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Abstract 

A diagonal Latin square is a Latin square whose main diagonal and 
back diagonal are both transversals. Let dr be the least integer such that 
for all n > dr there exist r pairwise orthogonal diagonal Latin squares 
of order n. In a previous paper Wallis and Zhu gave several bounds on 
the dr. In this paper we shall present some constructions of pairwise 
orthogonal diagonal Latin squares and consequently obtain new bounds 
for five pairwise orthogonal diagonal Latin squares. 

1 Introduction 

A Latin square of order n is an n X n array such that every row and every column is 
a permutation of an n-set. A transversal in a Latin square is a set of positions, one 
per row and one per column, among which the symbols occur precisely once each. A 
symmetric transversal in a Latin square is a transversal which is a set of symmetric 
positions. A transversal Latin square is a Latin square whose main diagonal is a 
transversal. A diagonal Latin square is a transversal Latin square whose back diagonal 
also forms a transversal. It is easy to see that the existence of a transversal Latin 
square with a symmetric transversal implies the existence of a diagonal Latin square. 

Two Latin squares of order n are orthogonal if each symbol in the first square 
meets each symbol in the second square exactly once when they are superposed. t 
pairwise orthogonal diagonal (transversal) Latin squares of order n, denoted briefly 
by t PODLS(n) (POILS(n)) are t pairwise orthogonal Latin squares each of which is 
a diagonal (transversal) Latin square of order n. We let N(n) (D(n),I(n)) denote 
the maximum number of pairwise orthogonal (diagonal, transversal) Latin squares of 
order n. 

For t 2, it has been shown (see [1, 5, 6, 7, lOD that a pair of orthogonal diagonal 
Latin squares exists for all n with the 3 exceptions n E {2, 3, 6}. 
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For t = 3, Wallis and Zhu [8] showed that d3 ~ 446. Then Zhu [11] and Du [2] 
showed that three pairwise orthogonal diagonal Latin squares of order n exist for all 
n with the 5 exceptions nEE = {2, 3,4,5, 6} and 11 possible exceptions, of which 
46 is the largest number. Thus d3 ~ 46. 

For t = 4, Wallis and Zhu [8J showed that d4 ~ 510. Then Du [3J showed that 
four pairwise orthogonal diagonal Latin squares of order n exists for all n with the 
5 exceptions nEE and 29 possible exceptions, of which 69 is the largest number. 
Thus d4 ~ 69. 

For t = 5, Wallis and Zhu [8] showed that d ~ 2724. It is our purpose to improve 
this result. We shall present some constructions of pairwise orthogonal diagonal Latin 
squares and consequently deduce that five pairwise orthogonal diagonal Latin squares 
of order n exist for all n with the 6 exceptions n E {2, 3, 4,5,6, 7} and 43 possible 
exceptions, of which 164 is the largest number. Thus d5 ~ 164. 

Theorem 1.1 There exist five pairwise orthogonal diagonal Latin squares of every 
order n where n > 164. Order 2 ~ n ~ 7 are impossible; the only orders for which 
the existence is undecided are: 

10 12 14 15 18 20 21 22 24 26 
28 30 33 34 
44 45 46 48 
62 66 68 69 
98 106 164 

35 36 38 39 40 
50 51 52 54 55 
70 74 76 82 84 

42 
60 
90 

For our purpose, let I At( v, k) denote t pairwise orthogonal Latin squares of order 
v (briefly t POLS(v)) with t sub-POLS(k) missing. Usually we leave the size k hole 
in the lower right corner. Further denote by IA;(v, k) an IAt(v, k) in which the first 
v - k elements in the main diagonal of every square are distinct and different from 
the missing elements. It is easy to see that the existence of an I At+l (v, k) implies the 
existence of an I A;(v, k), and that I A;(v, 1) exists if there exist t pairwise orthogonal 
transversal Latin squares of order v. 

Finally, we denote by At(v, k) the t POILS(v) in which the cells {(v-k+i, v-i+l): 
1 ~ i ~ k} is a common transversal about elements xl, X2, ..• ,Xk. It is clear that an 
At(n,n) exists if D(n) ;:::: t. 

For the following proof, we construct 

Example 1.1. There exists a A q - 3( q, k) for odd prime q, 0 :::; k ~ q. 

