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Abstract

An(H , H)-good coloring is the coloring of the edges of a (hyper)graph
H such that no subgraph H ⊆ H is monochrome or rainbow. Sim-
ilarly, we define an (H , H)-proper coloring to be the coloring of the
vertices of H with forbidden monochromatic and rainbow copies of H .
An (H , Kt)-good coloring is also known as a mixed Ramsey coloring
when H = Kn is a complete graph, and an (H , Kt)-proper coloring is a
mixed hypergraph coloring of a t-uniform hypergraph H . We highlight
these two related theories by finding the number of (T n

k , K3)-good and
proper colorings for some k-trees, T n

k with k ≥ 2. Further, a partition
of an edge/vertex set into i nonempty classes is called feasible if it is
induced by a good/proper coloring using i colors. If ri is the number of
feasible partitions for 1 ≤ i ≤ n, then the vector (r1, . . . , rn) is called
the chromatic spectrum. We investigate and compare the exact values
in the chromatic spectrum for some 2-trees, given (T n

2 , K3)-good versus
(T n

2 , K3)-proper colorings. In particular, we find that when T n
2 is a fan,

r2 follows a Fibonacci recurrence.



J. ALLAGAN AND V. VOLOSHIN/AUSTRALAS. J. COMBIN. 65 (2) (2016), 137–151 138

1 Preliminaries

It is customary to define a hypergraph H to be the ordered pair (X, E), where X is a
finite set of vertices with order |X| = n and E is a collection of nonempty subsets of
X, called (hyper)edges. H is said to be linear (otherwise it is nonlinear) if E1 ∩ E2

is either empty or a singleton, for any pair of hyperedges. The number of vertices
contained in E of E , denoted |E|, is the size of E. When |E| = r, H is said to be
r-uniform and a 2-uniform hypergraph H = G is a graph. For more basic definitions
of graphs and hypergraphs, we recommend [17].

Consider the mapping c : A → {1, 2, . . . , λ} being a λ-coloring of the elements
of A. A subset B ⊆ A is said to be monochrome if all of its elements share the
same color and B is rainbow if all of its elements have distinct colors. Let H be
a subgraph of a graph G. An edge coloring of G is called (G;H)-good if it admits
no monochromatic copy of H and no rainbow copy of H . Likewise, a (G;H)-proper
coloring is the coloring of the vertices of G such that no copy of H is monochrome or
rainbow. Figure 1(A) is an example of a (G;K3)-proper coloring while Figure 1(B)
shows a (G;K3)-good coloring.

Axenovich et al. [2] have referred to (Kn, K3)-good coloring as mixed-Ramsey
coloring, a hybrid of classical Ramsey and anti-Ramsey colorings [2, 8, 14] and the
minumum and maximum numbers of colors used in a (Kn, K3)-good coloring have
been the subject of extensive research in [2, 3], for instance. Further, in mixed
hypergraph colorings [16], a hypergraph H that admits an (H ;H)-proper coloring
is called a bihypergraph when H = Kt, the complement of a complete graph on t ≥ 3
vertices. We note here that, mixed hypergraphs are often used to encode partitioning
constraints, and recently bihypergraphs have appeared in communication models for
cyber security [11]. Although this paper focuses on graphs, it is worth noting that
the results concern some linear and nonlinear bihypergraphs as well.

A partition of an edge/vertex set into i nonempty classes is called feasible if it
is induced by a good/proper coloring using i colors. If ri is the number of feasible
partitions for each 1 ≤ i ≤ n, then the vector (r1, . . . , rn) is called the chromatic
spectrum. The chromatic spectrum of mixed hypergraphs has been well studied by
several researchers such as Kràl and Tuza [5, 6, 12, 13]. Here, we found the values
in the chromatic spectrum for any (G;H)-good or (G;H)-proper colorings when G
is some non-isomorphic 2-trees, which are triangulated graphs, and H is a triangle.
A comparative analysis of these values is presented in our effort to establish some
bounds. In the process, we found that when G is a fan, r2 follows a shifted Fibonacci
recurrence. If we denote the falling factorial by λi = λ(λ−1)(λ−2) . . . (λ−i+1), then

