S ∪ SS ∪ SS−1 ∪ S−1S and

√
S := {x ∈ G : x2 ∈ S}. The following results

will be used repeatedly.

Lemma 1.1 (Lemma 3.1 of [6]). Let S be a product-free set in a finite group G.
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Then S is locally maximal if and only if G = T (S) ∪√
S.

The following result is elementary but we include a short proof for the reader’s
convenience.

Lemma 1.2. Let H be a subgroup of a group G. Any non-trivial coset of H is
product-free in G. Further, if H is normal and Q is product-free in G/H then the
set S = {g ∈ G : gH ∈ Q} is product-free in G.

Proof. For the first statement, if for some h1, h2, h3 ∈ H and g ∈ G we have
(h1g)(h2g) = (h3g), then g = h−1

1 h3h
−1
2 ∈ H . Therefore if g /∈ H we have (Hg)(Hg)∩

Hg = ∅, so Hg is product-free. Now suppose H is normal with Q and S as defined
in the statement of the lemma. Then SS = {a ∈ G : aH ∈ QQ}. The fact that S is
product-free now follows immediately from the fact that Q is product-free.

The following is a straightforward consequence of the definitions.

Proposition 1.3. Each product-free set of size |G|
2

in a finite group G is the non-
trivial coset of a subgroup of index 2. Furthermore such sets are locally maximal and
fill G.

2 Filled groups

Street and Whitehead in [8] and [9] investigated locally maximal product-free sets
properties in some groups. They proved the following results.

Lemma 2.1. [8, Lemma 1] Let G be a finite group and N a normal subgroup of G.
If Q is a locally maximal product-free set in G/N that does not fill G/N , then the
set S given by S = {g : gN ∈ Q} is a locally maximal product-free in G that does
not fill G. That is, if G is filled then G/N is filled.

Theorem 2.2. [8, Theorem 2] A finite abelian group is filled if and only if it is
C3, C5 or an elementary abelian 2-group.

They also observed the following.

Lemma 2.3. If G is a filled group with a normal subgroup of index 3, then G ∼= C3.

Proof. Let N be a normal subgroup of index 3 and S be a nontrivial coset. Then
S is product-free by Lemma 1.2. Moreover S ∪ SS ∪ SS−1 = G. Therefore S is a
locally maximal product-free set by Lemma 1.1 and so S must fill G, which implies
that G∗ ⊆ S ∪ SS. But S ∪ SS = G − N . Therefore N = {1} and G is cyclic of
order 3.

Lemma 2.1 implies that the quotient of a filled group G by its derived group G′ must
be either an elementary abelian 2-group or cyclic of order 5 (it cannot be cyclic of
order 3 by Lemma 2.3). These conditions are not sufficient. The counterexamples
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given in [8] are D14 (which in fact is a filled group, as we shall show), the quaternion
group of order 8 and the alternating group of degree 5.

Our main aim in this section is to classify filled groups of odd order. We begin with
p-groups of odd order.

Proposition 2.4. Suppose G is a finite p-group, where p is an odd prime. Then G
is filled if and only if G is either C3 or C5.

Proof. Certainly C3 and C5 are filled. For the reverse implication, let G be a finite
p-group of order pn. We proceed by induction on n. If G is non-abelian, then the
quotient of G by its centre Z(G) is a strictly smaller p-group so, inductively, is either
C3 or C5 (since p is odd). But it is a basic result that if G/Z(G) is cyclic, then G
is abelian, giving a contradiction. Therefore G is abelian, and now the result follows
immediately from the classification of filled abelian groups.

