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Abstract

In this paper, we study skew-symmetric 2-{v; r, k;λ} supplementary dif-
ference sets related to a certain class of complex spherical 2-codes. A clas-
sification of such supplementary difference sets is completed for v ≤ 51.

1 Introduction

Let Ω(d) denote the complex unit sphere in Cd. For a finite set X in Ω(d), define

A(X) = {x∗y | x, y ∈ X, x �= y},



M. ARAYA ET AL. /AUSTRALAS. J. COMBIN. 65 (1) (2016), 71–83 72

where x∗ is the transpose conjugate of a column vector x. A finite set X is called a
complex spherical 2-code if |A(X)| = 2 and A(X) contains an imaginary number. A
complex spherical 2-code X with A(X) = {α, ᾱ} has the structure of a tournament
(X,E), where E = {(x, y) ∈ X × X | x∗y = α} [12]. We say that the tournament
(X,E) is attached to the complex spherical 2-code X.

Theorem 1.1 (Nozaki and Suda [12, Theorem 4.8]). Let X be a complex spherical
2-code in Ω(d). Let A be the adjacency matrix of the tournament G attached to X.

(1) |X| ≤ 2d+ 1 if d is odd, and |X| ≤ 2d if d is even.

(2) |X| = 2d+ 1 for odd d if and only if G is a doubly regular tournament.

(3) |X| = 2d for even d if and only if I + A − AT is a skew-Hadamard matrix,
where I is the identity matrix and AT denotes the transposed matrix of A.

(4) |X| = 2d for odd d if and only if one of the following occurs:

(a) A is obtained as the adjacency matrix of the induced subgraph of some
doubly regular tournament by deleting a certain vertex.

(b) There exists a permutation matrix P such that

P (I + A−AT )(I + A−AT )TP T =

(
αI + βJ O

O αI + βJ

)
,

for some integers α, β with α ≥ 2, β ≥ 1, where J denotes the all-one
matrix and O denotes the zero matrix of appropriate size.

Doubly regular tournaments have been widely studied (see e.g., [8, 11, 13–15]).
Skew-Hadamard matrices are a class of Hadamard matrices, which has been widely
studied (see e.g., [2,5,6,11,13,15,18]). These motivate our investigation of matrices
M satisfying the following conditions:

M is a 2d× 2d (1,−1)-matrix with d odd, (1)
M − I = −(M − I)T , that is, M is skew-symmetric, (2)

MMT =
(
αI+βJ O

O αI+βJ

)
for some integers α, β with α ≥ 2, β ≥ 1. (3)

In this paper, with this motivation, we study skew-symmetry for 2-{v; r, k;λ} sup-
plementary difference sets satisfying the following conditions:

v is an odd positive integer, (4)
4(r + k − λ) ≥ 2, (5)
2(v − 2(r + k − λ)) ≥ 1. (6)

These supplementary difference sets give matrices M satisfying (1)–(3) (Proposi-
tion 3.2).
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This paper is organized as follows. In Section 2, we give definitions and we recall
notions on supplementary difference sets and D-optimal designs. Some basic facts
on these subjects are also provided. In Section 3, we give some observations on skew-
symmetric supplementary difference sets. In Section 4, we describe how to classify
skew-symmetric supplementary difference sets satisfying (4)–(6). In Section 5, we
give a classification of skew-symmetric 2-{v; r, k;λ} supplementary differences sets
satisfying (4)–(6) for v ≤ 51 (Theorem 5.1). This is the main result of this paper.
Skew-symmetric circulant D-optimal designs satisfying (9) are corresponding to a
special class of supplementary difference sets. In Section 6, as a consequence of
Theorem 5.1, we give a classification of skew-symmetric circulant D-optimal designs
meeting (8) for orders up to 110.

2 Preliminaries

In this section, we give definitions and we recall notions on supplementary difference
sets and D-optimal designs. Some basic facts on these subjects are also provided.