the (chromatic) polynomial P (G;H, λ) = P (G;H) =
n∑

i=1

riλ
i, counts the number of

colorings given some constraint on H , using at most λ colors. This polynomial is
well known in the case of vertex colorings of graphs with a forbidden monochrome
subgraph H ∈ {K2, Kt} [4, 7, 15]. In this paper, we also presented this polynomial
for k-trees with forbidden monochrome or rainbow Kt for all t ≥ 3. Here, the Stirling
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number of the second kind is denoted by
{
n
k

}
; it counts the number of partitions of a

set of n elements into k nonempty subsets. See Table 4 for some of its values. These
notations and other combinatorial identities can be found in [10]. In Appendix, we
present some arrays of the values of the parameters involved in this article; the zero
entries are omitted in each table.

2 Chromatic polynomial of some k-trees

As a generalization of a tree, a k-tree is a graph which arises from a k-clique by
0 or more iterations of adding n new vertices, each joined to a k-clique in the old
graph; This process generates several non-isomorphic k-trees. Figure 1 shows two
non-isomorphic 2-trees on 6 vertices. K-trees, when k ≥ 2, are shown to be useful
in constructing reliable network in [9]. Here, we denote by T n

k , a k-tree on n + k
vertices which is obtained from a k-clique S, by repeatedly adding n new vertices and
making them adjacent to all the vertices of S. When k = 2, this particular 2-tree is
also known as an (n + 1)-bridge θ(1, 2, . . . , 2). See Figure 1(B) when n = 4.

(A) Fan graph, F 4 (B) 5-bridge graph, T 4
2

Figure 1: Two non-isomorphic 2-trees with a unique (F 4;K3)-proper

4-coloring and a unique (T 4
2 ;K3)-good 5-coloring
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Theorem 2.1. Suppose T n
k is a k-tree on n + 2 vertices. The number of its

(T n
k ;Kk+1)-good colorings is

P (T n
k ;Kk+1) = λ(λk − 1)n + λ

(k2)(λk − (λ−
(
k

2

)
)k)n + (λ(

k
2) − λ

(k2) − λ)λnk.

Proof. Given any coloring of T n
k , one of the following is true:

(i) S is monochromatic, giving λ colorings. For each such coloring, there are
λk − 1 ways to color the remaining k edges, that arise from each of the n vertices
added, giving the first term.
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(ii) S is rainbow, giving λ|S| colorings. For each such coloring, there are λk −
(λ− |S|)k ways to color the remaining k edges of each of the n(k+1) cliques, giving
the second term.

(iii) S is neither monochromatic nor rainbow, giving λ|S| − λ|S| − λ colorings.
For each such coloring, there are λk ways to color the remaining edges of each added
vertex, giving the last term. The result follows from the fact that |S| = (

k
2

)
.

Using a similar argument as in the proof of Theorem 2.1 when |S| = k, gives

Theorem 2.2. Suppose T n
k is a k-tree on n+2 vertices.The number of its (T n

k ;Kk+1)-
proper colorings is given by

P (T n
k ;Kk+1) = λ(λ− 1)n + λkkn + (λk − λk − λ)λn.

Remark 1: Following the argument for the proof of Theorem 2.1, we can deduce
that the number of (G;K3)-good colorings for any 2-tree G is the same; this gives
rise to equivalent chromatic spectral values. However, in the next section, we show
that this is not the case for (G;K3)-proper colorings, when G is some 2-tree.

3 Chromatic spectra of (monochrome and rainbow)-triangle
free 2-trees

Here, we find and compare the values in the chromatic spectrum of some 2-trees.
The next proposition is instrumental in expressing several formulas in the previous
section into a falling factorial form, giving the chromatic spectral values.