Proof. In GF( q) = {ao = 0, al = 1, a2 = -1, a3, ... ,aq-l}, consider the q X q 
arrays 

3~k~q-l 

where hfj = )..kai + /-Lkaj, )..k, /-Lk E GF(q)\{O, 1, -I}, )..k =f. /-Lk and )..k + /-Lk = 1. It is 
easy to see that Lk , 3 ~ k ~ q - 1, are q - 3 POILS(q) each of which has element i 
in the cells (i, i). Then we obtain Aq - 3 (q, k) by the permutation a: 

( 
1 2 .. , q-k-l q-k q-k+l ... q-l q) 

q-k q-k-l .. ' 2 1 q ... q-k+2 q-k+l 
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From [2] we have 

Example 1.2. An A6(9, 2) exists. 

2 Some Constructions 

We need the following new constructions. For simplicity we shall not state their most 
general form, but only the special case to meet the need of this paper. 

First we let Q be a Latin square of order n based on the set In = {O, 1" .. ,n - 1} 
and let S, T be transversals of Q. We form a permutation as,T on In as follows: 
as,T( s) t where sand t are the entries of Sand T, respectively, occuring in the 
same row. We denote by Q(S, T) the Latin square obtained by renaming symbols 
using (JS,T. Obviously we have 

(a) If U is a transversal of Q then U is also a transversal of Q(S, T); 

(b) If V is a Latin square which is orthogonal to Q, then V is also orthogonal to 
Q(S, T). 

Let A, B be Latin squares and let h be a symbol. We denote by Ah the copy of 
A obtained by replacing each entry x of A with the ordered pair (h, x). Further we 
denote by (A, B) the Latin square (Abii ), where B = (bij ). 

Lemma 2.1. For a positive integer k, let AI, A 2 ) ... ,A5 be 5 pairwise orthogonal 
Latin squares of order k which possess 12 disjoint common transversals TI , T2 , .•• ,Tn 
and the main diagonal D. Then there exist 5 pairwise orthogonal diagonal Latin 
squares of order 12k. 

Proof. Consider the 5 pairwise orthogonal Latin squares of order 12k 

-A- - (A- B-) t - t, t 

where the Bi (1 ::; i ::; 5) are 5 pairwise orthogonal Latin squares of order 12. 
We denote by Al the Latin square obtained by replacing each subsquare Al with 

Al (D, Tj ) in the j -th block column of AI, 1 ::; j ::; 11. As a result of such replacement 
the O-th block column of Al contains the 12k entries from T j which are just the same 
as the entries appearing in the main diagonals of blocks in the j-th block column. 
For each j (1 ::; j ::; 11) exchange the two entries from the above two sets of entries 
appearing in the same row of AI' From ( a) it follows immediately that the resulting 
array Al is a transversal Latin square with a symmetric transversal. 

Do the same replacement and exchange of entries for A2 , A3 , .•• , A5 • By (b) 
the resulting squares A2 , A3 ,·· . ,A5 together with Al form 5 POlLS with a common 
symmetric transversal, which consists of the main diagonals of those blocks appearing 
in the block back diagonal. By simultaneously permuting rows and columns we have 
5 PODLS(12k). 

Lemma 2.2. For a positive integer k, let AI, A 2,' •. ,A5 be 5 pairwise orthogonal 
diagonal Latin squares of order k which possess three disjoint common transversals 
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T1 , T2 and the main diagonal D. If the positions of T1 , T2 are symmetric about the 
main diagonal, then there exist 5 pairwise orthogonal diagonal Latin squares of order 
7k. 

Proof. Consider the 5 pairwise orthogonal Latin squares of order 7k 

Al = (Ail Bi) 1:S; i :s; 5 

where the Bi (1 S i :s; 5) are 5 pairwise orthogonal transversal Latin squares of order 
7. 

Notice that the set Ef (t) of the entries of the (tk + j)- th column of Al which lie on 

the transversals Ti coincides with the set E~ (t) of the entries of the [( 7 t - l)k + j]-th 
column of Al lying on the transversals Ti , t 0,1,2. For each i = 1,2, j = 1,2, ... ,k, 

- '-j 
exchange in Al the elements of Ef(t) and Ei (t) appearing on the same row, t = 0,1,2. 
It is clear that the resulting array Al is a transversal Latin square with a transversal 
which consists of an element in the central cell and a set of elements in symmetric 
positions. 

