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Abstract

An(s2, H)-good coloring is the coloring of the edges of a (hyper)graph

¢ such that no subgraph H C 77 is monochrome or rainbow. Sim-
ilarly, we define an (¢, H)-proper coloring to be the coloring of the
vertices of 7 with forbidden monochromatic and rainbow copies of H.
An (4, K;)-good coloring is also known as a mixed Ramsey coloring
when 7 = K, is a complete graph, and an (2, K,)-proper coloring is a
mixed hypergraph coloring of a t-uniform hypergraph 2. We highlight
these two related theories by finding the number of (7}, K3)-good and
proper colorings for some k-trees, T}' with k& > 2. Further, a partition
of an edge/vertex set into i nonempty classes is called feasible if it is
induced by a good/proper coloring using ¢ colors. If r; is the number of
feasible partitions for 1 < ¢ < n, then the vector (ry,...,r,) is called
the chromatic spectrum. We investigate and compare the exact values
in the chromatic spectrum for some 2-trees, given (73, K3)-good versus
(T3, K3)-proper colorings. In particular, we find that when T3 is a fan,
ro follows a Fibonacci recurrence.
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1 Preliminaries

It is customary to define a hypergraph 7 to be the ordered pair (X, £), where X is a
finite set of vertices with order | X| =n and & is a collection of nonempty subsets of
X, called (hyper)edges. 7 is said to be linear (otherwise it is nonlinear) if Ey N Ey
is either empty or a singleton, for any pair of hyperedges. The number of vertices
contained in E of £, denoted |E|, is the size of E. When |E| = r, 5 is said to be
r-uniform and a 2-uniform hypergraph ¢ = G is a graph. For more basic definitions
of graphs and hypergraphs, we recommend [17].

Consider the mapping ¢ : A — {1,2,..., A} being a A-coloring of the elements
of A. A subset B C A is said to be monochrome if all of its elements share the
same color and B is rainbow if all of its elements have distinct colors. Let H be
a subgraph of a graph G. An edge coloring of G is called (G; H)-good if it admits
no monochromatic copy of H and no rainbow copy of H. Likewise, a (G; H)-proper
coloring is the coloring of the vertices of G such that no copy of H is monochrome or
rainbow. Figure 1(A) is an example of a (G; K3)-proper coloring while Figure 1(B)
shows a (G; K3)-good coloring.

Axenovich et al. [2] have referred to (K, K3)-good coloring as mixed-Ramsey
coloring, a hybrid of classical Ramsey and anti-Ramsey colorings [2 8, [14] and the
minumum and maximum numbers of colors used in a (K, K3)-good coloring have
been the subject of extensive research in [2, 3], for instance. Further, in mixed
hypergraph colorings [16], a hypergraph .7 that admits an (¢; H)-proper coloring
is called a bihypergraph when H = K, the complement of a complete graph on t > 3
vertices. We note here that, mixed hypergraphs are often used to encode partitioning
constraints, and recently bihypergraphs have appeared in communication models for
cyber security [I1]. Although this paper focuses on graphs, it is worth noting that
the results concern some linear and nonlinear bihypergraphs as well.

A partition of an edge/vertex set into ¢ nonempty classes is called feasible if it
is induced by a good/proper coloring using i colors. If r; is the number of feasible
partitions for each 1 < ¢ < n, then the vector (ry,...,r,) is called the chromatic
spectrum. The chromatic spectrum of mixed hypergraphs has been well studied by
several researchers such as Kral and Tuza [5], [6, 12} [13]. Here, we found the values
in the chromatic spectrum for any (G; H)-good or (G; H)-proper colorings when G
is some non-isomorphic 2-trees, which are triangulated graphs, and H is a triangle.
A comparative analysis of these values is presented in our effort to establish some
bounds. In the process, we found that when G is a fan, r, follows a shifted Fibonacci
recurrence. If we denote the falling factorial by A = A(A—1)(A—2)...(A—i+1), then

the (chromatic) polynomial P(G; H,\) = P(G; H) = Z ;AL counts the number of

colorings given some constraint on H, using at mostz)\1 colors. This polynomial is
well known in the case of vertex colorings of graphs with a forbidden monochrome
subgraph H € {K, K;} [, [7, 15]. In this paper, we also presented this polynomial
for k-trees with forbidden monochrome or rainbow K for all ¢ > 3. Here, the Stirling
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number of the second kind is denoted by {Z}, it counts the number of partitions of a
set of n elements into & nonempty subsets. See Table [l for some of its values. These
notations and other combinatorial identities can be found in [I0]. In Appendix, we
present some arrays of the values of the parameters involved in this article; the zero
entries are omitted in each table.

