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Abstract

Adamus and Adamus in 2012 proposed the following conjecture: Let D
be a bipartite digraph with colour classes X and Y such that |X| = a ≤
b = |Y |. If d+(u)+d−(v) > a+b+2

2
, whenever u and v lie in opposite colour

classes and uv /∈ A(D), then D contains a cycle of length 2a. Adamus
and Adamus have proved that this conjecture is true when a = b. In this
paper, we show that this conjecture is true when b = a + 1 or b = a+ 2.

1 Introduction and terminology

We shall assume that the reader is familiar with the standard terminology on digraphs
and refer the reader to [4] for terminology not defined here. Let D be a digraph with
vertex set V (D) and arc set A(D). For a set S ⊂ V (D), we denote by N+(S) the
set of vertices dominated by the vertices of S, i.e., N+(S) = {v ∈ V (D) : uv ∈
A(D) for some u ∈ S}. Similarly, N−(S) denotes the set of vertices dominating the
vertices of S, i.e., N−(S) = {v ∈ V (D) : vu ∈ A(D) for some u ∈ S}. If S = {u},
then the cardinality of N+(v) (resp. N−(v)), denoted by d+(v) (resp. d−(v)) is
called the out-degree (resp. in-degree) of v in D. For u ∈ V (D) and W ⊂ V (D),
we set N+

W (u) (resp. N−
W (u)) to be the set of vertices of W dominated by (resp.

dominating) u, and denote its cardinality by d+W (u) (resp. d−W (u)).

Let P = y0y1 . . . yk and Q = q0q1 . . . qn be two vertex disjoint paths or cycles in
D. For i < j, yi, yj ∈ V (P ) we denote by P [yi, yj] the subpath of P from yi to yj.
If there exist yi ∈ V (P ) and qj ∈ V (Q) such that yiqj ∈ A(D), then we will use
P [y0, yi]Q[qj , qn] to denote the path y0y1 . . . yiqjqj+1 . . . qn.

Let D be a bipartite digraph with colour classes X and Y . We say that D is
balanced if |X| = |Y |. A matching from X to Y is an independent set of arcs with
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origin in X and terminus in Y . When the cardinality of M is |X|, we say that M
saturates X. A path or cycle is said to be compatible with a matching M from X
to Y (or, M-compatible, for short) if its arcs are alternately in M and in A(D) \M .
For a matching M from X to Y and a vertex x ∈ X, we will denote by M(x) the
unique vertex y ∈ Y such that xy ∈ M ; similarly, for a vertex y ∈ Y , we will denote
by M−1(y) the unique vertex x ∈ X such that xy ∈ M .

There are numerous sufficient conditions for existence of cycles in bipartite di-
graphs (see [1, 2, 3, 6, 7]). In particular, Manoussakis and Milis [6] present a condition
based on half-degrees, which suffices for the existence of a cycle of length twice the
cardinality of the smaller colour class in a bipartite digraph.

Theorem 1.1. [6] Let D be a bipartite digraph with colour classes X and Y such
that |X| = a ≤ b = |Y |. If

d+(u) + d−(v) ≥ a+ 2,

whenever u, v ∈ V (D) and uv /∈ A(D), then D contains a cycle of length 2a.

Motivated by this theorem, Adamus and Adamus proposed the following conjec-
ture.

Conjecture 1.2. [1] Let D be a bipartite digraph with colour classes X and Y such
that |X| = a ≤ b = |Y |. If

d+(u) + d−(v) >
a + b+ 2

2
, (1)

whenever u and v lie in opposite colour classes and uv /∈ A(D), then D contains a
cycle of length 2a.

In Conjecture 1.2, if we write b = a + k, then the condition (1) can be rewritten
into d+(u) + d−(v) ≥ a + 2 + �k

2
�. In [1], Adamus and Adamus have proved that

when k = 0, the conjecture is true. In this paper, we shall show that the conjecture
is true when k = 1 or k = 2.