The next theorem, Theorem 2.6, makes use of an observation in [8]. Theorem 3 of
that paper asserts that if G is a finite nonabelian filled group, then either G = G′

or G/G′ is an elementary abelian 2-group, or G/G′ ∼= C5 and |G| is even. The
proof given is that since G/G′ must be a filled abelian group, it is either trivial, or
elementary abelian 2-group, or C3 or C5. Now C3 is impossible by Lemma 2.3. So if
G has odd order, we must have that G/G′ is cyclic of order 5. A set is then described,
based on an element a of G−G′, which the authors claim is locally maximal product
free but does not fill G. But in fact the given set is only locally maximal if a has
order 5. The existence of such an element is not guaranteed when G/G′ is cyclic of
order 5, even if G has odd order. We are grateful to Robert Guralnick for providing
us with an example of a group without such an element — the group is an extension
of an extraspecial group of order 511 by the Frobenius group of order 55, such that
the fifth power of each element of order 5 in the Frobenius group is a central element
of order 5 in the extraspecial group. In this case the derived group has index 5 and
contains all elements of order 5. We resolve that issue in the following lemma and
theorem by reducing to a situation where we can be certain of the existence of the
required element.

Lemma 2.5. Suppose G is a finite group with a normal subgroup N of index 5, such
that not every element of order 5 in G is contained in N . If G is filled, then G is
cyclic of order 5.

Proof. Our argument is based on the construction given in [8]. If N is trivial then
G ∼= C5 and G is filled. If |N | = 2, then G ∼= C10 and G is not filled. So we may
assume N has order at least 3. Let h be an element of order 5 in G with h /∈ N .
Then let S = {h} ∪ h2N∗ (where N∗ is the set of nonidentity elements of N). Then
SS = {h2} ∪ h3N∗ ∪ h4N . (The fact that (h2N∗)2 = h4N follows because |N | > 2.)
So S is product-free, but does not fill G. Now SS−1 = h4N∗ ∪ hN∗ ∪ N . Thus
T (S) = G − {h3}. Since h3 ∈ √

S, we can now conclude that G = T (S) ∪ √
S,

which means S is a locally maximal product-free set that does not fill G. So G is
not filled.
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Theorem 2.6. The only filled groups of odd order are C3 and C5.

Proof. Let G be a nontrivial group of odd order. We proceed by induction on the
order of G. Groups of order 3 and 5 are filled, so assume |G| > 5, and, inductively,
that if H is a filled group of odd order with |H| < |G|, then H is isomorphic to either
C3 or C5.

If G is abelian, then G is not filled. So we may assume that G is nonabelian. Then,
because G is soluble, the derived group G′ is a proper nontrivial normal subgroup of
G. Therefore G/G′ is a filled group of order less than |G|, and hence is isomorphic to
either C3 or C5. However, as we have noted, if S is any non-trivial coset of a normal
subgroup of index 3, then S is a locally maximal product-free set that does not fill
G. Therefore G/G′ is cyclic of order 5. If G′′ is nontrivial, then we can apply the
same argument to G/G′′, which would imply that G/G′′ is also cyclic of order 5, and
thus that G′′ = G′, contradicting the solubility of G. Therefore G′′ = {1} and G′ is
abelian.

Since G has order greater than 5, Proposition 2.4 implies that G is not a p-group.
Thus there is at least one prime p, with p �= 5, dividing the order of G. Any Sylow
p-subgroup K of G′ is also a Sylow p-subgroup of G. But G′ is normal in G, and
abelian, whence K is normal in G. Now G/K is filled, meaning that G/K has order
5, which implies K = G′. Therefore 5 does not divide the order of K, which means
there are elements of order 5 in G that do not lie in G′ (in fact of course all elements
of order 5 lie outside of G′). Therefore, by Lemma 2.5, G is not filled. The result
now follows by induction.

Groups of even order are of course less amenable to analysis. We have the following
step in this direction.

Lemma 2.7. If G is a filled nilpotent group, then G is either a 2-group or isomorphic
to C3 or C5.

Proof. Let G be a filled nilpotent group. If G has odd order then G is either C3 or C5

by Theorem 2.6. So assume G has even order. Then G is a direct product of p-groups
(its Sylow subgroups), and its Sylow 2-subgroup N is nontrivial. The quotient G/N
(which must be filled) is isomorphic to the direct product of the remaining Sylow
subgroups, which is a group of odd order. If N �= G then G/N is either C3 or C5. We
know no filled group can have a normal subgroup of index 3, so G/N must be cyclic
of order 5, and clearly all elements of order 5 in G lie outside N . Thus, by Lemma
2.5, G is not filled. Therefore N = G. That is, if G is a filled nilpotent group then
G is either a 2-group or isomorphic to C3 or C5.