Do the same exchange of entries for A2 , A3 , ..• ,As. It is easy to see that the 
resulting squares A2 , A3 , ... ,As together with Al form 5 POlLS with a common 
transversal, which consists of the back diagonal in the central block and the Tl in the 
upper right blocks and the T2 in the lower left blocks of the block back diagonal. By 
simultaneously permuting rows and columns we have 5 PODLS(7k). 

Next, we give the following three constructions which are generalizations of the 
main constructions in [11]. 

Lemma 2.3. Suppose there are t + 1 POLS(q) such that t of them are t PODLS(q). 

(1) Suppose 2 / qmk, D(k) 2 t and suppose I A;(m + ki' ki ) exist for 0 :s; i :s; q - 1, 
where k = ko + kl + ... + kq - 1 • Further suppose an IA**(m + ko, ko) exists if 
2/ q. Then D(qm+ k) ~ t. 

(2) Suppose 2{ qmk, D(k) 2 t and suppose IA;(m + ki' ki) exist for 0 :s; i S q - 1, 
where k = ko+kl + .. ·+kq - 1 , ko 1. Then D(m+l) ~ t implies D(qm+k) 2 t. 

Proof. (1) is Lemma 3.3 in [11], and (2) is Lemma 2.5 in [2]. 

Lemma 2.4. Suppose there are t + k POLS(q) such that t of them are t PODLS(q) 

(1) Suppose 21-q and suppose there are IA;(m + Wi,Wi), 1:S; i S k, WI + W2 + 
... + Wk = w. Then min{I(m), D(m + w)} ~ t implies D(qm + w) 2 t. 

(2) Suppose 2 / q and suppose there are I A;(m + Wi, Wi), 1 s i :s; k, WI + w2 + 
... +Wk = w. Further suppose there are At(m+w,w). Then I(m) 2 t implies 
D(qm + w) ~ t. 

Proof. (1) is Lemma 3.7 in [11], and (2) is Lemma 2.3 in [3]. For the convenience of 
the reader we give here the proofof (2). 
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The cell (q, q)'s element in each of the k extra order q orthogonal matrices de­
termines a common transversal in the t PODLS(q). For each of k such transversals 
intersecting in the cell (q, q), fill its cells with an I A;(m + Wi, Wi), 1 ~ i S; k, but 
leave the cell (q, q) empty. Fill the other cells with t POILS(rn). Notice that the cells 
in the back diagonal of t PODLS(q) are filled with some modified IA;(m + Wi,Wi) 

or t POILS(m) whose back diagonal of the order m subarray is occupied by different 
elements. Label the elements and get the right and lower parts as we did in Lemma 
2.5 in [4]. Then we get an IA;(qm + w,m + w) shown in the figure. 

q 

• ~ ?1 
~ 

W( ~ .~ 

Now fill the size m + W hole in the lower right corner of the I A;( qm + w, m + w) 
with the given At(m + w, w), and permute rows and columns with permutation a: 

(
12 ... gT- y+1 y+2 
1 2 ... qm qm + w + 1 qm + w + 2 

2 2 2 

qm qm + 1 qm + 2 ... qm +- w ) 
qm + w q;n + 1 q;n + 2 .. , q;, + w 

then we obtain t PODLS( qm + w). 
The remaining verification is a routine matter and the proof is complete. 

Lemma 2.5. Suppose there are t+w+ 1 POLS( q) such that t ofthem are t PODLS( q). 

(1) Suppose ho = 0, 2{'q and there exist IA;(m+hi' hi) and IA;(m+l+hi' hd, ° ~ 
i ~ q 1, h = ho + hI + ... + hq - I . Then min {D(m + w), D(h)} ~ t implies 
D(qm + w + h) ~ t, provided 2 1 (m +w) or 2 1 h. 

(2) Suppose ho = 0, 2 1 q and there exist I A;(m+hi' hi) and I A;(m+l+hi' hi), ° :.:.; 
i ~ q - 1, h = ho + hI + ... + hq- 1 . Further suppose there are At (m + w, w). 
Then D(h) ~ t implies D(qm + w + h) ~ t, provided 21 w or 2 1 h. 

Proof. (1) is Lemma 3.9 in [11], and (2) is Lemma 2.7 in [2]. 
We also need the following lemmas from [8]. 
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Lemma 2.6. If N(g) ~ r, where r is odd, and 0 < x ::; g, then 

D(g(r + 1) + x) ~ min{l(g), l(r + l),J(r + 2), D(x)}. 

