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Abstract

Calculations of genus polynomials are given for three kinds of dipoles:
with no loops; with a loop at one vertex; or with a loop at both vertices.
We include a very concise, elementary derivation of the genus polynomial
of a loopless dipole. To describe the general effect on the face-count
and genus polynomials of the operation of adding a loop at a vertex,
we introduce imbedding types that are partitions of integers, specifically,
partitions of the valences of the vertices at which loops are to be added.
Adding a loop at a root-vertex changes the possible number of imbedding
types from the number of partitions of the valence prior to adding the
loop to the number of partitions of the valence afterward.
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1 Introduction

Given a finite, connected graph G, possibly with multiple edges and loops, its genus
polynomial

ΓG(z) =

γmax(G)∑
g=γmin(G)

agz
g

is the generating function for the number ag of cellular imbeddings of G in the
oriented surface Sg of genus g. Not much is known about the coefficients of genus
polynomials, except that they are non-negative, and that between the first nonzero
coefficient and the last, there are no zeros. (This “interpolation theorem” has an easy
topological explanation [16].) There are closed formulas for the genus polynomials
of bouquets of circles (one-vertex graphs) [15] and dipoles (two-vertex graphs having
no loops) [22, 19]. There are also recursions or closed formulas for a small number of
“linear” and “ring-like” families of graphs, and a few others. Some relatively recent
additions to the list of known genus polynomials are [2, 6, 7, 8, 10, 11, 12, 18, 20, 21].

To this day, the genus polynomial for the complete graphs Kn with n ≥ 8 are
not known; this polynomial lies beyond present capacity for brute-force calculation,
since Kn has [(n − 2)!]n possible embeddings. It has been conjectured [15] that the
sequence of coefficients of any genus polynomial is log-concave; this conjecture, called
the LCGD conjecture, has been confirmed for bouquets, dipoles, and certain linear
families [3, 13, 14].

In this paper, we consider a graph imbedding locally, from the perspective of a single
root-vertex, and we study how the imbedding changes as we add a proper edge or
a loop. This leads us to a reconsideration of dipoles. It also leads us to a general
formula for adding a loop at a vertex, which entails a detailed analysis of the partition
of the set of edges incident to that vertex, with parts corresponding to faces incident
to that vertex. In particular, we generalize the notion of a dipole to allow a loop at
one or both vertices.

Given a graph G with vertex set V and edge set E, we assign each edge e two
directions, e+ and e−, to give a set D of directed edges. Let λ be the involution on
D that interchanges the direction of each edge. An imbedding of G in an oriented
surface defines a permutation ρ with |V | cycles, each of which specifies the cyclic
order of the directed edges beginning at the corresponding vertex, as determined by
the orientation of the surface. The permutation ρ is called the rotation system for
the imbedding, and the cycle it assigns at a given vertex v is called the rotation at
that vertex.

The boundary walks of the oriented faces of the imbedding are then given by the
cycles of the permutation λρ, viewed as cyclic lists of directed edges treated as
incoming to a vertex. We begin with an incoming edge at vertex u, reverse its
direction (i.e., apply λ) so that it is outgoing at u, rotate by ρ to the next outgoing
edge from u, follow that directed edge to its end vertex v where it is incoming; and
then repeat to trace out the directed face boundary. Ringel pioneered the use of
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rotation systems in the 1950s to study minimum-genus graph imbedding of families
of complete graphs, which led to the solution [23] to the Heawood map-color problem.

The vertex-edge-face incidence structures of the imbeddings of a graph are in bijective
correspondence with possible rotation systems for the graph. The genus polynomial
ΓG(z) can therefore be obtained from the cycle-count generating function for λρ,
where ρ varies over all rotations for the graph G: if there are c cycles, then g =
(|E| − |V | − c)/2 by the Euler polyhedral formula, since c is the number of faces.

Thus, any question regarding enumeration by genus of the imbeddings of
a given graph G can be interpreted as a question about the enumeration
of cycle-counts in a product of a fixed (free) involution on a set D with a
set of permutations of D, where the set is determined by the adjacencies
in G.

The organization of this paper is as follows. Section 2 describes inner and outer
permutations at a root vertex, introduced in [14]. Section 3 transforms the problem
of counting faces in an imbedding of a dipole Dn to counting cycles in a product of two
arbitrary n-cycles. Section 4 describes the relationship of the Hultman numbers to
the face-count polynomial for a digraph and revisits the genus polynomial of Dn [22,
19] from this viewpoint. Section 5 introduces valence-partitioned genus polynomials
for a graph G rooted at a vertex v and reviews the representation of topological
operations by productions. Section 6 gives explicit formulae for valence-partitioned
productions for adding a proper edge to a dipole, a loop at the non-root vertex of
a dipole, and a loop at the root of an arbitrary graph G, which lead to calculation
of genus polynomials for generalized dipoles. Section 7 suggests a possible approach
to the LCGD conjecture using [13], an observation by Féray [5] about a result by
Stanley [24], and ideas from this paper.