2.1 Supplementary difference sets

Let Zv = {0, 1, . . . , v−1} be the ring of integers modulo v, where v > 2. For A ⊂ Zv

and i ∈ Zv, define

PA(i) = |{(x, y) ∈ A× A | y − x = i}| and
PA = (PA(1), PA(2), . . . , PA(v − 1)).

Let A and B be an r-subset and a k-subset of Zv, respectively. If a pair (A,B)
satisfies

PA + PB = (λ, λ, . . . , λ),

then it is called a 2-{v; r, k;λ} supplementary difference set. We refer to [3,9,16,17]
for basic facts on supplementary difference sets.

Lemma 2.1 (Wallis [16, Lemma 1]). If there exists a 2-{v; r, k;λ} supplementary
difference set, then

r(r − 1) + k(k − 1) = λ(v − 1). (7)

Chadjipantelis and Kounias [3, Appendix] gave a correspondence between 2-
{v; r, k;λ} supplementary difference sets and pairs of circulant matrices. Let A and B
be an r-subset and a k-subset of Zv, respectively. Let R1 and R2 be the circulant v×v
(1,−1)-matrices with first rows r1 = (r1,1, r1,2, . . . , r1,v) and r2 = (r2,1, r2,2, . . . , r2,v),
respectively. The correspondence was defined as follows: r1,i+1 = −1 if i ∈ A,
r1,i+1 = 1 if i �∈ A and r2,i+1 = −1 if i ∈ B, r2,i+1 = 1 if i �∈ B.

Lemma 2.2 (Chadjipantelis and Kounias [3, Appendix]). A pair (A,B) is a
2-{v; r, k;λ} supplementary difference set if and only if R1R

T
1 + R2R

T
2 = 4(r + k −

λ)I + 2(v − 2(r + k − λ))J .
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2.2 D-optimal designs and supplementary difference sets

A D-optimal design of order n is an n× n (1,−1)-matrix having maximum determi-
nant. Ehlich [4] showed that for n ≡ 2 (mod 4) and n > 2, any n×n (1,−1)-matrix
M satisfies

detM ≤ (2n− 2)(n− 2)(n−2)/2, (8)

and that equality is possible only if 2n−2 is a sum of two perfect squares. Moreover,
if n = 2v ≡ 2 (mod 4), and both R1 and R2 are v× v commutative (1,−1)-matrices
such that

R1R
T
1 +R2R

T
2 = (2v − 2)I + 2J, (9)

then
X(R1, R2) =

(
R1 R2

−RT
2 RT

1

)
(10)

is a D-optimal design meeting the above bound (8) [4].
If the matrices R1 and R2 in (10) are circulant, then X(R1, R2) is called a circulant

D-optimal design meeting (8) [10]. Most of the known D-optimal designs meeting
(8) are circulant (see e.g., [1,3,5,9,10]). If X(R1, R2) is a circulant D-optimal design
meeting (8), then it was shown in [3] that

(v − 2r)2 + (v − 2k)2 = 2n− 2, (11)

where r and k are the numbers of −1’s in the first rows of R1 and R2, respectively.
By Lemma 2.2, we have the following:

Lemma 2.3 (Chadjipantelis and Kounias [3, Appendix]). Let A and B be an r-subset
and a k-subset of Zv, respectively. Let R1 and R2 be the corresponding circulant v×v
(1,−1)-matrices described in Section 2.1. A pair (A,B) is a 2-{v; r, k; r + k − (v −
1)/2} supplementary difference set if and only if X(R1, R2) in (10) is a circulant
D-optimal design of order 2v meeting (8), where r and k are the numbers of −1’s in
the first rows of R1 and R2, respectively.