Proposition 3.1. The equality λ(λ − 1)n =

n+1∑
k=2

[ n−k+1∑
s=0

(−1)s
(
n

s

){
n + 1− s

k

}]
λk

holds for all n ≥ 1.

Proof. Clearly,

λ(λ− 1)n =

n∑
i=0

(−1)i
(
n

i

)
λn+1−i

=

n∑
i=0

(−1)i
(
n

i

)
[

n+1−i∑
k=1

{
n+ 1− i

k

}
λk]

=
n+1∑
k=1

[ n−k+1∑
s=0

(−1)s
(
n

s

){
n+ 1− s

k

}]
λk

=

n∑
s=0

(−1)s
(
n

s

){
n+ 1− s

1

}
λ1 (1)

+
n+1∑
k=2

[ n−k+1∑
s=0

(−1)s
(
n

s

){
n+ 1− s

k

}]
λk . (2)
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The result follows from the fact that (1) is equal to zero.

Corollary 3.1. If G is a 2-tree on n+ 2 vertices then the chromatic spectrum of its
(G;K3)-good coloring is (r2, . . . , rk, . . . , rn+1),

where rk = 3n
( n−k+1∑

i=0

(−1)i
(
n

i

){
n+ 1− i

k

})
, k = 2, . . . , n+ 1.

Proof. The result follows from Theorem 2.1 when k = 2, Remark 1 and Proposition
3.1.

Here is the analogous result in a (G;K3)-proper coloring when G is the specific
2-tree T n

2 which we described in the previous section.

Corollary 3.2. If G = θ(1, 2, . . . , 2), a 2-tree on n+ 2 vertices, then the chromatic
spectrum of its (G;K3)-proper coloring is (r′2, . . . , r

′
k, . . . , r

′
n+1), where

r′k =

⎧⎪⎨
⎪⎩

n−k+1∑
i=0

(−1)i
(
n

i

){
n + 1− i

k

}
if k ≥ 3

2n + 1 otherwise.

Proof. Since G = T n
2 , a 2-tree, it follows from Theorem 2.2 (when k = 2) that

P (G;K3) = P (T n
2 ;K3) = λ(λ− 1)n + 2nλ2, to which we then apply Proposition 3.1.

Also, observe that from (2) when k = 2,

n−1∑
i=0

(−1)i
(
n

i

){
n + 1− i

2

}
= 1,

given the second statement.

Now, we take a closer look at another well-known 2-tree. Construct a graph G as
follows: start with a triangle {w1, w2, u1}, and iteratively add n−1 new vertices, such
that each additional vertex ui is adjacent to the pair {u1, ui−1}, for i = 3, . . . , n+ 1,
and u2 is adjacent to the pair {u1, w2}. G is often called a fan on and we denote it
by F n; see Figure 1(A) for an example when n = 4. Further, from the construction,
it is clear that F n is also a 2-tree. Here, we color the vertices of F n, and recursively
count the number of (F n;K3)-proper colorings. To help illustrate this recursion, we
present the next example.

Example 3.1. Chromatic spectrum of an (F 4;K3)-proper coloring.

Consider the fan F 4, obtained by iteratively adding n = 4 vertices to a base
edge {w1, w2} as shown in Figure 1(A). When n = 1, it is clear that there are
exactly 2λ2 + λ2 ways to color the vertices of the triangle {w1, w2, u1} so that it is
neither monochrome nor rainbow. The first and second terms count the cases when
(a) c(u1) �= c(w2) and (b) c(u1) = c(w2), respectively. When n = 2, from (a) it
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follows that for each such colorings, there are exactly two ways to color u2; either
c(u2) = c(u1) �= c(w2) or c(u2) = c(w2) �= c(u1). Likewise from (b), there are λ − 1
ways to color u2 such that c(u2) �= c(u1) = c(w2). Together, we have