Lemma 2.7. If N(g) ~ r, r being odd, and x is an odd number satisfying 0 < x ::; g, 
then 

D((r + l)g + x 1) ~ min{l(g),I(g l),D(r + l),D(r + 2),D(x)}. 

Lemma 2.8. If N(g) ~ r, where 9 is even, then 

D(g(r + 2) + 1) ~ min{D(g + 1), l(r + 2)} 

For the following lemmas we need pairwise balanced designs. A pairwise balanced 
design (briefly PBD) of index unity is a pair (X, A) where X is a set (of points) and 
A is a collection of some subsets a of X (called blocks) such that any pair of distinct 
points of X is contained in exactly one block of A. Denote by (v, K, l)-PBD a PBD 
with v points, block sizes all in K, and index unity. We assume that the reader is 
familiar with the various composition constructions for PBDs. For details see [9]. 

Lemma 2.9. Suppose there is a (v, K, l)-PBD and for every k E K there exist t 
pairwise orthogonal idempotent Latin squares of order k. Further suppose the v-set 
X can be partitioned into disjoint subsets: 

such that each Si is a subset of some block B i , at most one Si. has odd order, and for 
each i there exist At(ki , Si). Then there exist t PODLS( v). 

From Lemma 2.9 and composition constructions for PBDs, we have 

Lemma 2.10. If N(g) ~ 7, 0 < u, v ::; g, g, u odd, then min{D(g), D(u), D(v)} ~ S 
implies D(7g + u + v) ~ S. 

Finally, we need the following lemma from [4]. 

Lemma 2.11. For any prime power order q ~ 3, 

D( ) = { q - 3, ~f q ~s odd 
q , q - 2, If q IS even. 

3 The bound for D(n) > 5 

From [8] we have 

Lemma 3.1. D(n) ;:::: S for n > 2724. 

In this section we give a better bound: 

Theorem A. D(n) ;:::: S for n ;:::: S19. 
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We prove the theorem in three lemma.s. 

Lemma 3.2. D(n) :2: 5 for n E {526, 527,574,575,582,583, 766, 767}. 

Proof. Apply Lemma 2.10 with (g, u, v) E {(71, 13, 16), (71,19,31), (79,13,8), 
(79,13,9),(79,13,16),(79,13,17),(107,9,8),(107,9,9)}. 

Lemma 3.3. D(n) :2: 5 for n :2: 8.79 + 36. 

Proof. Suppose 9 is odd and 9 :2: 79, 9 E F = {85,87, 93, 95,111,119,123,159,175, 
183,291,295,335}. Then N(g) :2: 7 and N(g-l) :2: 6. If xES = {I, 9,11,23,29, 31,37}, 
then D(x) :2: 5 and 9 :2: x. So there exist 5 PODLS (8g + x) and 5 PODLS (8g + x -1) 
for all such x and g. 

For 9 E F, apply Lemmas 2.6 and 2.7 using Table 1. We obtain the lemma. 

Table 1 

87 8.81+49 8.88+1 8.83+43 8.88+11 
93 8.88+41 8.88+49 8.89+43 8.88+59 
95 8.89+49 8.96+1 8.89+59 8.89+67 
111 8.109+17 8.109+25 8.109+27 8.103+83 
119 8.117+17 8.117+25 8.117+27 8.113+67 
123 8.121+17 8.121+25 8.121+27 8.117+67 
159 8.157+17 8.157+25 8.157+27 8.153+67 
175 8.173+17 8.176+1 8.173+27 8.176+11 
183 8.181+17 8.184+1 8.181+27 8.184+11 
291 8.289+17 8.289+25 8.289+27 8.288+43 
295 8.293+17 8.293+25 8.293+27 8.289+67 
335 8.333+17 8.333+25 8.333+27 8.329+67 

n 
85 8.81+61 8.83+47 8.83+53 
87 8.89+13 8.88+23 8.88+29 
93 Lemma 3.2 8.89+61 8.91+47 8.91+53 
95 8.89+ 71 8.97+13 8.89+ 79 8.96+29 
111 8.105+71 8.113+13 8.109+47 8.109+53 
119 8.113+71 8.121+13 8.117+47 8.117+53 
123 8.117+71 8.125+13 8.121+47 8.121+53 
159 8.153+71 8.155+61 8.157+47 8.157+53 
175 8.169+71 8.171+61 8.176+23 8.176+29 
183 8.176+79 8.179+61 8.184+23 8.184+29 
291 8.288+47 8.288+53 8.289+47 8.289+53 
295 8.289+71 8.285+109 8.293+47 8.293+53 
335 8.329+71 8.331+61 8.333+47 8.333+53 
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Lemma 3.4. D( n) 2:: 5 for 519 :S n :S 8.79 + 36. 