In the light of Lemma 2.7 it would be interesting to have a classification of filled
2-groups, as this would enable a full classification of filled nilpotent groups. We
will show in Section 4 that D8 is the only filled nonabelian dihedral 2-group. We
can eliminate generalised quaternion groups from our enquiries now. For a positive
integer n, with n > 1, the generalised quaternion group of order 4n is the group
Q4n = 〈a, b : a2n = 1, b2 = an, ba = a−1b〉. We have the following.
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Proposition 2.8. No generalised quaternion group is filled.

Proof. Let G be generalised quaternion. Then G has a cyclic subgroup N of index
2, and G contains a unique involution z. Let S be any locally maximal product-free
set of N containing z. Then because every element of G−N is a square root of z, we
have that S is locally maximal product-free in G. But S clearly does not fill G.

The only nonabelian filled groups we know of that are not 2-groups are dihedral (see
Table 1 for a complete list of the filled groups of order up to 32). Therefore it makes
sense to study dihedral groups a little more carefully. This is the object of the next
section.

3 Locally maximal product-free sets in dihedral groups

Theorem 3.1. Let S be a locally maximal product-free set in a finite dihedral group
G of order 2n. Then |G| ≤ |S|2 + |S|.

Proof. Suppose S is a locally maximal product-free set of size m ≥ 1 in a finite
dihedral group G. Let A =Rot(S) and B =Ref(S). By the relations in the dihedral
group, BA = A−1B. We also have that AA−1 = A−1A and B−1 = B. Therefore

T (S) = S ∪ SS ∪ SS−1 ∪ S−1S

= A ∪B ∪AA ∪AB ∪A−1B ∪BB ∪AA−1. (1)

Now, since G = T (S)∪√
S, and

√
S cannot contain involutions, it must be the case

that Ref(G) is contained in T (S). That is, we must have

Ref(G) = B ∪AB ∪A−1B = B ∪ (A ∪ A−1)B. (2)

If |A| = k and |S| = m we see that |G| ≤ 2(2k+1)(m−k) = 2m+2(2m−1)k−4k2.
This is a quadratic expression in k which attains its maximum value over all k when
k = 2m−1

4
, so attains its maximum value over integers k at either k = m−1

2
or k = m

2
.

Substituting either value for k into 2(2k + 1)(m− k) gives m(m+ 1). We conclude
that |G| ≤ |S|2 + |S|.
Remark 3.2. It follows from the proof of Theorem 3.1 that if S is a locally maximal
product-free set in a finite dihedral group G, then Ref(G)=Ref(T (S)∪√

S)=Ref(S �
SS). In particular, S must contain at least one reflection.

We also remark that nearly all other known upper bounds for the order of a finite
group G containing a locally maximal product-free set S are in terms of |〈S〉| rather
than |S|. See [6], for example. Theorem 3.1 is thus a useful concrete bound for
dihedral groups. The only other known upper bounds for the order of a finite group
G, in terms of the size of a locally maximal product-free set S in G, are for the
case where S ∩ S−1 = ∅, in which case |G| ≤ 4|S|2 + 1 [6, Corollary 3.10], and
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the case where G is cyclic, in which case it is easy to see from Lemma 1.1 that
|G| ≤ 1

2
(3|S|2 + 5|S|+ 2).

From Theorem 3.1, it is clear that if n > 1, there is no locally maximal product-free
set of size 1 in D2n, and that any locally maximal product-free set of size 2 must
appear in D4 or D6. A simple check shows that any LMPFS of size 2 must be
automorphic to {x, y} in D4 and D6, where x is an element of order n, and y is a
reflection. We next look at sets of size 3 and 4. Locally maximal product-free sets
of size 3 have been classified in [1], building on work in [6], but for completeness we
include the result for dihedral groups here with a brief proof. As no full classification
has been given for size 4, the one here is a step in that direction. For the rest of this
section, G will be a finite dihedral group of order 2n for n ≥ 3.