2 Inner and Outer Permutations at a Vertex

We abbreviate “face-boundary walk” as fb-walk.

Relative to a given vertex v and to a given rotation system ρ, or to the corresponding
imbedding, we call the faces and fb-walks that are incident at v inner faces and
inner fb-walks, and we call the other faces and fb-walks outer faces and outer
fb-walks.

A semi-trail in a graph is an oriented walk in which no oriented edge appears more
than once.

For any imbedding of a graph G, each inner fb-walk at a vertex v can be visualized
as having been formed by the union of two kinds of oriented semi-trails:

• a corner strand at v is a semi-trail (of length 2) comprising a directed edge
inward to v and the directed edge outward from v that follows the inward edge
immediately on whatever inner fb-walk contains the inward edge;



J.L. GROSS ET AL. /AUSTRALAS. J. COMBIN. 67 (2) (2017), 203–221 206

• an outer strand at v is any semi-trail of an inner fb-walk that remains after
deleting all the corner strands at v from all the fb-walks.

We now define two permutations, ζ and π, on the undirected edges incident at v.
Each loop at v is subdivided by adding a 2-valent vertex. Thus, no edge is twice
incident at v. The inner permutation ζ at vertex v is simply the rotation at v
with directions ignored. The permutation ζ at v takes the first edge (incoming, but
undirected) in a corner strand to the next edge (outgoing, but undirected). The
outer permutation π at v takes the undirected edge (but outgoing from v) at the
beginning of an outer strand to the undirected edge (but incoming at v) at the end
of that outer strand. The composition ζπ takes an undirected (but incoming) edge
at v to the next undirected (but incoming) edge at v in a fb-walk. Thus, each cycle
of ζπ gives the cyclic order of the undirected (but incoming) edges incident at v that
are encountered in the traversal of that fb-walk.

Accordingly, the outer permutation π is obtained from the cycles of λρ by deleting all
directed edges except those incoming to v, and then ignoring the directions of those
edges. We observe that if we change the rotation only at v, but leave the rotation
the same at all other vertices, then the outer permutation π remains unchanged.

This can be viewed solely in terms of permutation as follows. Let ρv be rotation
at v, and let ρ′ be all the other cycles of ρ, so that ρ = ρvρ

′. If we rewrite λρ as
(λρvλ)(λρ′), then the first factor (λρvλ) is just the rotation at v, changing the sign
of each directed edge from outgoing to incoming. For the outer permutation, we
take the second factor (λρ′) and delete all directed edges except those incoming at
v. Thus both λρvλ and λρ′ are permutations only on the incoming edges at v.

See Example 2.2 of [14] for an illustration of inner and outer strands and Example
2.3 for an illustration of inner and outer permutations. We can summarize this
discussion as follows:

Proposition 2.1 (Proposition 3.1 of [14]) Let ζ and π be the inner and outer
permutations at a vertex v of an imbedded graph G with rotation ρ. Then each cycle
of the composition ζπ is the list of the edges incident at v that occur on an inner
fb-walk, that is, on an fb-walk incident at v. In particular, the number of cycles of
ζπ is the number of the inner faces at v of the imbedding. If we change the rotation
ρ only at v, then π stays the same.

3 Counting Faces of a Dipole Rotation System

For the case of a loopless dipole Dn with vertices u and v, imbedded in an oriented
surface, the outer permutation at v is simply the rotation at u with directions ignored.
Thus we make the following observation.

Proposition 3.1 Let ρ be the rotation for an imbedded dipole Dn with vertices v
and u, and let ζ and π, respectively, be the rotations at v and u with signs ignored.



J.L. GROSS ET AL. /AUSTRALAS. J. COMBIN. 67 (2) (2017), 203–221 207

Then each cycle of ζπ gives the incoming edges at v, with signs ignored, in a fb-walk
of the imbedding. �

Example 3.1 We consider the dipole D4 with vertices u and v and edges 1, 2, 3,
and 4. The directed edges incoming edges to vertex v are 1+, 2+, 3+, and 4+; the di-
rected edges incoming to v are 1−, 2−, 3−, and 4−. We assign rotations (1+ 3+ 4+ 2+)
at u and (1− 2− 3− 4−) at v. Figure 3.1 illustrates the projection of this rotation
system for the dipole D4 and the two fb-walks that are obtained by face-tracing.