Proof. Apply Lemmas 2.6 and 2.7 using Table 2. 

Table 2 

n 8n+1 8n+3 8n+5 8n+7 
65 8.64+9 8.64+11 8.64+13 Lemma 3.2 
66 8.64+17 8.64+19 8.65+13 8.64+23 
67 8.64+25 8.64+27 8.64+29 8.64+31 
68 8.65+25 8.65+27 8.65+29 8.65+31 
69 8.64+41 8.64+43 8.65+37 8.64+47 
70 8.65+41 8.65+43 8.65+53 8.65+47 
71 8.71+1 8.64+59 8.65+61 Lemma 3.2 
72 8.72+1 8.71+11 8.71+13 Lemma 3.2 
73 8.73+1 8.72+11 8.72+13 8.71+23 
74 8.73+9 8.73+11 8.73+13 8.72+23 
75 8.73+17 8.73+19 8.72+29 8.73+23 
76 8.73+25 7.73+27 8.73+29 8.73+31 
77 8.72+41 8.72+43 8.73+37 8.72+47 
78 8.73+41 8.73+43 8.72+53 8.73+47 
79 8.79+1 8.72+59 8.73+53 8.71+71 
80 8.79+9 8.79+11 8.79+13 8.72+71 
81 8.81+1 8.87+19 8.80+13 8.79+23 
82 8.81+9 8.81+11 8.81+13 8.80+23 
83 8.83+1 8.81+19 8.79+37 8.81+23 

4 The case n odd 

In this section we prove Theorem 1.1 for n odd. 
First, from Lemma 2.11 we have 

Lemma 4.1. D(n) 2:: 5 for n E {59, 61, 71,79,83,101,103,107,121,125,127,131, 173}. 

Lemma 4.2. D(n) 2:: 5 for n E {57, 85}. 

Proof. Apply Lemma 2.8 with (9, T) E {(8, 5), (12, 5)}. 

Lemma 4.3. D(n) 2:: 5 for n E {63, 77, 91, 119}. 

Proof. Apply Lemma 2.2 with k E {9, 11, 13, 17}. 

Lemma 4.4. D(n) 2:: 5 for n E {75, 93,123,135, 177}. 

Proof. Apply Lemma 2.4 (1) with (9, m; w) E {(9, 8; 3), (11, 8; 5), (17, 7; 4), (19, 7; 2), 
(25, 7; 2)}. 

Lemma 4.5. D(n) 2:: 5 for n E {87, 133, 175}. 
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Proof. Apply Lemma2.5 (1) with (9, m; w, h) E {(11, 7; 2, 8), (II, 7; 1,3), (23, 7; 1, 13)}. 

We then have 

Theorem B. Theorem 1.1 is true for n odd. 

Proof. Apply Lemmas 2.6 and 2.10 using Table 3. Combining Lemmas 4.1-4.5, we 
obtain the desired result. 