Notation 3.3. Where n is even, we denote the non-identity cosets of the maxi-
mal subgroups of index 2 in G by M1, M2 and M3, where M1 = Ref(G), M2 =
{x, x3, . . . , xn−1, y, x2y, . . . , xn−2y} and M3 = {x, x3, . . . , xn−1, xy, x3y, . . . , xn−1y} re-
spectively. If n is odd, then M1 is the only such coset.

Theorem 3.4. If S is a LMPFS of size 3 in a finite dihedral group G, then G = D6

or D8. Furthermore, up to automorphisms of G, there is only one such set; viz.
{y, xy, x2y} or {x2, y, xy} according as G = D6 or D8.

Proof. By Theorem 3.1 and the fact that a LMPFS of size 3 cannot be contained in
a group of order less than 6, we have that 6 ≤ |G| ≤ 12. By Proposition 1.3, the
only LMPFS of size 3 in D6 is M1. So assume |G| ≥ 8. Now S contains at least one
reflection by Remark 3.2, and S contains at least one rotation, because otherwise
it would be properly contained in the product-free set M1. Suppose S consists of a
rotation a, and reflections b1 and b2. If G = D8 and a has order 4 in G, then no
such S exist (since any such S is either contained in M2 or M3, or not product-free);
if a is the unique involution, then S must be mapped by an automorphism of G
into {x2, y, xy} since b1 and b2 must be in distinct conjugacy classes of G for such
S to exist. If G = D10, then by adjoining a−1 to S, we get a bigger product-free
set that contains S; thus no such S exist. Finally, suppose G = D12. If a is the
unique involution, then by Equation (2) |Ref(G)| = 4, a contradiction. Suppose
◦(a) = 3. Observe that Rot(T (S) ∪ √

S)⊆ ({1, a, a−1,
√
a} ∪ {b1b2, b2b1}). Since √

a
consists of a−1 and an element of order 6, and ◦(b1b2) = ◦(b2b1), such S cannot
exist. Now, suppose ◦(a) = 6. As Rot(T (S) ∪ √

S)⊆ ({1, a, a2} ∪ {b1b2, b2b1}), we
have that |Rot(T (S) ∪ √

S)| ≤ 5 < 6 = |Rot(D12)|; thus no such S exist. Similar
arguments show that there is no locally maximal product-free set made up of exactly
two rotations and one reflection in D8, D10 and D12.

Proposition 3.5. Let G be a dihedral group of order 2p, p > 3 and prime. If S is a
locally maximal product-free set of size 4 in G, then p is either 5 or 7 and S contains
exactly two non-identity rotations and two reflections.

Proof. By Theorem 3.1, either G is at least one ofD10 orD14, or no such G exists. Let
G be either D10 or D14. Suppose for a contradiction that S does not contain exactly
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two non-identity rotations and two reflections. Since neither C5 nor C7 contains a
product-free set of size 3, S contains at most two rotations. If every element of S is a
reflection then S is properly contained in M1, so S is not locally maximal. Therefore
S contains at least one rotation. Suppose S contains 1 non-identity rotation (say xi)
and three reflections. Then a quick check shows that S ∪ {x−i} is also product-free,
contradicting the maximality of S. Therefore S contains exactly two reflections and
two rotations.

Corollary 3.6. Suppose G is a dihedral group of order 2p (p > 3 and prime). If S is
a LMPFS of size 4 in G, then p is either 5 or 7, and S is mapped by an automorphism
of G into {x2, x3, y, x−1y}.
Proposition 3.7. If S is a locally maximal product-free set of size 4 containing ex-
actly four involutions in a dihedral group G such that 10 ≤ |G| ≤ 20, then G can only
be D12. Furthermore, S is mapped by an automorphism of D12 into {x3, y, xy, x2y}.