2 Chromatic polynomial of some k-trees

As a generalization of a tree, a k-tree is a graph which arises from a k-clique by
0 or more iterations of adding n new vertices, each joined to a k-clique in the old
graph; This process generates several non-isomorphic k-trees. Figure 1 shows two
non-isomorphic 2-trees on 6 vertices. K-trees, when k£ > 2, are shown to be useful
in constructing reliable network in [9]. Here, we denote by T}', a k-tree on n + k
vertices which is obtained from a k-clique S, by repeatedly adding n new vertices and
making them adjacent to all the vertices of S. When k = 2, this particular 2-tree is
also known as an (n + 1)-bridge 0(1,2,...,2). See Figure 1(B) when n = 4.

(A) Fan graph, F* (B) 5-bridge graph, T

Figure 1: Two non-isomorphic 2-trees with a unique (£*; K3)-proper
4-coloring and a unique (T4 K3)-good 5-coloring

Theorem 2.1. Suppose 1}’ is a k-tree on n + 2 vertices. The number of its
(T Ki41)-good colorings is

PP Kpn) = A — 1) + A B ok - (4 = ( ))’ﬂ)” + (B Z G e

Proof. Given any coloring of 7', one of the following is true:

(7) S is monochromatic, giving A colorings. For each such coloring, there are
A¥ — 1 ways to color the remaining k edges, that arise from each of the n vertices
added, giving the first term.
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(77) S is rainbow, giving A1 colorings. For each such coloring, there are \*¥ —
(A —|S])E ways to color the remaining k edges of each of the n(k + 1) cliques, giving
the second term.

(#i7) S is neither monochromatic nor rainbow, giving ISl — M5l — X colorings.
For each such coloring, there are \¥ ways to color the remaining edges of each added
vertex, giving the last term. The result follows from the fact that |S| = (g) U

Using a similar argument as in the proof of Theorem 2] when |S| = k, gives

Theorem 2.2. Suppose T} is a k-tree on n+2 vertices. The number of its (T}; Ky41)-
proper colorings is given by

P(T{; Kiyh) = A — D)™ 4+ MEE™ + (AF — AE— X)A™

Remark 1: Following the argument for the proof of Theorem 2.1l we can deduce
that the number of (G; K3)-good colorings for any 2-tree GG is the same; this gives
rise to equivalent chromatic spectral values. However, in the next section, we show
that this is not the case for (G; K3)-proper colorings, when G is some 2-tree.

3 Chromatic spectra of (monochrome and rainbow)-triangle
free 2-trees

Here, we find and compare the values in the chromatic spectrum of some 2-trees.
The next proposition is instrumental in expressing several formulas in the previous
section into a falling factorial form, giving the chromatic spectral values.

n+l n—k+1
1—
Proposition 3.1. The equality A(A — 1)" Z [ Z ( ){n +k }] \E

holds for alln > 1.

Proof. Clearly,

A= = ()

S ()
- S ()
- e (O T 0
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The result follows from the fact that (1) is equal to zero. O
Corollary 3.1. If G is a 2-tree on n+ 2 vertices then the chromatic spectrum of its
(G; K3)-good coloring is (o, ..., Tky -y Tni1),

(g n\[n+1—i
whererk:?)"( ;(_1)Z(i>{ f }),k:Q,...,n+1.

Proof. The result follows from Theorem 2.1 when k£ = 2, Remark 1 and Proposition
B.11 O

Here is the analogous result in a (G; K3)-proper coloring when G is the specific
2-tree T3 which we described in the previous section.

Corollary 3.2. If G =0(1,2,...,2), a 2-tree on n + 2 vertices, then the chromatic

spectrum of its (G; Ks)-proper coloring is (14, ..., 7y, ..., Tny), where
n—k+1 .
(n\ [n+1—1
—1) if k>3
p-{ 2 O e
2" +1 otherwise.