1-

1+

2+

u v3+

4+
2-

3-

4-

(1- 2- 3- 4-)(1+ 3+ 4+ 2+)

Figure 3.1: Projection of a rotation system for the dipole D4.

We now compute (where λ = (1+ 1−)(2+ 2−)(3+ 3−)(4+ 4−))

λρ = λ(1− 2− 3− 4−)(1+ 3+ 4+ 2+)

= (1+ 2−)(3+ 4− 2+ 3− 4+ 1−).

The first cycle, (1+ 2−), is the fb-walk for the blue face and the second cycle is the
fb-walk for the red face. The directed edges incoming to v are 1+, 2+, 3+, and 4+.
If we keep track only of those four directed edges in λρ, we have (1+)(3+ 2+ 4+);
ignoring signs we get (1)(3 2 4). The inner permutation ζ at v is just the rotation
at v with directions ignored, (1 2 3 4). The outer permutation π at v is just the
rotation at u with directions ignored, (1 3 4 2). Then:

ζπ = (1 2 3 4)(1 3 4 2) = (1)(3 2 4).

We note that if we had kept track in λρ of outgoing edges at v (those labeled −),
instead of incoming edges, we would get a different permutation, (2)(4 3 1), which is
πζ instead of ζπ.

We denote the set of cyclic permutations of n objects by Qn, and we infer the
following from Proposition 3.1.

Corollary 3.2 The face-count distribution polynomial for the dipole Dn equals the
cycle-count distribution polynomial taken over all products of two permutations in
Qn. �

Remark For the time being, we are still envisioning distinct polynomials for enu-
merating face-counts and the genus of imbeddings. We combine the two in Section 5.

The following theorem is the fruit of our new perspective on dipole imbeddings.
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Theorem 3.3 The face-count distribution polynomial for the dipole Dn equals (n−
1)! times the cycle-count distribution polynomial taken over all products of a fixed
π ∈ Qn with each possible ζ ∈ Qn.

Proof. We envision an (n−1)!×(n−1)! array whose rows are labeled by the possible
inner permutations ζ at v and whose columns are labeled by the outer permutations
π at v. The entries of the matrix are just the number of cycles in the product ζπ.
We claim that the cycle-count distribution for columns π and π′ are the same. From
the graph theoretic viewpoint, we can change from π to π′ by a graph isomorphism
relabeling edges. Since the entries in each column give all possible cycle counts over
all possible ζ the cycle-count distribution remains unchanged. From a permutation
viewpoint, π′ = σ−1πσ. Thus for any cycle ζ, we have

ζπ′ = ζ(σ−1πσ) = σ−1(σζσ−1)(π)σ.

Since conjugate permutations have the same cycle count, we infer that ζπ′ has the
same cycle count as (σζσ−1)π. The row labels are all possible cycles ζ, which is the
same as all conjugates of a fixed cycle ζ. Thus the cycle-count distribution for each
column is the same. 2

4 Hultman Numbers

In this section, we give a very short calculation of the genus polynomials for the
loopless dipoles.

Bona and Flynn [1] give the closed formula

Hn,k =

{[
n+2
k

]
/
(
n+2
2

)
if n− k is odd

0 if n− k is even

for what has been called the Hultman number Hn,k. Hultman [17] conceived
of them while studying enumerative problems concerned with distances between
genomes. Here we use the Karamata notation

[
n
k

]
(for which we say “n-cycle-

k”) for the unsigned Stirling number of the first kind. For the first few values of n,
the Hultman numbers are shown in the following array:

1 2 3 4 5 6 7
1 0 1
2 1 0 1
3 0 5 0 1
4 8 0 15 0 1
5 0 84 0 35 0 1

Topological graph theorists may observe that the numbers Hn,k appear quite explic-
itly in the work of Kwak and Lee [19], some years before Hultman [17]. Accordingly,
here we call them the HKL numbers.
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Theorem 4.1 The face-count distribution sequence for the product of a fixed per-
mutation in Qn with all the permutations in Qn is the HKL sequence Hn−1,k for
k ∈ Z+.

Proof. This follows immediately from Corollary 1 of [1], which is based on work of
Doignon and Labarre [4]. The polynomial itself was first obtained by Rieper [22]. 2

Corollary 4.2 The face-count polynomial for the set of imbeddings of the dipole Dn

equals (n− 1)! times the generating function for the HKL sequence

Hn−1,1, Hn−1,2, . . . , Hn−1,n.