Proof. AsM1 contains all reflections in G, in order for S not to be properly contained
in M1, we must have that |G|

2
is even and that S contains the unique involution z in

the rotation subgroup. But now by Equation (2) we obtain |Ref(G)| ≤ 6. Therefore
the only possibility is D12. So assume G = D12 and let S = {z, b1, b2, b3}, where b1, b2
and b3 are reflections and z = x3. If S is locally maximal product-free in D12, then by
Remark 3.2, Ref(D12)=Ref(S�SS)⊆ {b1, b2, b3, x3b1, x

3b2, x
3b3}. If any two elements

of Ref(S �SS) are equal, then S is not locally maximal in D12. For no two elements
of Ref(S�SS) to be equal, we must have that S is of the form {x3, xiy, xi+1y, xi+2y}
for i = 0, 1, 2, 3, 4 or 5. Thus, the only possible choices are S := {x3, y, xy, x2y},
S1 := {x3, xy, x2y, x3y}, S2 := {x3, x2y, x3y, x4y}, S3 := {x3, x3y, x4y, x5y}, S4 :=
{x3, y, x4y, x5y} and S5 := {x3, y, xy, x5y}. By Lemma 1.1, S is locally maximal
product-free in D12. As the automorphism φi : x �→ x, y �→ xiy maps S into Si for
each i ∈ [0, 5], we are done.

Lemma 3.8. Suppose S is a locally maximal product-free set of size 4 consisting of
three involutions and one non-involution in a dihedral group G such that 10 ≤ |G| ≤
20. If G = D12, then S is automorphic to {x2, x3, y, x5y}. Moreover, no such S exist
if |G| �= 12.

Proof. The argument splits into two cases: Case I where the involutions are all
reflections, and Case II where |G|

2
is even and one of the involutions is the central

rotation x|G|/4.

Case I: Let S = {a, b1, b2, b3}, where a is the non-involution and b1, b2 and b3 are
reflections. If a has order at least 4, then S∪{a−1} is product-free, contradicting the
local maximality of S. Thus a has order 3 and G is either D12 or D18. However, no
such combination (with any three reflections) gives a locally maximal product-free
set of size 4. For example in D12, if b1 = xiy, b2 = xjy and b3 = xky then at least two
of i, j and k must have the same parity. But that implies a ∈ SS, a contradiction.

Case II: Let S = {a, b1, b2, z}, where a, b1 and b2 are as in Case I, and z is the unique
involution in the rotation subgroup. Here G is D12, D16 or D20. A quick calculation
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using the fact that G = T (S) ∪ √
S shows that

Rot(G) =
√
S ∪ {1, a, a2, z, az, a−1z, b1b2, b2b1}.

Since b1b2 = (b2b1)
−1, and S is product-free, we have that a−1 ∈ √

S ∪ {a2, az}.
If a−1 ∈ √

z or a−1 = az then a2 = z, contradicting the fact that S is product-
free. Thus a−1 ∈ √

a ∪ a2, which implies ◦(a) = 3, and so G = D12. By Lemma
1.1, the product-free set {x2, x3, y, x5y} is locally maximal. A careful check shows
that any other arising LMPFS must be mapped by an automorphism of D12 into
{x2, x3, y, x5y}.
Proposition 3.9. Let S be a locally maximal product-free set of size 4 consisting of
two involutions and two non-involutions in a dihedral group G such that 10 ≤ |G| ≤
20. Then, up to automorphism, S and G are given in the table below.

G S
D10 {x2, x3, y, x4y}
D12 {x, x5, y, x3y}, {x, x4, y, x3y}
D14 {x2, x3, y, x6y}
D16 {x2, x3, y, x7y}, {x, x6, y, x4y}
D18 {x2, x5, y, x8y}
D20 {x, x8, y, x5y}

Proof. Case I: Let S = {a1, a2, b1, b2}, where a1, a2 are non-involutions, and b1, b2 are
reflections. Assume for the moment that |G| > 12. If a2 = a−1

1 , then by Equation
(2) |Ref(G)| ≤ 6, which contradicts our assumption. Thus a2 �= a−1

1 . In the case of
G = D18, this means that at least one of a1 and a2 has order 9. If ◦(a1) = 9 = ◦(a2),
with a2 �= a−1