P (F 2;K3) = 2(2λ2) + (λ− 1)λ2 = λ2[2 + (λ− 1)] + 2λ2. (3)

As the terms in the last expression of (3) are arranged so that the first term counts
the case when c(u1) �= c(u2) and the last term counts the case when c(u1) = c(u2),
we can apply once again the same argument to the newly added vertex u3. Thus, we
have

P (F 3;K3) = 2[λ2(2+(λ−1))]+(λ−1)[2λ2] = λ2[2+3(λ−1)]+λ2[2+(λ−1)]. (4)

Similarly, by adding u4 to F 3, we obtain from (4),

P (F 4;K3) = λ2[2 + 5(λ− 1) + (λ− 1)2] + λ2[2 + 3(λ− 1)], (5)

after rearranging the expression so that the first and last terms count the cases when
c(u1) �= c(u4) and c(u1) = c(u4), respectively. Hence,

P (F 4;K3) = 4λ(λ− 1) + 8λ(λ− 1)2 + 1λ(λ− 1)3. (6)

Now apply Proposition 3.1 to each term of (6) to obtain

P (F 4;K3) = 4[

(
1

0

){
2

2

}
]λ2 + 8[

(
2

0

){
3

2

}
−

(
2

1

){
2

2

}
]λ2

+ 1[

(
3

0

){
4

2

}
−

(
3

1

){
3

2

}
+

(
3

2

){
2

2

}
]λ2

+ 8[

(
2

0

){
3

3

}
]λ3 + 1[

(
3

0

){
4

3

}
−

(
3

1

){
3

3

}
]λ3 + 1[

(
4

0

){
4

4

}
]λ4

= [4 + 8(3− 2) + 1(7− 3 · 3 + 3)]λ2 + [8 + 1(6− 3)]λ3 + 1[λ4]

= 13λ2 + 11λ3 + 1λ4. (7)

Thus, the chromatic spectrum of any (F 4;K3)-proper coloring is (13, 11, 1).

To support a general recursion presented in the next theorem, we let a4,0 = 2,
a4,1 = 5, a4,2 = 1, a4,3 = 2 and a4,4 = 3; Table 2 shows the values of each ai,j (when
n = 4). With these coefficients we obtain directly from (5):

P (F 4;K3) = λ2[a4,0(λ− 1)0 + a4,1(λ− 1)1 + a4,2(λ− 1)2]

+ λ2[a4,3(λ− 1)0 + a4,4(λ− 1)1]

= φ(4, 0)λ(λ− 1)1 + φ(4, 1)λ(λ− 1)2 + φ(4, 2)λ(λ− 1)3, (8)
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where

φ(4, r) =

{
a4,r + a4,3+r if r < 2

a4,2 otherwise.

We note that (8) follows from Theorem 3.1, when n = 4. Now, Proposition 3.1
gives

P (F 4;K3) = [φ(4, 0)(1) + φ(4, 1)(3− 2) + φ(4, 2)(7− 3 · 3 + 3)]λ2

+ [φ(4, 1)(1) + φ(4, 2)(6− 3)]λ3 + [φ(4, 2)]λ4

= [φ(4, 0)+φ(4, 1)+φ(4, 2)]λ2+ [φ(4, 1)+3φ(4, 2)]λ3+φ(4, 2)λ4. (9)

Again, observe that (9) follows from (13) when n = 4. The values of φ(n, r)
when n = 11 are recorded in Table 3, with 0 ≤ r ≤ 	n

2

 . Thus, since φ(4, 0) = 4,

φ(4, 1) = 8, φ(4, 2) = 1, we have

P (F 4;K3) = 13λ2 + 11λ3 + 1λ4.

Table 1 in the Appendix shows some of the chromatic spectral values given a (T n
2 ;K3)-

good coloring, a (T n
2 ;K3)-proper coloring and an (F n;K3)-proper coloring when n =

1, . . . , 6. These values can be derived from Corollary 3.1, Corollary 3.2, and Corollary
3.3 respectively, for each coloring condition.