Proof. This follows from Theorem 3.3 and Theorem 4.1. 2

Corollary 4.3 The genus polynomial of the dipole Dn is given by

ΓDn(z) =
2(n− 1)!

n(n+ 1)

bn−1
2 c∑

k=0+1

[
n+ 1

n− 2k

]
zk. �

5 Valence-Partitioning and Productions

Consider an imbedding of a graph G with a d-valent root-vertex v. The inner faces
at v give a partition of its set of incoming edges, which induces a partition of the
valence d, called the face-incidence partition of d. For different imbeddings of
G, we may get different partitions of the valence d. The collection of partitions of d
arising from all imbeddings of G forms a complete set of imbedding types for (G, v),
in the sense of [9]. The partial genus polynomial for any of these partitions is
the genus polynomial for the set of imbeddings within the corresponding imbedding
type.

We use the notation 1i12i2 . . . for the partition having i1 parts of size 1, i2 parts of size
2 etc. To avoid subscripts, we write the partial genus polynomial f(z) correspond-
ing to the partition 1i12i2 ... as f(z) · 1i12i2 ... . We call this valence-partitioned
notation. The following example illustrates how this notation works.

Example 5.1 The complete graph (K4, v), rooted at any vertex v, has 16 imbed-
dings. Of these, there are two imbeddings of genus 0 in which three distinct faces
are incident at v; and there are 12 imbeddings of genus 1 in which one face is twice
incident at v and another once incident; there are two imbeddings of genus 1 in
which one face is thrice incident at v. We then can write the genus polynomial for
K4 rooted at v in valence-partitioned notation as:

Γ(K4,v)(z) = 2z0 ·13 + 12z1 ·1121 + 2z1 ·31. (5.1)

We call such a polynomial a valence-partitioned genus polynomial of G for
root-vertex v.
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A production is a rule that describes the effect that a given topological operation
on a graph, such as the addition of one or more edges, has on an imbedding type. A
valence-partitioned production is one where the imbedding types are partitions
at a root vertex v. To illustrate our notation, we extend Example 5.1.

Example 5.1 (continued) We consider how each of three valence partitions for
(K4, v) is affected by addition of a loop at v, by which we obtain the graph (G, v).
In the following three productions, a counter zg keeps track of the effect of the loop
addition on genus (either g → g, or g → g+1)) of the imbeddings in the resulting
new partitions.

zg ·13 → 6zg ·1321 + 6zg+1 ·1141 (5.2)

zg ·1121 → 4zg ·1231 + 4zg ·1122 + 4zg+1 ·51 (5.3)

zg ·31 → 6zg ·1141 + 6zg ·2131 (5.4)

For instance, Production (5.2) means that a loop can be added at a root-vertex of
a graph whose imbedding is of type 13 in 12 possible ways. There are three corners
at v into which both ends of the loop can be inserted, and there are two possible
orientations of the loop, leading to six imbeddings of type 1321, all of the same genus
as of the original imbedding. There are also six ways (counting the two possible
orientations) for inserting the edge-ends of the loop into two different corners at v,
each of which reduces the total number of faces by one and increases the genus by
one, and results in an imbedding of type 1141.

We then extend these rules linearly to the valence-partitioned genus polynomial (5.1)
for K4, with appropriate values of the exponent g, to get the valence-partitioned
genus polynomial for G:

Γ(G,v)(zπ) = 12z0 ·1321 + 48z1 ·1231 + 48z1 ·1122 (5.5)

+ 24z1 ·1142 + 12z1 ·2131 + 48z2 ·51

Suppressing the partitioning, we get the genus polynomial for G:

ΓG(z) = 12 + 132z + 48z2

We may recognize the three partitions of 3 as imbedding types of (K4, v) and the
seven partitions of 5 as imbedding types of (G, v), and we may represent the pro-
duction system comprising (5.2), (5.3), and (5.4) as a non-square production matrix.
This leads to the following matrix equation:

0 0 0
6 0 0
0 4 0
0 4 0
6z 0 6
0 0 6
0 4z 0


 2

12z
2z

 13

1121

31

=



0
12
48z
48z
24z
12z
48z2



15

1321

1231

1122

1141

2131

51

(5.6)
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The columns of partitions beside the corresponding partitioned genus distribution
vectors serve as an aid to reconciling this matrix equation with the partitions of the
valences of the root-vertices.

6 Valence-Partitioned Productions for Adding an Edge to a
Dipole

As an application of the use of valence-partitioned production, we now examine the
valence-partitioned productions obtained when we add an edge to a rooted dipole.
We consider three cases: adding a proper edge, adding a loop at the non-root vertex,
and adding a loop at the root vertex. We first obtain a valence-partitioned genus
polynomial for the loopless dipole. Next we add a loop at one vertex, while keeping
track of the effect on the valence-partitioned genus polynomial at the second vertex.
Then we add a loop at the second vertex.