Table 3 

8 8.8+1 Lemma 4.1 ? Lemma 4.1 
9 8.9+1 Lemma 4.4 Lemma 4.3 Lemma 4.1 
10 8.9+9 Lemma 4.1 Lemma 4.2 Lemma 4.5 
11 8.11+1 Lemma 4.3 Lemma 4.4 (11 
12 8.11+9 8.11+11 Lemma 4.1 Lemma 4.1 
13 8.13+1 Lemma 4.1 (13,9,9) 
14 8.13+9 8.13+11 8.13+13 Lemma 4.3 
15 Lemma 4.1 Lemma 4.4 Lemma 4.4 Lemma 4.1 
16 8.16+1 Lemma 4.1 Lemma 4.5 Lemma 4.4 
17 8.17+1 8.16+11 8.16+13 
18 8.17+9 8.17+11 8.17+13 
19 8.19+1 (19,11,11) (19,13,11) 
20 8.19+9 8.19+11 8.19+13 
21 8.19+17 8.19+19 Lemma 4.1 Lemma 4.5 
22 Lemma 4.4 (23,9,9) 
23 8.23+1 (23,17,9) 
24 8.23+9 8.23+11 8.23+13 
25 8.25+1 8.23+19 (25,19,11 ) 8.23+23 
26 8.25+9 8.25+11 8.25+ 13 (27,17,9) 
27 8.25+17 8.25+19 (27,23,9) 8.25+23 
28 8.27+9 8.27+11 8.27+13 (27,25,17) 
29 8.29+1 8.27+19 (31,11,9) 8.27+23 
30 8.29+9 8.29+11 8.29+ 13 (31,,19,11 ) 
31 8.31+1 8:29+19 (31,27,9) 8.29+23 
32 8.32+1 8.31+11 8.31+13 (31,29,17) 
33 8.32+9 8.32+11 8.32+13 8.31+23 
34 8.32+17 8.32+19 8.31+29 8.32+23 
35 8.32+25 8.32+27 8.32+29 8.32+31 
36 (37,17,13) (37,19,13) (37,23,11) (37,23,13) 
37 8.37+1 (37,27,13) (37,29,13) (37,31,13) 
38 8.37+9 8.37+11 8.37+13 (41,13,11 ) 
39 8.37+17 8.37+19 (41,19,11 ) 8.37+23 
40 8.37+25 8.37+27 8.37+29 8.37+31 
41 8.41+1 (43,19,11 ) 8.37+37 (43,23,11 ) 
42 8.41+9 8.41+11 8.41+13 ( 43,31,11) 
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43 8.43+1 8.41+19 (47,11,9) 8.43+23 
44 8.43+9 8.43+11 8.43+13 8.41+31 
45 8.43+17 8.43+19 8.41+37 8.43+23 
46 8.43+25 8.43+27 8.43+29 8.43+31 
47 8.47+1 ( 49,27,9) 8.43+37 ( 49,31,9) 
48 8.47+9 8.47+11 8.47+13 ( 49,31,17) 
49 8.47+17 8.47+19 (53,17,9) 8.47+23 
50 8.47+25 8.47+27 8.47+29 8.47+31 
51 (53,19,19) (53,31,9) (53,31,11) 8.49+23 
52 8.49+25 8.49+27 8.49+29 8.49+31 
53 8.53+1 (53,29,27) 8.49+37 (59,9,9) 
54 8.53+9 8.53+11 8.53+13 8.49+47 
55 8.53+17 8.53+19 (61,9,9) 8.53+23 
56 8.56+1 8.53+27 8.53+29 8.53+31 
57 8.57+1 8.56+11 8.56+13 (61,27,9) 
58 8.57+9 8.57+11 8.57+13 8.56+23 
59 8.57+17 8.57+19 8.56+29 8.57+23 
60 8.57+25 8.57+27 8.57+29 8.57+31 
61 8.59+17 8.59+19 8.57+37 8.59+23 
62 8.57+41 8.57+43 8.59+29 8.57+47 
63 8.57+49 8.61+19 8.57+53 8.61+23 
64 8.64+1 8.59+43 8.61+29 8.61+31 

5 The case for n even 

In this section we prove Theorem 1.1 for n even. 

Lemma 5.1. D(n) ~ 5 for n E {58, 114, 116, 118, 122}. 

Proof. Apply Lemma 2.4 (2) with (g, m; w) E {(8, 7; 2), (16, 7; 2), (16, 7; 4), (16, 7; 6), 
(16, 7; IOn. The conditions As(9, 2), As(11, 4), As(13, 6), As(17, 10) come from Exam­
ples 1.2 and 1.1. 

Lemma 5.2. D(n) ~ 5 for n E {124, 126}. 

Proof. Apply Lemma 2.5 (2) with (g, m; w, h) E {(16, 7; 4,8), (16, 7; 6, 8n. The 
conditions As(l1, 4), As(13,6) come from Example 1.1. 

Lemma 5.3. D( n) ~ 5 for n = 156. 

Proof. Apply Lemma 2.1 with k = 13. 

Lemma 5.4. D(n) ~ 5 for n = 168. 

Proof. Apply Lemma 2.6 with (r,g, x) = (7,19,6). 

Lemma 5.5. D(n) ~ 5 for n E {266,274}. 

Proof. Apply Lemma 2.7 with (r,g,x) E {(7,32,11),(7,32,19n. 
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We then have 

Theorem C. Theorem 1.1 is true for n even. 