1 , then S is automorphic to {x2, x5, y, x8y}, which is locally maximal
product-free. If ◦(a1) = 3 and ◦(a2) = 9, then a quick check shows that S is not

locally maximal product-free. Next suppose G is D16 or D20. Suppose ◦(a1) = |G|
4

=
◦(a2). S is not feasible in D16 since a2 = a−1

1 . On the other hand, such S is not also
possible inD20 as Ref(T (S)∪

√
S)⊆ {b1, b2, a1b1, a1b2, b1a1, b2a1, a2b1, a2b2, b1a2, b2a2},

and either a2 = a−1
1 or {a1, a2} is not product-free. Suppose ◦(a1) = |G|

2
= ◦(a2).

Then Rot(T (S) ∪ √
S) ⊆Rot(T (S)) ⊆ {1, a1, a2, a1a2, a21, a22, b1b2, b2b1, a−1

1 a2, a
−1
2 a1}.

So the only possible odd powers of a generator of C |G|
2

are a1, a2, b1b2 and b2b1. If

G = D20, then no such S exists. On the other hand, if G = D16, then as b2b1 =
(b1b2)

−1, we must have that a2 = a1
−1, a contradiction. Finally, suppose ◦(a1) =

|G|
4

< |G|
2

= ◦(a2). The set S is locally maximal product-free by Lemma 1.1. A
careful check shows that any such set must be mapped by an automorphism of
the group into {x2, x3, y, x7y} or {x, x6, y, x4y} if G = D16, and {x, x8, y, x5y} if
G = D20. Now suppose G = D12. If ◦(a1) = 3 = ◦(a2), then no such S exist since
a2 = a21. If ◦(a1) = 6 = ◦(a2), then a2 = a−1

1 . Such S exists, and must be mapped
by an automorphism of D12 into {x, x5, y, x3y}. If ◦(a1) �= ◦(a2). Any resulting
product-free set is locally maximal, and must be mapped by an automorphism of
G into {x, x4, y, x3y}. Finally, in the case G = D10 or D14, the result follows from
Corollary 3.6.
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Case II: Let S = {a1, a2, b, z}, where a1, a2 are non-involutions, b is a reflection and
z is the unique involution in Rot(G). Since

|Ref(T (S) ∪
√
S)| ≤ |{b, zb, a1b, a2b, a−1

1 b, a−1
2 b}|,

it follows that |G| ≤ 12. So S can only exist in D10 or D12. By Proposition 3.5, no
such S exist in D10. If S ⊆ D12, then we must have that ◦(a1), ◦(a2) ∈ {3, 6} and
a1 �= a−1

2 . Without loss of generality, suppose ◦(a1) = 3 and ◦(a2) = 6. Then for
{a1, a2} to be product-free, either a1 = x2 and a2 = x5 or a1 = x4 and a2 = x. Since
x3 = z ∈ S and S is product-free, none of these possibilities holds. Thus, no such S
exists.

Lemma 3.10. There is no locally maximal product-free set of size 4 consisting of at
most one involution in a finite dihedral group.

Proof. Any locally maximal product-free set S of size 4 must contain at least one re-
flection; otherwise T (S)∪√S ⊆ 〈S〉 which is cyclic. Now, suppose S = {a1, a2, a3, b},
where a1, a2 and a3 are non-involutions, and b is a reflection. As |Ref(T (S)∪√

S)| ≤
|{b, a1b, a2b, a3b, a−1

1 b, a−1
2 b, a−1

3 b}| = 7, and a LMPFS of size 4 cannot be contained
in a group of order less than 8, we must have that 8 ≤ |G| ≤ 14. By Proposition 1.3,
no such S exist in D8, and by Proposition 3.5, no such S exist in D10 and D14. As
no three non-involutions can form a LMPFS in C6, no such S exist in D12.

We are now in a position to classify all locally maximal product-free sets of size 4 in
dihedral groups.