Valence-Partitions for a Loopless Dipole

In a loopless dipole imbedding, occurrences of the two vertices alternate on every
fb-walk and the two vertices have the same valence-partition. Accordingly, that
partition gives the global face-count and the distribution of face-sizes as well as the
genus. We have the following initial valence-partitioned genus polynomial:

ΓD1(zπ) = z0 ·11. (6.1)

This means that there is only one imbedding of D1, in which the only face is 2-sided,
and in which the only imbedding is on the sphere.

In general, the number of parts is the number of faces. The minimum number of
parts for Dn is 1, if n is odd, or 2, if n is even. The maximum number of parts is n
if n is odd and n− 1 if n is even. The sum of the parts is n. We easily calculate (by
ad hoc methods) that

ΓD2(zπ) = z0 ·12 and (6.2)

ΓD3(zπ) = 2z0 ·13 + 2z1 ·31. (6.3)

Inserting One More Proper Edge in a Dipole

When a proper edge is added to a dipole imbedding, it can either split a face into two
faces or it can join two faces. As a preliminary to giving a general production, we
consider this example that illustrates the possible outcomes. For a loopless dipole,
the size of each face is twice the number of occurrences of the root-vertex.
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Remark Of course. we already know the genus polynomial for a loopless dipole
Dn. However, we need a valence-partitioned genus polynomial for Dn in order to
derive genus polynomials for the generalized dipoles with a possible loop at either or
both vertices.

Example 6.1 For an imbedding (D7, v) → S2 with two digons and a 10-gon, we
have the particularized production

z2 ·1251 → 2z2 ·1351 + 10z2 ·1351 + 10z2 ·122141 + 5z2 ·1232 (6.4)

+ 2z3 ·3151 + 20z3 ·1171.

We call the non-root-vertex u. The first line of Production (6.4) counts the ways to
insert a new u-v edge inside either of the two digons or inside the 10-gon. The terms
2 ·1351 and 10 ·1351 count the ways to insert the additional edge along a side of a
face, as in Figure 6.1, so as to create an additional digon. The terms 10z2·122141 and
5z2 ·1232 count the ways to insert a u-v chord so as to split the 10-gon into a digon
and a 4-gon or into two hexagons, respectively.

Figure 6.1: Adding a digon along a side of a face.

The term 2z3 · 3151 counts the ways to join the two digons into a hexagon.

The term 20z3 ·1171 counts ways to insert the additional edge so that it joins one of
the two digons to the 10-gon, which is 20 ways when both digons are considered.

Note that the sum of the coefficients on the right side of the production is 49, since
there are seven different corners at each vertex of any imbedding of D7, which implies
there are 72 places to insert the ends of the new proper edge.

Notation We will sometimes modify our notation for partitions (e.g., in (6.5)) to
allow separate parts of equal size or have parts not in the order of ascending size.
Furthermore, we allow a negative exponent on a part to show that a part of that
size has been removed from the partition. These notational conventions considerable
simplify the formulas for the three main theorems regarding productions.

Theorem 6.1 The valence-partitioned production for adding a proper edge to an
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imbedding of a loopless digon Dn with vertices u and v is

zg ·1j12j2 · · ·njn →
n∑
i=1

ijiz
g ·

i∑
k=1

i−1k1(i− k + 1)11j12j2 · · ·njn (6.5)

+
n∑
i=1

2i2
(
ji
2

)
zg+1 ·i−2(2i+ 1)11j12j2 · · ·njn (6.6)

+
n∑
i=1

n∑
k=i+1

2ikjijkz
g+1· (6.7)

i−1k−1(i+ k + 1)11j12j2 · · ·njn .

Proof. This production follows the same lines as the the particularized discussion
of Example 6.1. Let us suppose that vertex u is white and vertex v is black. Then
these two colors alternate around each fb-walk. Line (6.5) enumerates ways to insert
the additional edge as a chord inside a (2i)-gon, so as to join a pair of corners of
opposite colors, taken over all possible face-sizes 2, 4, . . . , 2n. We observe that the
sum of the coefficients of this first double sum is

∑n
i=1 jii

2, which corresponds to the
total number of ways to insert such a chord. Line (6.6) enumerates ways to insert
the additional edge so that it joins two faces of the same size. Line (6.7) counts the
ways to insert the additional edge so that it joins two faces of different sizes. We
observe that the sum of all the coefficients in the consequent is

n∑
i=1

ji(i
2 + i) +

n∑
i=1

(
ji
2

)
2i2 +

n∑
i=1

n∑
k=i+1

jijk2ik

=
n∑
i=1

j2i i
2 +

n∑
i=1

n∑
k=i+1

jijk2ik =

(∑
i=1

iji

)2
= n2.