2 The main result

Similarly to Definition 1.1 in [1], we introduce the following definition.

Definition 2.1. Let D be a bipartite digraph with colour classes X and Y such that
|X| = a ≤ b = |Y |. For n ≥ 0, we say that D satisfies condition A∗

n if and only if
d+(u) + d−(v) ≥ a+ n, for all u and v from opposite colour classes and uv /∈ A(D).

The following easy facts will be very useful in our proofs of the main result. The
proof of Lemmas 2.2, 2.4 and 2.5 is similar to the proof of Lemmas 2.1, 2.3, 2.4,
respectively, in [1].
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Lemma 2.2. If D satisfies condition A∗
0, then D contains a matching from X to Y ,

which saturates X.

Proof. By the well-known König-Hall theorem [5], it suffices to prove that, for every
S ⊆ X, |N+(S)| ≥ |S|. If |N+(S)| ≥ a, then there is nothing to show; if not, for any
x ∈ S and y ∈ Y \N+(S), then xy /∈ A(D). By assumption,

a ≤ d+(x) + d−(y) ≤ |N+(S)|+ a− |S|,
from which |N+(S)| ≥ |S|, as required.

Let D be a bipartite digraph with colour classes X and Y , where |X| = a and
|Y | = a + k for some k ≥ 1. Throughout the rest of this paper, by a matching
M , we shall always mean a matching which saturates X . For Lemmas 2.3-2.5, we
choose a matching M and let P = p1p2 . . . ps be a path in D compatible with M ,
and of maximal length among paths compatible with M . Denote Q = V (D) \ V (P ),
QX = Q ∩ X, QY = Q ∩ Y , Q′ = {u ∈ QY | vu /∈ M, for every v ∈ QX},
PX = V (P ) ∩X and PY = V (P ) ∩ Y .

Lemma 2.3. If D satisfies condition A∗
0, then we can choose P such that each of

the following holds:

(a) If s is even, then p1 ∈ X and ps ∈ Y .

(b) If s is odd, then p1 ∈ Y and ps ∈ Y .

(c) In the first case, d+QX
(ps) = d−QY

(p1) = 0; in the second case, d+QX
(ps) =

d−QY \Q′(p2) = 0.

Proof. If ps ∈ X, then, by the maximality of P , it must be M(ps) ∈ V (P ). But if s
is odd, then it is impossible. Hence ps ∈ Y . If s is even, then M(ps) = p1 and Pp1
is, in fact, a cycle. We can renumber its vertices so that p1 ∈ X and hence, ps ∈ Y .

Now clearly by the maximality of P , we have d+QX
(ps) = 0, and if s is even, then

d−QY
(p1) = 0. Suppose that s is odd. If d−QY \Q′(p2) > 0, then there exists y ∈ QY \Q′

such that yp2 ∈ A(D). But the path M−1(y)yp2 . . . ps is a longer M-compatible path
than P , a contradiction. Hence d−QY \Q′(p2) = 0

Lemma 2.4. Let D satisfy condition A∗
1. If psp1 ∈ A(D), then D has a cycle of

length 2a compatible with M .

Proof. Suppose, on the contrary, that the cycle p1p2 . . . psp1 is not Hamiltonian.
Hence QY �= ∅. Let pi ∈ PX and y ∈ QY . If y → pi, then the path yP [pi, ps]P [p1, pi−1]
is strictly longer than P and compatible with M , a contradiction. Thus ypi /∈ A(D)
for all pi ∈ PX and all y ∈ QY , and so

a+ 1 ≤ d+(y) + d−(pi) ≤ (a− 1

2
s) +

1

2
s = a,

a contradiction.
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Lemma 2.5. Let D be a bipartite digraph with colour classes X and Y such that
|X| = a and |Y | = a + k, where a ≥ 2 and k = 1 or k = 2. If d+(u) + d−(v) ≥
a + 2 + �k

2
�, where u and v lie in opposite colour classes and uv /∈ A(D), then D

contains a cycle of length at least a, compatible with M .