3 Skew-symmetric supplementary difference sets

Let (A,B) be a supplementary difference set. Let R1 and R2 denote the correspond-
ing circulant v × v (1,−1)-matrices described in Section 2.1. Then we consider the
following matrix:

X(R1, R2) =

(
R1 R2

−RT
2 RT

1

)
. (12)

We call (A,B) skew-symmetric if the corresponding matrix X(R1, R2) in (12) is skew-
symmetric. Equivalently, (A,B) is skew-symmetric if A satisfies the condition that
0 �∈ A and if i ∈ A then −i �∈ A. In [2, 15, 18], skew-symmetric 2-{v; (v − 1)/2, (v −
1)/2; (v − 3)/2} supplementary difference sets are called complementary difference
sets and these difference sets were used to construct skew-Hadamard matrices.
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Lemma 3.1. The matrix X(R1, R2) in (12) is skew-symmetric if and only if r1,1 = 1
and r1,i = −r1,v+2−i (i = 2, 3, . . . , v). If X(R1, R2) is skew-symmetric, then r = v−1

2
.

Proof. The elementary proof is omitted.

By Lemma 2.2, we have the following:

Proposition 3.2. If there exists a skew-symmetric 2-{v; r, k;λ} supplementary dif-
ference set satisfying (4)–(6). Then there exists a matrix M satisfying (1)–(3) for
(α, β) = (4(r + k − λ), 2(v − 2(r + k − λ))).

Now we give a remark on the condition (5) for skew-symmetric 2-{v; r, k;λ} sup-
plementary difference sets.

Proposition 3.3. Suppose that k ≤ v−1
2

. If there exists a skew-symmetric 2-
{v; r, k;λ} supplementary difference set (A,B), then r + k − λ ≥ 1, that is, (A,B)
satisfies (5).

Proof. By Lemma 3.1, r = v−1
2

. Hence, it follows from (7) that

r + k − λ =
(v + 2k)(v − 2k)− 1 + 4kv

4(v − 1)
.

From the assumption, r + k − λ > 0. The result follows.

For the case k ∈ {0, 1}, 2-{v; r, k;λ} supplementary difference sets are character-
ized as follows. Although the following characterization is somewhat trivial, it was
not explicitly stated in the literature. We give a proof for the sake of completeness.

Proposition 3.4. The following statements are equivalent.

(1) There exists a skew-symmetric 2-{4m − 1; 2m − 1, k;m − 1} supplementary
difference set with k = 0 and 1.

(2) There exists a circulant Hadamard 2-(4m− 1, 2m− 1, m− 1) design with inci-
dence matrix M satisfying that M +MT + I = J .

Proof. Suppose that there exists a skew-symmetric 2-{4m − 1; 2m − 1, k;m − 1}
supplementary difference set (A,B) with k ∈ {0, 1}. Then A is a (4m − 1, 2m −
1, m−1)-difference set. Let M be an incidence matrix of A. Then M is an incidence
matrix of a circulant Hadamard 2-(4m−1, 2m−1, m−1) design. Since A satisfies the
condition that if i ∈ A then −i �∈ A, M satisfies the condition that M +MT + I = J .

Suppose that there exists a circulant Hadamard 2-(4m− 1, 2m− 1, m− 1) design
with incidence matrix M satisfying that M +MT + I = J . By reversing the above
argument, a (4m− 1, 2m− 1, m− 1)-difference set A satisfying the condition that if
i ∈ A then −i �∈ A is constructed. Then (A, ∅) and (A, {0}) are skew-symmetric 2-
{v; r, k;λ} supplementary difference sets with parameters (v, r, k, λ) = (4m−1, 2m−
1, 0, m− 1) and (4m− 1, 2m− 1, 1, m− 1), respectively.
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Suppose that p is a prime with p ≡ 3 (mod 4). Then it is well known that
there exists a circulant Hadamard 2-(p, p−1

2
, p−3

4
) design with incidence matrix A

satisfying that A+AT +I = J (see e.g., [7, Lemma 7.10]). This implies the existence
of skew-symmetric supplementary difference sets with parameters 2-{p; p−1

2
, 0; p−3

4
}

and 2-{p; p−1
2
, 1; p−3

4
}.