This is exactly the factor by which we anticipate that the sum of the coefficients
of the genus polynomial will increase, when we insert an additional proper edge,
because the valences at the two vertices of the dipole Dn are both n. 2

Using Theorem 6.1, we can now calculate the productions

z0 ·13 → 3z0 ·14 + 6z1 ·1131

z1 ·31 → 3z1 ·22 + 6z1 ·1131

and apply them to the valence-partitioned genus polynomial (from (6.3))

ΓD3(zπ) = 2z0 ·13 + 2z1 ·31,

which yields the valence-partitioned genus polynomial

ΓD4(zπ) = 6z0 ·14 + 24z1 ·1131 + 6z1 ·22. (6.8)



J.L. GROSS ET AL. /AUSTRALAS. J. COMBIN. 67 (2) (2017), 203–221 214

To continue one step further to a valence-partitioned genus polynomial for the dipole
D5, we calculate the productions

z0 ·14 → 4z0 ·15 + 12z1 ·1231

z1 ·1131 → 7z1 ·1231 + 3z1 ·1122 + 6z2 ·51

z1 ·22 → 8z1 ·1122 + 8z2 ·51

Applying them to the valence-partitioned genus polynomial (6.8) yields the valence-
partitioned genus polynomial

ΓD5(zπ) = 24z0 ·15 + 240z1 ·1231 + 120z1 ·1122 + 192z2 ·51. (6.9)

Adding a Loop at the Non-Root Vertex of a Dipole

Our next task is to develop productions for the effect on the valence-partition at
the second vertex of adding a loop at the first vertex. For purposes of exposition, it
seems helpful to begin with an example.

Example 6.2 We consider the rooted loopless dipole (D3, v). For adding a loop at
the other vertex, u, the productions for the effect on the valence-partitioned genus
polynomial at root-vertex v are as follows:

z0 ·13 → 6z0 ·13 + 6z1 ·1121

z1 ·31 → 6z1 ·31 + 6z1 ·1121.

Production (6.10) holds because there are six ways to insert a loop in one of the three
corners at vertex u, none of which changes the valence partition at v, and there are
six ways to insert a loop that joins faces by joining two corners at u, each of which
changes the partition at v from 111 to 12. Production (6.10) holds because there are
six ways, in all, to insert a loop at one of the three occurrences of u on the fb-walk of
a hexagon, and six ways to join two different u-corners. Thus, using (6.3), we obtain

Γ(D3∗B1,v)(zπ) = 12z0 ·13 + 12z1 ·31 + 24z1 ·1121. (6.10)

Theorem 6.2 The valence-partitioned production for adding a loop at the non-root
vertex u of a rooted loopless digon (Dn, v) is

zg ·1j12j2 · · ·njn →
n∑
i=1

ijiz
g ·

i∑
k=0

i−1k1(i− k)11j12j2 · · ·njn (6.11)

+
n∑
i=1

2i2
(
ji
2

)
zg+1 ·i−2(2i)11j12j2 · · ·njn (6.12)

+
n∑
i=1

n∑
k=i+1

2ikjijkz
g+1· (6.13)

i−1k−1(i+ k)11j12j2 · · ·njn .
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Proof. The double sum at line (6.11) counts the number of ways to add a loop with
both ends in the same u-corner of a 2i-gon. A u-u chord in an 2i-sided face splits
it into two faces, one of which has k occurrences of vertex v with the other having
i− k occurrences of v. The inner sum takes care of both orientations of any chord.
(Parts of size zero in a partition are simply ignored.) The sum of the coefficients for
the inner sum is i + 1. Thus, the sum of the coefficients in the double sum equals∑n

i=1(i
2 + i)ji = n+

∑n
i=1 i

2ji.

Line (6.12) counts the ways to join two faces of the same size. Line (6.13) counts the
ways to join two faces of unequal size. The inner sum is empty when k = n, because
if there are n instances of vertex u on a face, then it is the only face.

The sum of the coefficients taken over all three sums in the consequent of the pro-
duction is

n∑
i=1

(i2 + i)ji +
n∑
i=1

i2(j2i − ji) +
n∑
i=1

n∑
k=i+1

2ikjijk

= n +
n∑
i=1

j2i i
2 +

n∑
i=1

n∑
k=i+1

jijk2ik

= n +

(∑
i=1

iji

)2

= n + n2.

This coincides with our expectation that the factor by which the number of imbed-
dings increases when a loop is added at one vertex of Dn is n2 + n. 2

Example 6.3 Now we add a loop to one vertex of D4, starting with the valence-
partitioned genus polynomial (6.8).