Proof. By Lemma 2.3, we may assume that ps ∈ Y . Suppose that s is even. If
psp1 ∈ A(D), then, by Lemma 2.4, D has a cycle of length 2a, compatible with M .
Next assume that psp1 /∈ A(D). By Lemma 2.3(c), d−Q(p1) = d+Q(ps) = 0. Therefore,
by assumption,

a+ 2 ≤ a+ 2 + �k
2
� ≤ d+(ps) + d−(p1) = d+V (P )(ps) + d−V (P )(p1),

and hence d+V (P )(ps) ≥ a+2
2

or else d−V (P )(p1) ≥ a+2
2
. In the first case, let i0 = min{i :

pspi ∈ A(D)}. Then P [pi0, ps]pi0 is a cycle of length at least 2d+V (P )(ps), which is
greater than or equal to a + 2. In the latter case, the desired cycle is obtained
similarly by considering the vertex pj which dominates p1 such that j is maximum.

Suppose that s is odd. First assume that ps → p2. If QX = ∅, then P [p2, ps]p2 is a
cycle of length 2a and compatible with M . Thus assume that QX �= ∅, which implies
that QY \Q′ �= ∅. For any y ∈ QY \Q′ and pi ∈ PX , we have y � pi, otherwise the
path M−1(y)yP [pi, ps]P [p2, pi−1] is strictly longer than P and compatible with M , a
contradiction. In particular, y � p2. By assumption,

a+ 2 + �k
2
� ≤d+(y) + d−(p2) ≤ |QX |+ (|Q′|+ |PY |)

=(a− s− 1

2
) + (k − 1 +

s− 1

2
+ 1) = a + k,

a contradiction. Next assume that ps � p2. By assumption,

a + 2 + �k
2
� ≤d+(ps) + d−(p2) = d+V (P )(ps) + d−V (P )(p2) + d−Q′(p2)

≤d+V (P )(ps) + d−V (P )(p2) + k − 1

and hence d+V (P )(ps) + d−V (P )(p2) ≥ a + 3 + �k
2
� − k ≥ a + 2. Thus, d+V (P )(ps) ≥ a+2

2

or else d−V (P )(p2) ≥ a+2
2
. In the first case, we consider the vertex pi dominated by ps,

such that i is minimum. The cycle P [pi, ps]pi has length at least 2d+V (P )(ps), which
is greater than or equal to a+ 2. In the latter case, we consider the vertex pj which
dominates p2 such that j is maximum. The cycle P [p2, pj ]p2 has length at least
2(d−V (P )(p2)− 1), which is greater than or equal to a.

The following theorem is our main result.

Theorem 2.6. Let D be a bipartite digraph with colour classes X and Y such that
|X| = a and |Y | = a+ k, where a ≥ 2 and k = 1 or k = 2 . If

d+(u) + d−(v) ≥ a+ 2 + �k
2
�,

whenever u and v lie in opposite colour classes and uv /∈ A(D), then D contains a
cycle of length 2a.
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Proof. By Lemma 2.2, D contains a matching from X to Y , which saturates X
and by Lemma 2.5, D contains a cycle of length at least a, compatible with some
matching in D. Choose M a matching from X to Y , and a cycle C, of length 2m,
compatible with M in such a way that C is of maximal length among all the cycles
in D compatible with some matching from X to Y . Write C = x1y1 . . . xmym, with
xν ∈ X and yν ∈ Y for 1 ≤ ν ≤ m. By Lemma 2.5, we have 2m ≥ a.