Theorem 3.1. The number of (F n;K3)-proper colorings is

P (F n;K3) =
∑

0≤r≤�n
2
�
φ(n, r)λ(λ− 1)r+1, where

φ(n, r) =

{
an,r + an,�n+1

2
�+r if r < n

2

an,n
2

otherwise

and the values of ai,j satisfy, for 0 ≤ j ≤ i ≤ n,

(i) ai,0 = 2 and a1,1 = 1

(ii) for all even i ≥ 2, ai,j =

⎧⎪⎨
⎪⎩
ai−1,j + ai−1,j+� i−1

2
� ; 1 ≤ j ≤ � i−1

2
�

1 ; j = i
2

ai−1,j−� i+1
2

� ; � i+1
2
� ≤ j ≤ i

(iii) for all odd i ≥ 3, ai,j =

{
ai−1,j + ai−1,j+� i−1

2
� ; 1 ≤ j ≤ i−1

2

ai−1,j−� i
2
� ; � i

2
� ≤ j ≤ i

Proof. When n = 1, it follows that P (F 1;K3) = φ(1, 0)λ(λ− 1)1 = [a1,0 + a1,1]λ(λ−
1)1 = 3λ(λ − 1), since a1,0 = 2 and a1,1 = 1 by condition (i). For n ≥ 2, at
each iteration, we separate the cases when c(u1) �= c(uk) from when c(u1) = c(uk).
Further, we rearrange the terms of the resulting expression of P (F k;K3) so that the
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first counts the colorings c(u1) �= c(uk), and the last counts the colorings c(u1) = c(uk)
for k = 1, . . . , n. Hence, for n ≥ 1,

P (F n;K3) = λ2
( ∑

1≤k≤�n+1
2

�
an,k−1(λ− 1)k−1

)

+λ2
( ∑

1+�n+1
2

�≤k≤n

an,k−1(λ− 1)k−�n+1
2

�−1
)

=
∑

1≤k≤�n+1
2

�
[an,k−1 + an,�n+1

2
�+k−1]λ(λ− 1)k+1, (10)

where the coefficients ai,j are obtained recursively from items (i)–(iii). By letting
ai,j = 0 when i < j, it follows that

P (F n;K3) =
∑

0≤r≤�n
2
�
φ(n, r)λ(λ− 1)r+1, (11)

where φ(n, r) =

{
an,r + an,�n+1

2
�+r if r < n

2

an,n
2

otherwise.

Observation 1: The previous result can be reinterpreted as follows: Let a0,0 = 2
and define an (n + 1) × (n + 1) matrix A whose entries are the coefficients ai,j for
0 ≤ i, j ≤ n. It follows that (10) is equivalent to the equation P = λA ·B, where

P =

⎡
⎢⎢⎢⎣
P (F 0;K3) + λ(λ− 2)

P (F 1;K3)
...

P (F n;K3)

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣
a0,0
a1,0 a1,1
...

...
. . .

an,0 an,1 . . . an,n

⎤
⎥⎥⎥⎦ , B =

[
B1|B2

]
,T

with B1 =
[
(λ− 1)1 . . . (λ− 1)�

n+1
2

�
]
and B2 =

[
(λ− 1)1 . . . (λ− 1)�

n+1
2

�
]
.