Theorem 3.11. Suppose S is a LMPFS of size 4 in a dihedral group G. Then up
to automorphisms of G, the possible choices are given as follows:

|G| S
8 {y, xy, x2y, x3y}, {x, x3, y, x2y}
10 {x2, x3, y, x4y}
12 {x3, y, xy, x2y}, {x2, x3, y, x5y}, {x, x5, y, x3y}, {x, x4, y, x3y}
14 {x2, x3, y, x6y}
16 {x2, x3, y, x7y}, {x, x6, y, x4y}
18 {x2, x5, y, x8y}
20 {x, x8, y, x5y}

Proof. By Theorem 3.1 and the fact that a locally maximal product-free set of size 4
cannot be contained in a group of order less than 8, we must have that 8 ≤ |G| ≤ 20.
If G = D8, then by Proposition 1.3, either S = {y, xy, x2y, x3y} or it is mapped by
an automorphism of G into {x, x3, y, x2y}. Now, suppose 10 ≤ |G| ≤ 20. The result
follows from Proposition 3.7, Lemma 3.8, Proposition 3.9 and Lemma 3.10.
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4 Filled dihedral groups

In this section we obtain some facts about filled dihedral groups. In [8] the au-
thors asserted that the dihedral group of order 2n is not a filled group for n =
6k + 1. They went further to produce a locally maximal product-free set (S :=
{x2k+1, . . . , x4k, x2k+1y, . . . , x4ky}) which they claim does not fill D2n. However we
have the following.

Proposition 4.1. Let G be a dihedral group of order 2n for n = 6k + 1 and k ≥ 1.
Then the set S := {x2k+1, . . . , x4k, x2k+1y, . . . , x4ky} is product-free but not locally
maximal in G.

Proof. The fact that S is product-free follows from our proof since every subset of
a product-free set is product-free. So, we only show that S is not locally maxi-
mal. To do this, we show that the set V := {x2k+1, . . . , x4k, x2ky, x2k+1y, . . . , x4ky},
which properly contains S, is product-free. (One may also do same using U :=
{x2k+1, . . . , x4k, x2k+1y, . . . , x4ky, x4k+1y}.) Let A = Rot(V ) and B = Ref(V ). We
note that V = V −1 and so BA = A−1B = AB. Therefore V V = AA ∪ AB ∪ BA ∪
BB = AA ∪ BB ∪ AB. Thus

V V = {1, x, · · · , x2k} � {x4k+1, x4k+2, · · · , x6k} � {y, xy, · · · , x2k−1y}
� {x4k+1y, x4k+2y, · · · , x6ky}.

Since V ∩ V V = ∅, the set V is product-free.

Incidentally, we note here that our Proposition 3.5 shows that the list of locally max-
imal product-free sets of size 4 in D14 given in Table 1 of [8] is not correct. In partic-
ular, the authors claimed that S = {a, ab, a3b, a6b} is locally maximal. However, this
is not true as S is contained in a product-free set of size 5; viz. {a, a−1, ab, a3b, a6b}.
Remark 4.2. Observe that G = V � V V in the proof of Proposition 4.1 above.
Thus, V fills G. By Lemma 1.1 therefore, V is a locally maximal product-free subset
of D12k+2.

We give (without proof) Proposition 4.3 and Lemma 4.4, whose proofs are similar
to those in Section 3.

Proposition 4.3. Up to automorphisms of D14, the only locally maximal product
free set of size 5 in D14 is V , where V is as defined in the proof of Proposition 4.1.

Lemma 4.4. There is no locally maximal product-free set of size 6 in D14.

The following result together with Proposition 4.1 disprove the stated conjecture.

Theorem 4.5. D14 is a filled group.
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Proof. From our discussion in Section 3, if S is a locally maximal product-free set in
D14, then 4 ≤ |S| ≤ 7. If |S| = 4, then by Theorem 3.11, S is mapped by an automor-
phism of D14 into W := {x2, x3, y, x6y}. As WW = {1, x, x4, x5, x6, xy, x2y, x3y, x4y,
x5y}, the set W fills D14. By Remark 4.2 and Proposition 4.3, any locally maximal
product-free set of size 5 in D14 fills the group. By Lemma 4.4, there is no locally
maximal product-free set of size 6 in D14. By Proposition 1.3, the only locally maxi-
mal product-free set of size 7 in D14 is M1, which by definition, fills D14. Since every
locally maximal product-free set in D14 fills D14, therefore D14 is a filled group.