4 Classification method

In this section, we describe how to classify skew-symmetric supplementary difference
sets satisfying (4)–(6).

4.1 Equivalent supplementary difference sets

If (A,B) is a supplementary difference set, then the following pairs

(E0) (Zv\A,B) and (A,Zv\B),

(E1) (B,A),

(E2) (±A + a,±B + b) for any a, b ∈ Zv,

(E3) (dA, dB) for any d ∈ U(Zv)

are also supplementary difference sets, where U(Zv) = {d ∈ {1, 2, . . . , v − 1} |
gcd(d, v) = 1} and d is regarded as an integer for gcd(d, v) = 1. These supple-
mentary difference sets are called equivalent [10].

4.2 Classification method

Let (A,B) be a skew-symmetric 2-{v; r, k;λ} supplementary difference set satisfying
(4), (6). By Lemma 3.1, r = v−1

2
. By (E0), we may assume without loss of generality

that k ≤ v−1
2

. We note that (A,B) satisfies (5) by Proposition 3.3 under this as-
sumption. In addition, if r = k, then it follows from (7) that 2(v−2(r+k−λ)) = −2.
Hence, we may assume without loss of generality that

k <
v − 1

2
= r. (13)

Since A corresponds to a skew-symmetric matrix, there exists A′ ⊂ Z′
v such that

A = A′ ∪ {v − j | j ∈ Z′
v \ A′}, where Z′

v = {1, 2, . . . , (v − 1)/2} ⊂ Zv. By (E2),
(A,B + b) is a skew-symmetric supplementary difference set for any b ∈ Zv. We
classify skew-symmetric 2-{v; (v−1)/2, k;λ} supplementary difference sets satisfying
(4), (6) by the following steps.

(i) We calculate A = {A′ ∪ {v − j | j ∈ Z′
v \ A′} | A′ ⊂ Z′

v}. Then we find
A = {A ∈ A | PA(i) ≤ λ for all i}.
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(ii) We calculate B = {B ⊂ Zv | |B| = k, B 
 B + b for any b ∈ Zv}, where 
 is
a natural lexicographic order on k-subsets of Zv. Then we find B = {B ∈ B |
PB(i) ≤ λ for all i}.

(iii) We construct AB = {(A,B) ∈ A× B | PA + PB = (λ, λ, . . . , λ)}.
(iv) We classify AB.

In Step (i) (resp. (ii)), we found all ((v − 1)/2)-subsets (resp. k-subsets) of Zv

by a computer program implemented in C language using functions from the GNU
Scientific Library (GSL) software library, then we output A and (λ, λ, . . . , λ) − PA

(resp. B and PB) to a file. We sorted the above data by (λ, λ, . . . , λ) − PA (resp.
PB). We found a pair (A,B) with (λ, λ, . . . , λ)− PA = PB in Step (iii). Two skew-
symmetric 2-{v; (v − 1)/2, k;λ} supplementary difference sets (A,B) and (A′, B′)
are equivalent if and only if (A′, B′) is an element of {(±dA + a,±dB + b) | d ∈
U(Zv), a, b ∈ Zv}. In Step (iv), for (A,B) and (A′, B′), we determined whether there
exist d ∈ U(Zv) and a, b ∈ Zv such that (A′, B′) = (dA+ a, dB + b), (dA+ a,−dB +
b), (−dA + a, dB + b) or (−dA + a,−dB + b). This was done by using the program
implemented in C language.

5 Classification of skew-symmetric supplementary difference
sets

In this section, we give a classification of skew-symmetric 2-{v; r, k;λ} supplementary
differences sets satisfying (4)–(6) for v ≤ 51. This is the main result of this paper. As
described in Proposition 3.2, a skew-symmetric 2-{v; r, k;λ} supplementary difference
set satisfying (4)–(6), gives a matrix M satisfying (1)–(3) for (α, β) = (4(r + k −
λ), 2(v − 2(r + k − λ))).