When n = 10, we present the entries of the lower triangular matrix A in Table 2
to help in the verification of the formula. The matrix A has several interesting
properties, some of which we discuss in the next observation. For now, it is easy to
see that its determinant is

det(A) =

n∏
i=0

ai,i = 2(
⌈n + 1

2

⌉
)!,

and its characteristic polynomial is given by

(−1)n+1(x− 1)�
n
2
�(x− 2)2(x− 3) . . . (x− ⌈n + 1

2

⌉
).
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Corollary 3.3. The values in the chromatic spectrum of any (F n;K3)-proper col-

oring are given by r′′k =
∑

k−2≤r≤�n
2
�
φ(n, r)

( ∑
0≤i≤r−k+2

(−1)i
(
r + 1

i

){
r + 2− i

k

})
, for

each k = 2, . . . , �n+1
2
� + 1, with

φ(n, r) =

{
an,r + an,�n+1

2
�+r if r < 	n

2



an,�n
2
� otherwise

Proof. For each r = 0, . . . , 	n
2

, we apply Proposition 3.1 to P (F n;K3), giving

P (F n;K3) = φ(n, 0)[(−1)0
(
1

0

){
2

2

}
]λ2

+ φ(n, 1)[(−1)0
(
2

0

){
3

2

}
+ (−1)1

(
2

1

){
2

2

}
]λ2

+φ(n, 1)[(−1)0
(
2

0

){
3

3

}
]λ3

+ φ(n, 2)[(−1)0
(
3

0

){
4

2

}
+ (−1)1

(
3

1

){
3

2

}
+ (−1)2

(
3

2

){
2

2

}
]λ2

+ φ(n, 2)[(−1)0
(
3

0

){
4

3

}
+ (−1)1

(
3

1

){
4

4

}
]λ3

+ φ(n, 3)[(−1)0
(
3

0

){
4

4

}
]λ4

...

+ φ(n, 	n
2

)[(−1)0

(�n+1
2
�

0

){�n+1
2
�+ 1

�n+1
2
�+ 1

}
]λ

�n+1
2

�+1
. (12)

Therefore,

P (F n;K3) =

�n+1
2

�+1∑
k=2

( �n
2
�∑

r=k−2

φ(n, r)
[ ∑
0≤i≤r−k+2

(−1)i
(
r + 1

i

){
r + 2− i

k

}])
λk , (13)

giving the result.

Observation 2: When k = �n+1
2
� + 1, the last term of (13) is

φ(n, 	n
2

) =

{
1 if n is even

3 + n−1
2

otherwise

Also, it is worth noting that when k = 2,

�n
2
�∑

r=0

φ(n, r)
[ ∑
0≤i≤r

(−1)i
(
r + 1

i

){
r + 2− i

2

}]
=

�n
2
�∑

r=0

φ(n, r);
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this proceeds from the simple fact that

n∑
i=0

(−1)i
(
n

i

){
n+ 1− i

2

}
= 1, for all n.

Further, observe that if we define bi =

�n
2
�∑

j=0

φ(n, j) for each i ≤ n, it follows that

bi =
∑
j

ai,j and the sequence {bn} satisfies the shifted Fibonacci recurrence given by

b0 = 2, b1 = 3 and bn = bn−1 + bn−2, for n ≥ 2. From this observation, we determine
the generating function in the next proposition.

Proposition 3.2. The number of partitions of the n + 2 vertices of a fan into 2
nonempty classes such that no triangle is monochrome or rainbow is given by

bn =
1√
5
[(2 +

√
5)αn − (2−

√
5)βn], where α =

1 +
√
5

2
and β =

1−√
5

2
.

Proof. Let b(x) =
∞∑
n=0

bnx
n such that b0 = 2, b1 = 3 and bn = bn−1 + bn−2. It follows

that

b(x) = 2 + 3x+

∞∑
n=2

bnx
n

= 2 + 3x+ x

∞∑
k=1

bkx
k + x2

∞∑
k=0

bkx
k

= 2 + 3x+ x(
∞∑
k=0

bkx
k − 2) + x2

∞∑
k=0

bkx
k

= 2 + x+ xb(x) + x2b(x).