Proof. Since G = Ty, a 2-tree, it follows from Theorem (when k£ = 2) that
P(G; K3) = P(Ty; K3) = AM(A — 1)™ + 2" A2, to which we then apply Proposition 311
Also, observe that from (2)) when k = 2,

n_:(—l)i(?> {n +21 — z} .

i=
given the second statement. O

Now, we take a closer look at another well-known 2-tree. Construct a graph G as
follows: start with a triangle {wy, ws, u;}, and iteratively add n—1 new vertices, such
that each additional vertex u; is adjacent to the pair {uy,u; 1}, fori=3,...,n+1,
and usy is adjacent to the pair {uy,ws}. G is often called a fan on and we denote it
by F™; see Figure 1(A) for an example when n = 4. Further, from the construction,
it is clear that F™ is also a 2-tree. Here, we color the vertices of F", and recursively
count the number of (F"; K3)-proper colorings. To help illustrate this recursion, we
present the next example.

Example 3.1. Chromatic spectrum of an (F*; K3)-proper coloring.

Consider the fan F*, obtained by iteratively adding n = 4 vertices to a base
edge {wi,ws} as shown in Figure 1(A). When n = 1, it is clear that there are
exactly 2A2 + A2 ways to color the vertices of the triangle {w;, ws, u;} so that it is
neither monochrome nor rainbow. The first and second terms count the cases when
(a) c(uy) # c(we) and (b) c(uy) = c(wy), respectively. When n = 2, from (a) it
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follows that for each such colorings, there are exactly two ways to color us; either
c(ug) = c(uy) # c(ws) or c(uz) = c(wy) # c(uy). Likewise from (b), there are A — 1
ways to color uy such that c(us) # ¢(u1) = c(ws). Together, we have

P(F%K3) = 22X+ (A= 1DA2 =222+ (A —1)] + 2)\% (3)
As the terms in the last expression of (3) are arranged so that the first term counts
the case when c(u1) # c¢(uz2) and the last term counts the case when c(u;) = c(usg),

we can apply once again the same argument to the newly added vertex uz. Thus, we
have

P(F? K3) = 222+ (A= 1)+ (A=1)[2)3] = M2[2+3(A = 1)+ 32+ (A—1)]. (4)

Similarly, by adding us to F, we obtain from (),

P(F4% K3) = M2+50—1)+ O\ =1+ M2+30)\-1)], (5)

after rearranging the expression so that the first and last terms count the cases when
c(uy) # c(uy) and c(uq) = c(uy), respectively. Hence,

P(FYK3) = 4MA—1)+8\A =12+ 1A —1)% (6)

Now apply Proposition Bl to each term of (@) to obtain

Ao tare o) - e
(o)) - (>{}+§2>{}

P(F* K3)

_|_

o) ap (o) - O spso)ap

= [4+8(B—-2)+1(7T—3-3+3)] N+ [8+1(6—3)]A2+ 1]\
= 13N+ 1123+ 1)L (7)

Thus, the chromatic spectrum of any (F*; K3)-proper coloring is (13,11, 1).

To support a general recursion presented in the next theorem, we let aso = 2,
asn =5, agp =1, ay3 = 2 and ay 4 = 3; Table 2 shows the values of each a; ; (when
n = 4). With these coefficients we obtain directly from (B):

P(F*; K3)

+ |
>
S
[SEESS]
S
w o
D
[
S~—
=)
- 4
IS
Ny
I~
>~
|
=

= o4, 6)%\ D'+ @5(4 DA =1+ 6(4,2)AMA = 1%, (8)
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where

a4, + G4 347 if r <2
P(4,r) = .
a4 otherwise.

We note that (8) follows from Theorem B, when n = 4. Now, Proposition B.1]
gives

P(F*; K3) [6(4,0)(1) + 6(4,1)(3 = 2) + ¢(4,2)(7 — 3- 3+ 3)|\*
[6(4,1)(1) + 6(4,2)(6 — 3)]A* + [6(4,2)]\

[6(4,0)+6(4, 1) +6(4, 2)]A* + [6(4, 1) +36(4, 2)] X+ (4, 2) A% (9)

+¢
+¢

_|_

Again, observe that (@) follows from (I3) when n = 4. The values of ¢(n,r)
when n = 11 are recorded in Table 3 with 0 < < [§] . Thus, since ¢(4,0) = 4,
»(4,1) =8, ¢(4,2) = 1, we have

P(F% K3) = 1302+ 1103 + 1\%

Table[lin the Appendix shows some of the chromatic spectral values given a (T3"; K3)-
good coloring, a (73'; K3)-proper coloring and an (F™; K3)-proper coloring when n =
1,...,6. These values can be derived from Corollary 3.1}, Corollary [3.2], and Corollary
B3] respectively, for each coloring condition.