We call (v, r, k, λ) feasible parameters for supplementary difference sets if (v, r, k,
λ) satisfies (4)–(6), (7) and (13) (see Proposition 3.3 for (5)). In Table 1, we list the
feasible parameters (v, r, k, λ) for v ≤ 75.

By an approach given in Section 4, our exhaustive computer search completed a
classification of skew-symmetric 2-{v; r, k;λ} supplementary difference sets satisfying
(4)–(6) for the feasible parameters in Table 1 with v ≤ 51. We used a computer with
CPU Intel(R) Core(TM) i7 4790k, 4 Core.

Theorem 5.1. Suppose that v ≤ 51. If there exists a skew-symmetric 2-{v; r, k;λ}
supplementary difference sets satisfying (4)–(6), then it is equivalent to one of the
supplementary difference sets (A,B) with v ≤ 51 in Table 3.

For v ≥ 53, due to the computational complexity, our exhaustive computer search
completed a classification of skew-symmetric 2-{v; r, k;λ} supplementary difference
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Table 1: Parameters of skew-symmetric supplementary difference sets

(v, r, k, λ) N(v, r, k, λ) (v, r, k, λ) N(v, r, k, λ)

(3, 1, 0, 0) 1 (43, 21, 15, 15) 0
(7, 3, 0, 1) 1 (45, 22, 11, 13) 0
(7, 3, 1, 1) 1 (47, 23, 0, 11) 1
(11, 5, 0, 2) 1 (47, 23, 1, 11) 1
(11, 5, 1, 2) 1 (49, 24, 9, 13) 0
(13, 6, 3, 3) 1 (51, 25, 0, 12) 0
(15, 7, 0, 3) 0 (51, 25, 1, 12) 0
(15, 7, 1, 3) 0 (53, 26, 14, 16) ?
(19, 9, 0, 4) 1 (55, 27, 0, 13) 0
(19, 9, 1, 4) 1 (55, 27, 1, 13) 0
(21, 10, 6, 6) 1 (57, 28, 21, 21) ?
(23, 11, 0, 5) 1 (59, 29, 0, 14) 1
(23, 11, 1, 5) 1 (59, 29, 1, 14) 1
(25, 12, 4, 6) 0 (61, 30, 6, 15) 0
(27, 13, 0, 6) 0 (61, 30, 10, 16) 0
(27, 13, 1, 6) 0 (61, 30, 15, 18) ?
(29, 14, 7, 8) 1 (63, 31, 0, 15) 0
(31, 15, 0, 7) 1 (63, 31, 1, 15) 0
(31, 15, 1, 7) 1 (67, 33, 0, 16) 1
(31, 15, 6, 8) 1 (67, 33, 1, 16) 1
(31, 15, 10, 10) 1 (67, 33, 12, 18) ?
(35, 17, 0, 8) 0 (67, 33, 22, 23) ?
(35, 17, 1, 8) 0 (69, 34, 18, 21) ?
(37, 18, 10, 11) 0 (71, 35, 0, 17) 1
(39, 19, 0, 9) 0 (71, 35, 1, 17) 1
(39, 19, 1, 9) 0 (71, 35, 15, 20) ?
(41, 20, 5, 10) 0 (71, 35, 21, 23) ?
(43, 21, 0, 10) 1 (73, 36, 28, 28) ?
(43, 21, 1, 10) 1 (75, 37, 0, 18) 0
(43, 21, 7, 11) 0 (75, 37, 1, 18) 0
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sets satisfying (4)–(6) for the following feasible parameters:

(v, r, k, λ) = (55, 27, 0, 13), (55, 27, 1, 13), (59, 29, 0, 14),
(59, 29, 1, 14), (61, 30, 6, 15), (61, 30, 10, 16),
(63, 31, 0, 15), (63, 31, 1, 15), (67, 33, 0, 16),
(67, 33, 1, 16), (71, 35, 0, 17), (71, 35, 1, 17),
(75, 37, 0, 18), (75, 37, 1, 18).