We want to show that m = a. Suppose otherwise. Then we can choose a path
P , of order s ≥ 2, contained in D\V (C), compatible with M and of maximal length
among such paths in D\V (C). Write P = p1p2 . . . ps and denote � s

2
� = p. Let R

denote the remaining vertices of D, i.e., R = V (D)\(V (C) ∪ V (P )). Also, we define
that RX = X ∩R, RY = Y ∩R, and R′ = {u ∈ RY | vu /∈ M, for all v ∈ X}. Denote
|RX | = r. If s is even, then |V (P )| = s = 2p, |R′| = k and |RY | = r + k; If s is odd,
then |V (P )| = s = 2p+1, |R′| = k−1 and |RY | = r+k−1. Therefore, a = m+p+r
and 2p+ 2r = 2a− 2m ≤ a.

Since P is a maximal path in D\V (C) compatible with M , similar to the proof
of Lemma 2.3, then we can easily prove that the following hold for the path P :

(i) If s is even, then d+R(ps) = 0 and d−R(p1) = 0;

(ii) If s is odd, then d+R(ps) = 0 and d−R/R′(p2) = 0.

To complete the proof, we now consider the following two cases.

Case 1. s is even.

Subcase 1.1. d+V (C)(ps) = 0 and d−V (C)(p1) > 0.

Let then yi ∈ V (C) be such that yip1 ∈ A(D). It follows from the maximality of
C that d−V (P )(xi+1) = 0. In particular, psxi+1 /∈ A(D), and hence

a+ 2 + �k
2
� ≤d+(ps) + d−(xi+1) = d+V (P )(ps) + (d−V (C)(xi+1) + d−R(xi+1))

≤p+ (m+ r + k) = a + k,

a contradiction.

Subcase 1.2. d+V (C)(ps) = 0 and d−V (C)(p1) = 0.

If psp1 /∈ A(D), then, by assumption,

a+ 2 + �k
2
� ≤ d+(ps) + d−(p1) = d+V (P )(ps) + d−V (P )(p1) ≤ 2(p− 1) < a,

a contradiction. Therefore psp1 ∈ A(D), and so P is a cycle. Hence d−V (R)(pi) = 0

and d+V (R)(pj) = 0, for all pi ∈ PX and all pj ∈ PY by the maximality of P . Suppose

now that d+V (C)(pj) = 0 for a pj ∈ PY , we have

a + 2 + �k
2
� ≤d+(pj) + d−(x1) = d+V (P )(pj) + (d−V (C)(x1) + d−R(x1))

≤p+ (m+ r + k) = a+ k,
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a contradiction. Hence, there exist xi ∈ V (C) ∩ X and pj ∈ PY such that pjxi ∈
A(D). It follows from the maximality of C that d+V (P )(yi−1) = 0. In particular,

yi−1p1 /∈ A(D), and hence

a+ 2 + �k
2
� ≤d+(yi−1) + d−(p1) = (d+V (C)(yi−1) + d+R(yi−1)) + d−V (P )(p1)

≤(m+ r) + p = a,

a contradiction.

Subcase 1.3. d+V (C)(ps) > 0 and d−V (C)(p1) = 0.

Let then xi ∈ V (C) be such that psxi ∈ A(D). It follows from the maximality of
C that d+V (P )(yi−1) = 0. In particular, yi−1p1 /∈ A(D), and hence

a+ 2 + �k
2
� ≤d+(yi−1) + d−(p1) = (d+V (C)(yi−1) + d+R(yi−1)) + d−V (P )(p1)

≤(m+ r) + p = a,

a contradiction.

Subcase 1.4. d+V (C)(ps) > 0 and d−V (C)(p1) > 0.

There exist xj0 and yi0 on C such that yi0p1 ∈ A(D) and psxj0 ∈ A(D). Without
loss of generality, assume that j0 = 1 and i0 = m − l. Denote C ′ = C[xm−l+1, ym]
and C ′′ = C[y1, xm−l]. Then the order of C ′ is 2l and the order of C ′′ is 2(m− l− 1).
Note that l ≥ p, because otherwise the cycle psC[x1, ym−l]P [p1, ps] would be strictly
longer than C and compatible with M , a contradiction. Assume, without loss of
generality, that yνp1 /∈ A(D) for all yν ∈ V (C ′) and psxν /∈ A(D) for all xν ∈ V (C ′).