The disproved conjecture of Street and Whitehead left us with no other known
example of a dihedral group which is not a filled group. We show that such examples
exist as follows:

Theorem 4.6. If S is a locally maximal product-free set of size k ≥ 3 in a finite
dihedral group G of order k(k + 1), then S does not fill G.

Proof. Suppose S is a locally maximal product-free set of size k ≥ 3 in a finite
dihedral group G of order k(k + 1). Since S must contain at least one reflection,
1 ∈ SS and so S fills G if and only if |G| = |S ∪ SS|, which is if and only if
|SS| = k2. As |S| ≥ 3, either S contains two rotations or two reflections. If S
contains two reflections b1 and b2, then as b21 = b22 = 1, we must have that |SS| < k2.
On the other hand, if S contains two rotations a1 and a2, then as a1a2 = a2a1, we
must have that |SS| < k2. In either case, |S �SS| < k2+k; so S does not fill G.

An example of the construction given in Theorem 4.6 exists in D20 because S =
{x, x8, y, x5y} is locally maximal in D20 but does not fill the group. Thus, not every
dihedral group is a filled group.

Remark 4.7. Street and Whitehead in [8] and [9] pointed out that any dihedral group
of order less than 14 is a filled group. We have shown that D14 is also filled. In fact,
the first example of a non-filled dihedral group is D16. By Theorem 3.11, the set
Y := {x, x6, y, x4y} is locally maximal in D16. However, |Rot(Y � Y Y )| = 6 < 8.

We make the following more general observation.

Proposition 4.8. If 8 divides n, then D2n is not filled. In particular, the only filled
dihedral 2-groups are D4 and D8.

Proof. Suppose 8 divides n. Let H = 〈x8〉. Then H is a normal subgroup of D2n

whose quotient is dihedral of order 16. By Lemma 2.1, and the fact that D16 is not
filled, we see that D2n is not filled.

We finish this paper with a table giving the known filled groups of order up to 32. The
group D8 ∗Q8 is the central product of D8 and Q8; it is one of the two extraspecial
groups of order 32.

Table 1 was calculated using GAP [3], along with the results obtained in this paper.
For example we only needed to check nonabelian groups of even order which have no



C.S. ANABANTI ET AL. /AUSTRALAS. J. COMBIN. 63 (3) (2015), 385–398 397

Order Groups
2 C2

3 C3

4 C2 × C2

5 C5

6 D6

8 C3
2 , D8

10 D10

12 D12

14 D14

16 C4
2 , D8 × C2

22 D22

32 C5
2 , D8 ∗Q8

Table 1: Filled Groups of Order up to 32

normal subgroups of index 3. We can see that the known nonabelian filled groups
are either 2-groups or dihedral (or both). The same reasoning as in Proposition 4.8,
applied to the dihedral groups in Table 1 implies that D2n is not filled if n is divisible
by 8, 9, 10, 12, 13, 14 or 15, but we are not yet able fully to classify the filled dihedral
groups. As far as a classification of filled 2-groups goes, we conjecture that there
is exactly one nonabelian filled group of order 2n when n ≥ 3, and that it is either
extraspecial or the direct product of C2 and an extraspecial filled group. We are
grateful to Ivo Hedtke for helping us improve the efficiency of our program so that
we could test groups of order 32. If G is a filled 2-group then all its quotients must
be filled. Every non-trivial normal subgroup of G intersects the centre of G and so
contains a central involution z. Thus every non-trivial quotient of G is filled if and
only if G/〈z〉 is filled for every central involution z. Testing this criterion on groups
of order 64 in GAP shows that there are at most three non-abelian filled groups of
order 64, one of which is (D8 ∗Q8)× C2. Our conjecture implies that this is in fact
the only non-abelian filled group of order 64.
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