Theorem 3.1. The number of (F™; K3)-proper colorings is
P(F™; K3) = Z d(n, )N — 1) where

0<r<|%]
Gy + @, fnt1 ifr<?2
o) = 4 e et Y
Qn, 2 otherwise

and the values of a; ; satisfy, for 0 < j <i<mn,

(7,) a;o = 2 and a11 = 1

irg + @y gy 1< j <[]
(i1) for all eveni>2, a;,; =<1 =1
@5t [ <<
Qi1 i+ a. 4. i- 1<zt
(iii) for all odd i >3, a;; = R A . J -2
@114 3] <j<i

Proof. When n = 1, it follows that P(F; K3) = ¢(1,0)A(A —1)! = [a10 + a11] (N —
! = 3X\(A — 1), since a;p = 2 and a;; = 1 by condition (¢). For n > 2, at
cach iteration, we separate the cases when c(uy) # c(ug) from when c(uy) = c(uyg).
Further, we rearrange the terms of the resulting expression of P(F*; K3) so that the
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first counts the colorings c(u;) # c(ug), and the last counts the colorings c(uy) = c(uy)
for k=1,...,n. Hence, for n > 1,

PF5Es) = (0 awsa(A= 1)

+>\2< > an,kfl()‘_l)ki[%rl]il>

L2 <k<n

= Z (k-1 + %MTH]M—J)\()‘ - 1)k+1a (10)

where the coefficients a; ; are obtained recursively from items (i)—(ii¢). By letting
a; ; = 0 when ¢ < j, it follows that

P(F™ K3) = Y d(n,r)AA = 1), (11)

0<r<|2]

Ay + Q, i1y, ifr <%
where gb(n,r):{ : 23+ 2

an,n otherwise.

Observation 1: The previous result can be reinterpreted as follows: Let apo = 2
and define an (n + 1) x (n + 1) matrix A whose entries are the coefficients a; ; for
0 <1i,5 <n. It follows that (I0) is equivalent to the equation P = \A - B, where

P(FO,Kg) +)\()\—2) CL(),O
P(F': K aio a
p— ( . 3) ’ A= 1.,0 1.,1 . ’ B— [Bl|Bz],T
P(Fn7 K3) ano Ap1 ... Qnnp

with B' = (A= )" (A= )] and B2 = A= 1)' . (A= 1)1

When n = 10, we present the entries of the lower triangular matrix A in Table
to help in the verification of the formula. The matrix A has several interesting
properties, some of which we discuss in the next observation. For now, it is easy to
see that its determinant is

det(A) = [T ais = 2([™ ; an

1=0

and its characteristic polynomial is given by

(—1)"“(:16—1)(%1@—2)2@—3)...(30—{ 5 -
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Corollary 3.3. The values in the chromatic spectrum of any (F"; K3)-proper col-

oring are given by 1y = Z o(n, 7“)( Z (—1)i(r—;—1) {T+z _Z}>, for

k—2<r<| %] 0<i<r—k+2
each k=2,...,["] + 1, with

Any + Ay rosry, . if T < | 2]
$(n,r) = { S ’

Qn, |2 | otherwise

Proof. For each r = 0,..., %], we apply Proposition BT to P(F™; K3), giving

Pk = o010 (o) {3

e o2 (o) o+ 0 () o) ) e
+ om0 ()) {5+ o (]) (e
+ o 3l-0°(p) {4
v ot g0y ) T e 1)
Therefore,
P 3 (3 n] ¥ e A LR 1) PEEE)

k=2 r=k—2 0<i<r—k+2

giving the result.

Observation 2: When k = [%] + 1, the last term of (I3) is

o(n, |5]) = {
Also, it is worth noting that when k = 2,
15

1 if n is even

3+ ”T_l otherwise

0|3

L5]

s [ X o (TS T = et

r=0 0<i<r r=0

0|3
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this proceeds from the simple fact that Z(—l)l(n) {n—|—2 Z} = 1, for all n.
i
i=0

L5]

Further, observe that if we define b; = Zgb(n, j) for each i < n, it follows that
j=0

b, = Z a; ; and the sequence {b,} satisfies the shifted Fibonacci recurrence given by

j
bp =2,by =3 and b, = b,,_1 + b,_o, for n > 2. From this observation, we determine
the generating function in the next proposition.