(14)

The skew-symmetric 2-{v; r, k;λ} supplementary difference sets (A,B) with param-
eters (14) are listed in Table 3. For the feasible parameters (v, r, k, λ) given in
Table 1, the numbers N(v, r, k, λ) of the inequivalent skew-symmetric 2-{v; r, k;λ}
supplementary difference sets are also listed in the table.

6 Classification of skew-symmetric circulant D-optimal de-
signs meeting (8)

Skew-symmetric circulant D-optimal designs X(R1, R2) in (10) are corresponding to
a certain class of skew-symmetric supplementary difference sets satisfying (4)–(6).
According to [10], we say that circulant D-optimal designs meeting (8) are equivalent
if the supplementary difference sets constructed by Lemma 2.3 are equivalent. In this
section, as a consequence of the previous section, we give a classification of skew-
symmetric circulant D-optimal designs meeting (8) for orders up to 110.

Let D be a circulant D-optimal design X(R1, R2) in (10) of order n = 2v meeting
(8). Here we suppose that r and k are the numbers of −1’s in the first rows of R1

and R2, respectively. If D is skew-symmetric, then r = v−1
2

by Lemma 3.1.
We call (n, r, k) feasible parameters for skew-symmetric circulant D-optimal de-

signs if (n, r, k) satisfies r = v−1
2

and (11). In Table 2, we list the feasible parameters
(n, r, k) for n ≤ 200.

Table 2: Parameters of skew-symmetric circulant D-optimal designs

(n, r, k) N(n, r, k)

(6, 1, 0) 1
(14, 3, 1) 1
(26, 6, 3) 1
(42, 10, 6) 1
(62, 15, 10) 1
(86, 21, 15) 0
(114, 28, 21) ?
(146, 36, 28) ?
(182, 45, 36) ?

Let S3, S7, S13, S21 and S31 be the skew-symmetric 2-{v; r, k;λ} supplemen-
tary difference sets in Table 3 with (v, r, k, λ) = (3, 1, 0, 0), (7, 3, 1, 1), (13, 6, 3, 3),
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(21, 10, 6, 6) and (31, 15, 10, 10), respectively. Let D6, D14, D26, D42 and D62 be the
skew-symmetric circulant D-optimal designs X(R1, R2) in (10) of orders 6, 14, 26, 42
and 62 meeting (8), constructed by Lemma 2.3 from S3, S7, S13, S21 and S31, respec-
tively. From the classification in Theorem 5.1, we have the following:

Corollary 6.1. Suppose that n ≤ 110. If there exists a skew-symmetric circulant
D-optimal design X(R1, R2) in (10) of order n meeting (8), then it is equivalent to
one of D6, D14, D26, D42 and D62.

The numbers N(n, r, k) of the inequivalent skew-symmetric circulant D-optimal
designs meeting (8) are also listed in Table 2 for the feasible parameters (n, r, k).

A classification of circulant D-optimal designs X(R1, R2) in (10) meeting (8) was
given in [10] for orders n ≤ 58 and n = 66, and in [1] for orders n = 62, 74 (see [1]
for the revised classification for order 26). Our computer search found that Dn

(n = 6, 14, 26) is equivalent to the circulant D-optimal design, which is constructed
by Lemma 2.3 from the first supplementary difference set given in [10, Table 1], D42 is
equivalent to the circulant D-optimal design, which is constructed by Lemma 2.3 from
the 19th supplementary difference set given in [10, Table 1], and D62 is equivalent to
the circulant D-optimal design, which is constructed by Lemma 2.3 from the 50th
supplementary difference set given in [1, Appendix].
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9
,2
0
,2
1
,2
2}

B
=

∅,
{0

}
(v
,r
,k
,λ

)
=

(2
9
,1
4
,7
,8
)