This implies that b(x) =
2 + x

1− x− x2
= − 2 + x

(x+ α)(x+ β)
, with α =

1 +
√
5

2
and

β =
1−√

5

2
. Using a partial fraction decomposition, and subsequently the power

series, we obtain

b(x) =
1√
5

[β − 2

x+ β
− α− 2

x+ α

]

=
1√
5

[β − 2

β
(

∞∑
n=0

αnxn)− α− 2

α
(

∞∑
n=0

βnxn)]

=

∞∑
n=0

1√
5

[β − 2

β
αn − α− 2

α
βn

]
xn,

giving that bn =
1√
5

[β − 2

β
αn− α− 2

α
βn

]
. The result follows, after a simplification.
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In summary, the extreme chromatic spectral values given the aforementioned
colorings are clear; the lower values are, r2 = 3n, r′2 = 2n + 1, r′′2 = b(x) where

b(x) =
1√
5

[β − 2

β
αn − α− 2

α
βn

]
. Also, for all n > 1, the upper values are also

shown to be rn+1 = 3n, r′n+1 = 1, and r′′�n+1
2

�+1
=

{
1 if n is even,

3 + n−1
2

otherwise.

4 Conclusion and future work

To the best of our knowledge, the problem of finding the exact chromatic spectral
values in a (Kn;Kt)-good coloring remains open for all t ≥ 3 and larger values of n;
this particular problem has greatly inspired this research. When G is a 2-tree, the
findings in Corollaries 3.1, 3.2, and 3.3 suggest the existence of some constant c < 1,
such that r∗k = crk where r∗k and rk are the corresponding values in the chromatic
spectra of a (G;K3)-proper and a (G;K3)-good coloring, respectively. For instance,
c = (1

3
)n when G is an (n+ 1)-bridge. Further work is needed to determine whether

the values in the chromatic spectrum of a (G;H)-good coloring remain upper bounds
for their counterparts in a (G;H)-proper coloring, given any other graph G and some
subgraph H .

Also, the original definition of a (G;H)-proper coloring can be extended to include
more than one subgraph. For instance, a (G;H1, . . . , Hm)-proper coloring can be
defined as the coloring of the vertices of G such that no copy of (distinct) subgraphs
Hi is monochrome or rainbow, for i = 1, . . . , m. As such, when G = H and Hi =
K ti , H is a non-uniform bihypergraph with hyperedges of sizes ti ≥ 3. Some
related results concerning non-uniform bihypergraphs can be found in [1]. As a step
in this direction for graphs, we propose the next lemma. This lemma shows that
the chromatic spectral values of any (F n;K3, H)-proper coloring are identical when
H ∈ {P ∗

n , K1,n−1, Cn, θ(1, n1, n2)}, where P ∗
n , K1,n−1 and Cn denote respectively, an

n-path that includes a fixed vertex (apex) u1, an n-cycle, and an n-star.

Corollary 4.1. Suppose G is a fan on n ≥ 4 vertices. Any (G;K3)-proper coloring
is a (G;H)-proper coloring where H ∈ {P ∗

s , K1,t, Cr, θ(1, n1, n2)} with s ≥ 4, 	n−1
2

 ≤

t ≤ n− 1, r ≥ 3, and 2 ≤ n1 ≤ n2 such that n1 + n2 ≤ n.

Proof. Suppose G is a fan on n ≥ 4 vertices which we can construct as follow: start
with a triangle, say (u1, u2, u3), and iteratively add n−3 new vertices such that each
additional vertex ui is adjacent to the pair (u1, ui−1), for i = 4, . . . , n. Assume there
is a (G;K3)-proper coloring.

(i) Observe that for s ≥ 4, every path P ∗
s ⊆ G contains the subgraph u1uiui+1 for

some i (2 ≤ i ≤ n − 2). If some 3-path (that includes u1) is monochrome/rainbow
then the triangle (u1, ui, ui+1) is monochrome/rainbow, violating our (G;K3)-proper
coloring assumption. Hence G admits a (G;P ∗

s )-proper coloring for all s ≥ 4.