Proposition 3.2. The number of partitions of the n + 2 wvertices of a fan into 2
nonempty classes such that no triangle is monochrome or rainbow is given by
1 1 5 1—+/5
b, = ﬁ[@ +V5)a" — (2 — V5)B", where a = +2\/_ and B = 2\/_ :

Proof. Let b(x) = Z b,z such that by =2, by = 3 and b, = b,_1 + b,,_s. It follows

n=0
that
b(z) = 243z + Z by
n=2
= 2+3x—|—x2bkxk +xQZbkxk
k=1 k=0
= 2+3x+x(2bkxk —2) —i—xQZbkazk
k=0 k=0
= 2+ + xb(x) + 2°b(z).
2 2 1 >
This implies that b(z) = T rr with @ = —- Vs and

1—2—a? (x+a)(x+ )’ 2

5= 10

series, we obtain

. Using a partial fraction decomposition, and subsequently the power

1 -2 -2
o) = LI 22
sle+ 8 4+«
1 [5—2 - a—2
= == (Q_a"") - (Q_p"a")]
P 2
1 B8-2 oz—2n]n
= — o — x",
Yl
1 —2 -2
giving that b, = — [B an— < ﬁ"} . The result follows, after a simplification.
Vol B o

O
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In summary, the extreme chromatic spectral values given the aforementioned
colorings are clear; the lower values are, ro = 3", ry, = 2" + 1, r)) = b(x) where

1 -2, a—-2
a JR—

b(x) = — B"|. Also, for all n > 1, the upper values are also
Vsl B
1 if n is even
shown to be r,,; = 3",/ , =1, and 17, = ’
i i Eenlhe {3 + % otherwise.

4 Conclusion and future work

To the best of our knowledge, the problem of finding the exact chromatic spectral
values in a (K,; K;)-good coloring remains open for all ¢ > 3 and larger values of n;
this particular problem has greatly inspired this research. When G is a 2-tree, the
findings in Corollaries B.1l B.2] and B.3] suggest the existence of some constant ¢ < 1,
such that 7} = cr, where 7} and r; are the corresponding values in the chromatic
spectra of a (G; K3)-proper and a (G; K3)-good coloring, respectively. For instance,
¢ = (3)" when G is an (n + 1)-bridge. Further work is needed to determine whether
the values in the chromatic spectrum of a (G; H)-good coloring remain upper bounds
for their counterparts in a (G; H)-proper coloring, given any other graph G and some

subgraph H.

Also, the original definition of a (G; H)-proper coloring can be extended to include
more than one subgraph. For instance, a (G; Hy,..., H,,)-proper coloring can be
defined as the coloring of the vertices of G such that no copy of (distinct) subgraphs
H; is monochrome or rainbow, for ¢ = 1,...,m. As such, when G = 5 and H; =
K;,, # is a non-uniform bihypergraph with hyperedges of sizes t; > 3. Some
related results concerning non-uniform bihypergraphs can be found in [I]. As a step
in this direction for graphs, we propose the next lemma. This lemma shows that
the chromatic spectral values of any (F™; K3, H)-proper coloring are identical when
H e {P! Kiu1,Cpn 0(1,n1,n9)}, where P, K;,_1 and C,, denote respectively, an
n-path that includes a fixed vertex (apex) w1, an n-cycle, and an n-star.

Corollary 4.1. Suppose G is a fan on n > 4 vertices. Any (G; K3)-proper coloring
is a (G; H)-proper coloring where H € { P}, K14, C,,0(1,n1, 1)} with s > 4, 252 | <

t<n-—1,r>3, and 2 <ny; < ny such that ny + ny < n.

Proof. Suppose G is a fan on n > 4 vertices which we can construct as follow: start
with a triangle, say (uq, us, us), and iteratively add n — 3 new vertices such that each
additional vertex u; is adjacent to the pair (uq,u;_1), for i = 4,...,n. Assume there
is a (G; K3)-proper coloring.