Now we claim that

d+V (C)(ps) + d−V (C)(p1) ≤ m− l + 1 and d+V (C′′)(ym) + d−V (C′′)(xm−l+1) ≤ m− l − 1.

Note that for every pair of vertices yt, xt+1 from V (C ′′) at most one of the arcs psxt+1

and ytp1 belongs to A(D). For else D would contain a cycle psC[xt+1, yt]P [p1, ps],
which is strictly longer than C and compatible with M , a contradiction. There is
precisely m− l−1 of such pairs. Accounting for ym−lp1 and psx1, we get the required
estimate

d+V (C)(ps) + d−V (C)(p1) ≤ (m− l − 1) + 2 = m− l + 1.

Analogously, for every pair of vertices yt, xt+1 from V (C ′′) at most one of the arcs
ymxt+1 and ytxm−l+1 belongs to A(D). For otherwise D would contain a cycle
P [p1, ps]C[x1, yt]C[xm−l+1, ym]C[xt+1, ym−l]p1, which is strictly longer than C, a con-
tradiction. There are precisely m − l − 1 of such pairs. Then, we get the required
estimate d+V (C′′)(ym) + d−V (C′′)(xm−l+1) ≤ m− l − 1. Hence, the claim holds.
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If psp1 /∈ A(D), then

a+ 2 + �k
2
� ≤d+(ps) + d−(p1)

=(d+V (C)(ps) + d−V (C)(p1)) + (d+V (P )(ps) + d−V (P )(p1))

≤(m− p+ 1) + 2(p− 1) = m+ p− 1 < a,

a contradiction. Therefore psp1 ∈ A(D), and so Pp1 is, in fact, a cycle.

We shall show that RX = ∅. Suppose otherwise. Let P ′ be a maximal path in
R, compatible with M . Write P ′ = p′1p

′
2 . . . p

′
t. By Lemma 2.3, we may, without loss

of generality, assume that p′t ∈ RY . Note that p′ν ∈ RX where ν = 1 if t is even and
ν = 2 if t is odd. Since P is a maximal path in D\V (C) compatible with M , we
have that d−V (P )(p

′
ν) = d+V (P )(p

′
t) = 0. Moreover, d+V (C)(p

′
t) + d−V (C)(p

′
ν) ≤ m, because

for every pair of vertices yi, xi+1 on C at most one of the arcs yip
′
ν and p′txi+1 exists

(by the maximality of C). Hence

d+(p′t) + d−(p′ν) = d+V (C)(p
′
t) + d−V (C)(p

′
ν) + d+R(p

′
t) + d−R(p

′
ν) ≤ m+ 2r + k,

and so

2a + 4 + 2�k
2
� ≤d+(p′t) + d−(p1) + d+(ps) + d−(p′ν)

=(d+(p′t) + d−(p′ν)) + (d+(ps) + d−(p1))

≤(m+ 2r + k) + d+V (C)(ps) + d−V (C)(p1) + d+V (P )(ps) + d−V (P )(p1)

≤(m+ 2r + k) + (m− p+ 1 + 2p)

=2m+ 2r + p+ k + 1

<2a+ k + 1,

a contradiction. Hence r = 0 and a = m+ p.

By the choices of x1 and ym−l, we have ps � xm−l+1 and ym � p1. By the
maximality of C, we have d+V (P )(ym) = d−V (P )(xm−l+1) = 0. Hence

2a+ 4 + 2�k
2
� ≤d+(ps) + d−(xm−l+1) + d+(ym) + d−(p1)

=(d+(ps) + d−(p1)) + (d+(ym) + d−(xm−l+1))

≤(m− l + 1 + 2p) + (m− l − 1 + 2 + 2l + k) = 2a+ 2 + k,

a contradiction.