ΓD4(zπ) = 6z0 ·14 + 24z1 ·1131 + 6z1 ·22

Using Theorem 6.2, we calculate specific productions.

z0 ·14 → 8z0 ·14 + 12z1 ·1221

z1 ·1131 → 8z1 ·1131 + 6z1 ·122 + 6z2 ·41

z1 ·22 → 8z1 ·22 + 4z1 ·1221 + 8z2 ·41

We apply these productions to obtain the result

Γ(D4∗B1,v)(zπ) = 48z0 ·14 + 240z1 ·122 + 192z1 ·1131

+48z1 ·22 + 192z2 ·41.
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Example 6.4 As a third example, we add a loop to one vertex of D5. We begin
with the valence-partitioned genus polynomial (6.9).

ΓD5(zπ) = 24z0 ·15 + 240z1 ·1231 + 120z1 ·1122 + 192z2 ·51

As in previous examples, we next construct specific productions.

z0 ·15 → 10z0 ·15 + 20z1 ·1321

z1 ·1231 → 10z1 ·1231 + 6z1 ·1321 + 2z2 ·2131 + 12z2 ·1141

z1 ·1122 → 10z1 ·1122 + 4z1 ·1321 + 8z2 ·1141 + 8z2 ·2131

z2 ·51 → 10z2 ·51 + 10z2 ·1141 + 10z2 ·2131

We apply these productions to obtain the result

Γ(D5∗B1,v)(zπ) = 240z0 ·15 + 2400z1 ·1321 + 2400z1 ·1231

+ 1200z1 ·1122 + 3360z2 ·2131

+ 5760z2 ·1141 + 1920z2 ·51.

Adding a Loop at the Root Vertex of an Arbitrary Graph

Our last theorem gives a general production that represents the effect on a valence-
partitioned genus polynomial of the operation of adding a loop at the root-vertex of
any rooted graph, not just a dipole.

Theorem 6.3 Let (G, v) be a graph with a n-valent root vertex v, imbedded so that
the valence partition at v is

π = 1j12j2 · · · .njn .

Then the operation of adding a loop at v has the following production:

zg ·π →
n∑
i=1

iji ·
i∑

k=0

zg ·i−1(k + 1)1(i− k + 1)1π (6.14)

+
n∑
i=1

ijii(ji − 1)zg+1 ·i−2(2i+ 2)1π (6.15)

+
n∑
i=1

iji ·
n∑

k=1,k 6=i

kjkz
g+1 · (6.16)

i−1k−1(i+ k + 2)1π.

Proof. We recall that the sizes of the parts in our partition correspond to the
number of occurrences of the root-vertex on an fb-walk. In this proof, we abuse the
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phrase “face size”, by letting it mean that number of occurrences, rather than the
length of the fb-walk.

To add a loop at root-vertex v, we first choose a face corner where the added loop
begins. For each of lines (6.14), (6.15),(6.16), the sum on index i counts the number
of such possible beginning corners, where i is the size of the face . There are ji faces
of size i at vertex v, and there are i possible corners in each face.

We next choose the corner where the added loop ends. Line (6.14) counts the number
of ways to do this when the end corner is in the same face as the beginning corner
— that is, when the added loop splits one face into two faces. The index k of the
inner sum says how much further this corner is around the face; notice that the
sum includes k = 0 and k = i, so that, if the beginning and end corner are the
same, then we count twice, since the loop can be oriented in two ways. The term
i−1(k+ 1)1(i− k+ 1)1π means we have removed from the partition π a part of size i
and replaced it by parts of size k+ 1 and size i− k+ 1; this corresponds to splitting
a face of size i into faces of size k+ 1 and i− k+ 1. (The newly added loop accounts
for the increase of two sides to the sum of the face sizes.) Note that the number of
faces of the imbedding, and hence the number of parts of the partition, increases by
1, and consequently, the genus counter zg stays the same, since the number of edges
has also increased by 1.

Lines (6.15) and (6.16) count the number of ways where the added loop ends in the
corner of a different face. Line (6.15) treats the case where beginning face and the
end face have the same size. There are ji−1 choices for the second face and i possible
corners in that face. The new imbedding has two fewer two parts of size i and one
additional part of size 2i + 2. Accordingly, the new partition removes two parts of
size i and adds one of size 2i + 2. The genus increases to zg+1, since the number of
faces decreases by 1, while the number of edges increases by 1, which together lead
to a total decrease of 2 in the value of the Euler formula for the imbedding. Line
(6.16) treats the case where the end face has a different size k. There are jk choices
for the end face and k possible corners in that face. The partition removes one part
of size i and one of size k and adds one of size i + k + 2. The genus counter again
increases to zg+1.