(i) Observe that for s > 4, every path P C G contains the subgraph uju;u;4, for
some i (2 < i < n—2). If some 3-path (that includes u;) is monochrome/rainbow
then the triangle (u1, u;, u;+1) is monochrome/rainbow, violating our (G; K3)-proper
coloring assumption. Hence G admits a (G; P¥)-proper coloring for all s > 4.

(ii) By letting the vertices of K1 C G be all the vertices of G, it follows that
t < n—1. Now, consider the coloring such c(u;) = c(ug) and c(uy) # c(uggy1)



J. ALLAGAN AND V. VOLOSHIN / AUSTRALAS. J. COMBIN. 65 (2) (2016), 137-151 148

for k =1,..., [%1 Clearly, such coloring does not violate our original coloring
assumption. The lower bound of ¢ is satisfied by letting the vertices of K;: be
{ur, uo} U{ugpyr : k= 1,...,[%2]}, which guarantees a (G; Ky,)-proper coloring
for all ¢ > [21].

(iii) For r > 4, since every cycle C, C G includes the apex wg, there exists an
s < r such that P* C C,, with 4 < s <r <n. From (i), we can conclude that there

is a (G; C,)-proper coloring. The case when r = 3 is trivial.

(iv) Likewise, since 6(1,ny,n2) contains C14, C G with ¢ € {ny,n2}, the result
follows from (iii) that, for all 2 < n; < ny such that n; + ny < n, there is a
(G;6(1,n9,n2))-proper coloring. O

In conclusion, it is worth noting that future work can address the coloring of the
vertices/edges of a graph with either forbidden monochrome subgraphs or forbidden
rainbow subgraphs (but not both). As a step in this direction, we present a simple
case when coloring the elements of an n-set such that no ¢-subset is rainbow.

Corollary 4.2. The chromatic spectral values in the colorings of the vertices of a
complete graph K, such that no K, is rainbow are given by r, = {Z}, for k =
1,...,t—1.

Note that these values also correspond to the chromatic spectral values of any

complete t-uniform cohypergraph of order n; cohypergraphs are hypergraphs whose
hyperedges are forbidden to be rainbow given any proper (vertex) coloring [16].
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Appendix
(T3 K3)-good (T3; K3)-proper (F™; K3)-proper

n=11(3) (3) (3)
n=2 32(1v1) (5,1) (5,1)
n=3|3%(1,3,1) (9,3,1) (8,4)
n=4]34(1,7,6,1) (17,7,6,1) (13,11,1)
n=5]3(1,15,25,10,1) (33,15,25,10,1) (27,17,5)
n=6|3%(1,31,90,65,15,1) | (65,31,90,65,15,1) | (37,62,7,1)

Table 1: chromatic spectral values of some (G; K3)-good colorings and some (G; K3)-
proper colorings for n < 6

n\j 01 2 3 4 5 6 7 8 9 10 11
0 2

1 2|1

2 211 |2

3 213 (2 |1

4 2|5 |1 |2 |3

d 2|7 |14 |2 |5 |1

6 219 19 |1 |2 7|4

7 21111165 |2 |99 |1

8 2113125141 (211|165

9 2115|136 (306 2|13 |25|14 |1

10 1217149552012 |15|36 |30 |6

11 12196491507 |2 |17|49|55 (20 |1

Table 2: Table of values of a; ;, which are the entries of the matrix A when n = 11
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n\r 0 1 2 3 4 5
0 2

1 3

2 4|1

3 4|4

4 418 |1

5 4112 |5

6 4116 |13 |1

7 4120|125 |6

8 4124 |41 19 1

9 4128 |61 (44 |7

10 413285 |8 (26 |1
11 4136|113 | 146 | 70 | 8

Table 3: Table of values of ¢(n,r) when n =11

== © 00O Uik W —= O

— O

0 1 2 3 4 ) 6 7 8 9 10 11
1

0|1

011

0(1)|3 1

o|1|7 6 1

01|15 25 10 1

0(1]31 90 65 15 1

0(1]63 301 350 140 21 1

0|1]127 966 1701 1050 266 28 1

0|1] 255 3025 | 7770 6951 2646 462 36 1

0|1]511 9330 | 34105 42525 22827 5880 750 45 1

0| 1] 1023 | 2850 | 145750 | 246730 | 179487 | 63987 | 11880 | 1155 | 55 | 1

Table 4: Table of values of {Z} when n =11
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