A
=

{4
,5
,6
,8
,9
,1
0
,1
2
,1
3,
1
5,
1
8,
22
,2
6
,2
7
,2
8
}B

=
{0

,1
,1
1
,1
3
,1
5
,1
8
,2
1
}

(v
,r
,k
,λ

)
=

(3
1
,1
5
,0
,7
),
(3
1
,1
5
,1
,7
)

A
=

{3
,6
,1
1
,1
2
,1
3
,1
5
,1
7
,2
1
,2
2
,2
3
,2
4,
2
6,
2
7,
2
9,
3
0}

B
=

∅,
{0

}
(v
,r
,k
,λ

)
=

(3
1
,1
5
,6
,8
)

A
=

{3
,6
,1
1
,1
2
,1
3
,1
5
,1
7
,2
1
,2
2
,2
3
,2
4,
2
6,
2
7,
2
9,
3
0}

B
=

{0
,1
,1
5
,2
0
,2
2
,2
8
}

(v
,r
,k
,λ

)
=

(3
1
,1
5
,1
0
,1
0
)

A
=

{4
,6
,7
,1
2
,1
6
,1
7
,1
8,
2
0,
2
1,
2
2,
23
,2
6
,2
8
,2
9
,3
0
}B

=
{0

,1
,4
,5
,8
,1
1
,1
6
,1
8,
2
0,
29
}

(v
,r
,k
,λ

)
=

(4
3
,2
1
,0
,1
0
),
(4
3
,2
1
,1
,1
0
)

A
=

{2
,3
,5
,7
,8
,1
2
,1
8
,1
9,
2
0,
2
2,
26
,2
7
,2
8
,2
9
,3
0
,3
2
,3
3,
3
4,
3
7,
3
9,
4
2}

B
=

∅,
{0

}
(v
,r
,k
,λ

)
=

(4
7
,2
3
,0
,1
1
),
(4
7
,2
3
,1
,1
1
)

A
=

{5
,1
0
,1
1
,1
3
,1
5
,1
9,
2
0,
2
2,
2
3,
2
6,
29
,3
0
,3
1
,3
3
,3
5
,3
8
,3
9
,4
0,
4
1,
4
3,
4
4,
4
5,
4
6}

B
=

∅,
{0

}
(v
,r
,k
,λ

)
=

(5
9
,2
9
,0
,1
4
),
(5
9
,2
9
,1
,1
4
)

A
=

{2
,6
,8
,1
0
,1
1
,1
3
,1
4,
1
8,
2
3,
2
4,
30
,3
1
,3
2
,3
3
,3
4
,3
7
,3
8
,3
9,
4
0,
4
2,
4
3,
4
4,
4
7,
50
,5
2
,5
4
,5
5
,5
6
,5
8
}B

=
∅,
{0

}
(v
,r
,k
,λ

)
=

(6
7
,3
3
,0
,1
6
),
(6
7
,3
3
,1
,1
6
)

A
=

{2
,3
,5
,7
,8
,1
1
,1
2
,1
3,
1
8,
2
0,
27
,2
8
,3
0
,3
1
,3
2
,3
4
,3
8,
4
1,
4
2,
4
3,
4
4,
4
5,
4
6,
48
,5
0
,5
1
,5
2
,5
3
,5
7
,5
8,
6
1,
6
3,
6
6}

B
=

∅,
{0

}
(v
,r
,k
,λ

)
=

(7
1
,3
5
,0
,1
7
),
(7
1
,3
5
,1
,1
7
)

A
=

{7
,1
1
,1
3
,1
4
,1
7
,2
1,
2
2,
2
3,
2
6,
2
8,
31
,3
3
,3
4
,3
5
,3
9
,4
1
,4
2
,4
4,
4
6,
4
7,
5
1,
5
2,
5
3,
55
,5
6
,5
9
,6
1
,6
2
,6
3
,6
5
,6
6,
6
7,
6
8,
6
9,
7
0}

B
=

∅,
{0

}
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