(ii) By letting the vertices of K1,t ⊆ G be all the vertices of G, it follows that
t ≤ n − 1. Now, consider the coloring such c(u1) = c(u2k) and c(u1) �= c(u2k+1)
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for k = 1, . . . , �n−1
2
�. Clearly, such coloring does not violate our original coloring

assumption. The lower bound of t is satisfied by letting the vertices of K1,t be
{u1, u2} ∪ {u2k+1 : k = 1, . . . , �n−1

2
�}, which guarantees a (G;K1,t)-proper coloring

for all t ≥ �n−1
2
�.

(iii) For r ≥ 4, since every cycle Cr ⊆ G includes the apex u1, there exists an
s ≤ r such that P ∗

s ⊆ Cr, with 4 ≤ s ≤ r ≤ n. From (i), we can conclude that there
is a (G;Cr)-proper coloring. The case when r = 3 is trivial.

(iv) Likewise, since θ(1, n1, n2) contains C1+q ⊆ G with q ∈ {n1, n2}, the result
follows from (iii) that, for all 2 ≤ n1 ≤ n2 such that n1 + n2 ≤ n, there is a
(G; θ(1, n1, n2))-proper coloring.

In conclusion, it is worth noting that future work can address the coloring of the
vertices/edges of a graph with either forbidden monochrome subgraphs or forbidden
rainbow subgraphs (but not both). As a step in this direction, we present a simple
case when coloring the elements of an n-set such that no t-subset is rainbow.

Corollary 4.2. The chromatic spectral values in the colorings of the vertices of a
complete graph Kn such that no Kt is rainbow are given by rk =

{
n
k

}
, for k =

1, . . . , t− 1.

Note that these values also correspond to the chromatic spectral values of any
complete t-uniform cohypergraph of order n; cohypergraphs are hypergraphs whose
hyperedges are forbidden to be rainbow given any proper (vertex) coloring [16].
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Appendix

(T n
2 ;K3)-good (T n

2 ;K3)-proper (F n;K3)-proper
n = 1 (3) (3) (3)
n = 2 32(1,1) (5,1) (5,1)
n = 3 33(1,3,1) (9,3,1) (8,4)
n = 4 34(1,7,6,1) (17,7,6,1) (13,11,1)
n = 5 35(1,15,25,10,1) (33,15,25,10,1) (27,17,5)
n = 6 36(1,31,90,65,15,1) (65,31,90,65,15,1) (37,62,7,1)

Table 1: chromatic spectral values of some (G;K3)-good colorings and some (G;K3)-
proper colorings for n ≤ 6

n\j 0 1 2 3 4 5 6 7 8 9 10 11
0 2
1 2 1
2 2 1 2
3 2 3 2 1
4 2 5 1 2 3
5 2 7 4 2 5 1
6 2 9 9 1 2 7 4
7 2 11 16 5 2 9 9 1
8 2 13 25 14 1 2 11 16 5
9 2 15 36 30 6 2 13 25 14 1
10 2 17 49 55 20 1 2 15 36 30 6
11 2 19 64 91 50 7 2 17 49 55 20 1

Table 2: Table of values of ai,j , which are the entries of the matrix A when n = 11
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n\r 0 1 2 3 4 5
0 2
1 3
2 4 1
3 4 4
4 4 8 1
5 4 12 5
6 4 16 13 1
7 4 20 25 6
8 4 24 41 19 1
9 4 28 61 44 7
10 4 32 85 85 26 1
11 4 36 113 146 70 8

Table 3: Table of values of φ(n, r) when n = 11

n\k 0 1 2 3 4 5 6 7 8 9 10 11
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1
7 0 1 63 301 350 140 21 1
8 0 1 127 966 1701 1050 266 28 1
9 0 1 255 3025 7770 6951 2646 462 36 1
10 0 1 511 9330 34105 42525 22827 5880 750 45 1
11 0 1 1023 2850 145750 246730 179487 63987 11880 1155 55 1

Table 4: Table of values of
{
n
k

}
when n = 11
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