Case 2. s is odd.

Subcase 2.1. d+V (C)(ps) = 0 and d−V (C)(p2) > 0.

Let then yi ∈ V (C) be such that yip2 ∈ A(D). It follows from the maximality
of C that d−V (P )(xi+1) ≤ 1 (p1xi+1 may belong to A(D)). Note that psxi+1 /∈ A(D),
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therefore

a + 2 + �k
2
� ≤d+(ps) + d−(xi+1)

=d+V (P )(ps) + (d−V (P )(xi+1) + d−V (C)(xi+1) + d−R(xi+1))

≤p+ (1 +m+ r + k − 1) = a + k,

a contradiction.

Subcase 2.2. d+V (C)(ps) = 0 and d−V (C)(p2) = 0.

If psp2 /∈ A(D), then, by assumption,

a + 2 + �k
2
� ≤d+(ps) + d−(p2) = d+V (P )(ps) + (d−V (P )(p2) + d−R′(p2))

≤(p− 1) + (p+ k − 1) = 2p+ k − 2 < a+ k,

a contradiction. Therefore, psp2 ∈ A(D) and denote P ∗ = p2p3 . . . psp2. For
any pj ∈ V (P ∗) ∩ Y , if there exists u ∈ RX such that pj → u, then the path
P [pj+1, ps]P [p2, pj]uM(u) is strictly longer than P and compatible with M , a con-
tradiction. Hence d+R(pj) = 0, for all pj ∈ V (P ∗) ∩ Y . If d+V (C)(pj) = 0 for all

pj ∈ V (P ∗) ∩ Y , then, by assumption,

a + 2 + �k
2
� ≤d+(pj) + d−(x1) = d+V (P )(pj) + (d−V (C)(x1) + d−R(x1) + d−V (P )(x1))

≤p+ (m+ r + k − 1 + 1) = a + k,

a contradiction. Hence, there exist xi ∈ V (C) and pj ∈ V (P ∗) ∩ Y such that
pjxi ∈ A(D). It follows that d+V (P )(yi−1) = 0. Hence, by assumption,

a+ 2 + �k
2
� ≤d+(yi−1) + d−(p2)

=(d+V (C)(yi−1) + d+R(yi−1)) + (d−V (P )(p2) + d−R′(p2))

≤(m+ r) + (p+ 1 + k − 1) = a+ k,

a contradiction.

Subcase 2.3. d+V (C)(ps) > 0 and d−V (C)(p2) = 0.

Let then xi ∈ V (C) be such that psxi ∈ A(D). It follows that d+V (P )(yi−1) = 0.

In particular, yi−1p2 /∈ A(D), and hence

a+ 2 + �k
2
� ≤d+(yi−1) + d−(p2)

=(d+V (C)(yi−1) + d+R(yi−1)) + (d−V (P )(p2) + d−R′(p2))

≤(m+ r) + (p+ 1 + k − 1) = a+ k,

a contradiction.
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Subcase 2.4. d+V (C)(ps) > 0 and d−V (C)(p2) > 0.

There exist xj0 and yi0 on C such that yi0p2 ∈ A(D) and psxj0 ∈ A(D). Without
loss of generality, assume j0 = 1 and i0 = m − l. Denote C ′ = C[xm−l+1, ym] and
C ′′ = C[y1, xm−l]. Then the order of C ′ is 2l and the order of C ′′ is 2(m − l − 1).
Note that l ≥ p, because otherwise the cycle psC[x1, ym−l]P [p2, ps] would be strictly
longer than C and compatible with M , a contradiction. Furthermore, we can choose
the x1 and ym−l so that yνp2 /∈ A(D) for all yν ∈ V (C ′) and psxν /∈ A(D) for all
xν ∈ V (C ′).