Proof. Apply Lemmas 2.3 (2) and 2.10 using Table 4. 

Table 4 

11 7.11+1 (9,9,8) ? ? 
13 7.13+1 (11,9,8) (11,11,8) (13,13,8) 
15 ? (13,9,8) (13,11,8) Lemma 5.2 
17 7.17+1 Lemma 5.1 Lemma 5.2 (17,13,8) 
19 7.19+1 7.17+17 (17,11,8) (19,13,8) 
21 (17,13,16) 7.19+17 7.19+19 (19,19,16) 
23 7.23+1 ? (19,17,16) Lemma 5.4 
25 7.25+1 7.23+17 7.23+19 (23,13,8) 
27 7.27+1 7.25+17 7.25+19 (23,19,16) 
29 7.29+1 7.27+17 7.27+19 (25,19,16) 
31 7.31+1 7.29+17 7.29+19 (27,19,16) 
33 7.29+29 7.31+17 7.31+19 (29,19,16) 
35 7.31+29 7.31+31 (31,25,8) (31,19,16) 
37 7.37+1 (31,29,16) (31,31,16) Lemma 5.5 
39 Lemma 5.5 7.37+17 7.37+19 (37,13,8) 
41 7.41+1 7.37+31 (37,17,16) (37,19,16) 
43 7.43+1 7.41+17 7.41+19 ( 41,13,8) 
45 7.41+29 7.43+17 7.43+19 ( 41,19,16) 
47 7.47+1 7.43+31 ( 41,31,16) ( 41,17,32) 
49 7.49+1 7.47+17 7.47+19 ( 47,13,8) 
51 7.47+29 7.49+17 7.49+19 (47,27,8) 
53 7.53+1 7.49+31 7.47+47 (47,41,8) 
55 7.49+43 7.53+17 7.53+19 7.49+49 
57 7.53+29 7.53+31 (53,25,8) ( 53,27,8) 
59 7.59+1 (53,37,8) 7.53+47 7.53+49 
61 7.61+1 7.59+17 7.59+19 (53,47,16) 
63 7.59+29 7.61+17 7.61+19 ( 61,13,8) 
65 7.61+29 7.61+31 7.59+47 7.59+49 
67 7.67+1 7.59+59 7.61+47 7.61+49 
69 7.61+57 7.67+17 7.67+19 ( 67,13,8) 
71 7.71+1 7.97+31 (67,17,16) (67,19,16) 
73 7.73+1 7.71+17 7.71+19 7.67+49 
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11 7.11+9 7.11+11 ? 
13 7.13+9 7.13+11 7.13+13 
15 Lemma 5.1 Lemma 5.1 Lemma 5.1 
17 7.17+9 7.17+11 7.17+13 
19 7.19+9 7.19+11 7.19+13 
21 Lemma 5.3 (19,17,8) (19,19,8) 
23 7.23+9 7.23+11 7.23+13 
25 7.25+9 7.25+11 7.25+13 
27 7.27+9 7.27+11 7.27+13 
29 7.29+9 7.29+11 7.29+13 
31 7.31+9 7.31+11 7.31+13 
33 7.31+23 7.31+25 7.31+27 
35 (31,29,8) (31,23,16) (31,25,16) 
37 7.37+9 7.37+11 7.37+13 
39 7.37+23 7.37+25 7.37+27 
41 7.41+9 7.41+11 7.41+13 
43 7.43+9 7.43+11 7.43+13 
45 7.43+23 7.43+25 7.43+27 
47 7.47+9 7.47+11 7.47+13 
49 7.49+9 7.49+11 7.49+13 
51 7.49+23 7.49+25 7.49+27 
53 7.53+9 7.53+11 7.53+13 
55 7.53+23 7.53+25 7.53+27 
57 7.53+37 (53,31,8) 7.53+41 
59 7.59+9 7.59+11 7.59+13 
61 7.61+9 7.61+11 7.61+13 
63 7.61+23 7.61+25 7.61+27 
65 7.61+37 7.59+53 7.61+41 
67 7.67+9 7.67+11 7.67+13 
69 7.67+23 7.67+25 7.67+27 
71 7.71+9 7.71+11 7.71+13 
73 7.73+9 7.73+11 7.73+13 

Combining Theorems Band C, we obtain Theorem 1.1. 
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