In line (6.14), the inner sum counts all the ways to insert a v-v-chord, based at a
fixed corner of a 2i-gon to any other corner or itself. Clearly there are i+1 ways to do
this. We multiply by i since we could start the chord at any of the i corners. Thus,
the sum of the coefficients of the double sum is

∑
i = 1nji(i

2 + i) = n+
∑n

i=1 i
2ji.

Line (6.15) counts the number of ways to join two faces of the same size. The sum
of the coefficients is

∑n
i=1 i

2(j2i − ji). Line (6.16) counts the ways to join two faces
of different sizes.

The sum of the coefficients taken over all three sums in the consequent of the pro-
duction is

n∑
i=1

(i2 + i)ji +
n∑
i=1

i2(j2i − ji) +
n∑
i=1

n∑
k=i+1

2ikjijk
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= n +
n∑
i=1

j2i i
2 +

n∑
i=1

n∑
k=i+1

jijk2ik

= n +

(∑
i=1

iji

)2

= n + n2.

This again coincides with our expectation that the factor by which the number of
imbeddings increases when a loop is added at an n-valent vertex is n2 + n. 2

To calculate the genus polynomial of a dipole with loops at both vertices, we would
first calculate the valence-partitioned genus polynomial at the root-vertex, as loops
are added at the other vertex.

Example 6.5 As per (6.10), the rooted dipole (D3 ∗B1, v) with a loop at u has the
valence-partitioned genus polynomial

Γ(D3∗B1,v)(zπ) = 12z0 ·13 + 24z1 ·1121 + 12z1 ·31.

Using Theorem 6.3, we calculate the productions for adding a loop at vertex v:

z0 ·13 → 6z0 ·1321 + 6z1 ·1141

z1 ·1121 → 2z1 ·1122 + 4z1 ·1231 + 2z1 ·1122 + 4z2 ·51

z1 ·31 → 6z1 ·1141 + 6z1 ·1122.

Substituting these productions into Γ(D3∗B1,v)(zπ), we obtain

Γ(D3∗2B1,v)(zπ) = 72z0 ·1321 + 168z1 ·1122 + 96z1 ·1231

+144z1 ·1141 + 96z2 ·51.

Therefore Γ(D3∗2B1,v)(z) = 72 + 408z + 96z2.

Example 6.6 As per (6.14), the rooted dipole (D4 ∗ B1, v) with a loop at the non-
root vertex u has the valence-partitioned genus polynomial

Γ(D4∗B1,v)(zπ) = 48z0 ·14 + 240z1 ·122 + 192z1 ·1131

+48z1 ·22 + 192z2 ·41.

Theorem 6.2 yields the following productions:

z0 ·14 → 8z0 ·1421 + 12z1 ·1241

z1 ·1221 → 6z1 ·1222 + 4z1 ·1331 + 8z2 ·1151 + 2z2 ·2141

z1 ·1131 → 8z1 ·112131 + 6z1 ·1241 + 6z2 ·61

z1 ·22 → 8z1 ·112131 + 4z1 ·23 + 8z2 ·61

z2 ·41 → 8z2 ·1151 + 8z2 ·2141 + 4z2 ·32.
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By substitution into (6.14), we obtain

Γ(D4∗2B1,v)(zπ) = 384z0 ·1421 + 1728z1 ·1241 + 1440z1 ·1222 + 960z1 ·1331

+1920z1 ·112131 + 192z1 ·23 + 3456z2 ·1151

+1536z2 ·61 + 2016z1 ·2141 + 768z2 ·32.

Therefore Γ(D4∗2B1,v)(z) = 384 + 6240z + 7776z2.

7 Conclusions

Some special properties of dipoles have been critical to our derivations. In particular,
both vertices of a loopless dipole have the same valence-partition. This enabled us
to calculate the effect of topological surgery at the non-root vertex on the valence-
partitioned genus polynomial, relative to the partition at the root-vertex.

Although our derivations in Section 6 of the productions in Theorem 6.1, Theo-
rem 6.2, and Theorem 6.3 took the intuitive topological approach of drawing edges
in polygons, this could have been combinatorialized. At other times, taking a com-
binatorial approach greatly facilitates the derivation of results that are not easily
derived via intuitive topology.

In particular, Féray [5] has noted that the conjecture we have elsewhere [14] called
the combinatorial local log-concavity conjecture (CLLC) is settled in the affirmative
by a theorem of Stanley [24]. This affirmation reduces the log-concavity conjecture
to a purely combinatorial conjecture that certain lists of cycle-count distribution
polynomials can always be ordered so that each polynomial is synchronous with the
sum of the previous polynomials in the list, as described by [14].

References
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