Now we claim that

d+V (C)(ps) + d−V (C)(p2) ≤ m− l + 1 and d+V (C′′)(ym) + d−V (C′′)(xm−l+1) ≤ m− l − 1.

Note that for every pair of vertices yt, xt+1 from V (C ′′) at most one of the arcs psxt+1

and ytp2 belongs to A(D). For else D would contain a cycle psC[xt+1, yt]C[p2, ps],
which is strictly longer than C. There are preciselym−l−1 of such pairs. Accounting
for ym−lp2 and psx1, we get the required estimate

d+V (C)(ps) + d−V (C)(p2) ≤ (m− l − 1) + 2 = m− l + 1.

Analogously, for every pair of vertices yt, xt+1 from V (C ′′) at most one of the arcs
ymxt+1 and ytxm−l+1 belongs to A(D). For otherwise D would contain a cycle
P [p2, ps]C[x1, yt]C[xm−l+1, ym]C[xt+1, ym−l]p2, which is strictly longer than C, a con-
tradiction. There are precisely m − l − 1 of such pairs. Then, we get the required
estimate d+V (C′′)(ym) + d−V (C′′)(xm−l+1) ≤ m− l − 1. Hence, the claim holds.

If psp2 /∈ A(D), then

a + 2 + �k
2
� ≤d+(ps) + d−(p2)

=(d+V (C)(ps) + d−V (C)(p2)) + (d+V (P )(ps) + d−V (P )(p2)) + d−R′(p2)

≤(m− p + 1) + (2p− 1) + (k − 1) = m+ p+ k − 1 ≤ a + k − 1,

a contradiction. Therefore psp2 ∈ A(D) and let P ∗ denote the cycle p2 . . . psp2.

We shall show that RX = ∅. Suppose otherwise. Let P ′ be a maximal path in R
compatible with M . Write P ′ = p′1p

′
2 . . . p

′
t. By Lemma 2.3, we may, without loss of

generality, assume that p′t ∈ RY . Note that p′ν ∈ RX where ν = 1 if t is even and
ν = 2 if t is odd. Since P is a maximal path in D\V (C) compatible with M , we have
that d−V (P )(p

′
ν) ≤ 1 and d+V (P )(p

′
t) = 0. Moreover, d+V (C)(p

′
t) + d−V (C)(p

′
ν) ≤ m, because

for every pair of vertices yi, xi+1 on C at most one of the arcs yip
′
ν and p′txi+1 exists

(by the maximality of C). Hence

d+(p′t) + d−(p′ν) =(d+V (C)(p
′
t) + d−V (C)(p

′
ν)) + (d+R(p

′
t) + d−R(p

′
ν))

+(d+V (P )(p
′
t) + d−V (P )(p

′
ν))

≤m+ (2r + k − 1) + 1 = m+ 2r + k
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and so

2a+ 4 + 2�k
2
� ≤d+(p′t) + d−(p2) + d+(ps) + d−(p′ν)

=(d+(p′t) + d−(p′ν)) + (d+(ps) + d−(p2))

≤(m+ 2r + k) + (m− p+ 1 + 2p+ 1 + k − 1)

=2m+ 2r + p+ 2k + 1 = 2a− p+ 2k + 1,

a contradiction. Hence, we have shown that r = 0 and a = m+ p.

Note that psxm−l+1 /∈ A(D) and ymp2 /∈ A(D). By the maximality of C, we have
d+V (P )(ym) = 0 and d−V (P )(xm−l+1) ≤ 1. Hence

2a+ 4 + 2�k
2
� ≤d+(ps) + d−(xm−l+1) + d+(ym) + d−(p2)

=(d+(ps) + d−(p2)) + (d+(ym) + d−(xm−l+1))

≤(m− l + 1 + 2p+ 1) + (m− l − 1 + 2 + 2l + k)

=2a+ 3 + k,

a contradiction.
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