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Abstract

A diagonal Latin square is a Latin square whose main diagonal and
back diagonal are both transversals. Let d,. be the least integer such that
for all n > d, there exist r pairwise orthogonal diagonal Latin squares
of order n. In a previous paper Wallis and Zhu gave several bounds on
the d,. In this paper we shall present some constructions of pairwise
orthogonal diagonal Latin squares and consequently obtain new bounds
for five pairwise orthogonal diagonal Latin squares.

1 Introduction

A Latin square of order n is an n X n array such that every row and every column is
a permutation of an n—set. A transversalin a Latin square is a set of positions, one
per row and one per column, among which the symbols occur precisely once each. A
symmnetric transversal in a Latin square is a transversal which is a set of symmetric
positions. A transversal Latin square is a Latin square whose main diagonal is a
transversal. A diagonal Latin square is a transversal Latin square whose back diagonal
also forms a transversal. It is easy to see that the existence of a transversal Latin
square with a symmetric transversal implies the existence of a diagonal Latin square.

Two Latin squares of order n are orthogonal if each symbol in the first square
meets each symbol in the second square exactly once when they are superposed. ¢
pairwise orthogonal diagonal (transversal) Latin squares of order n, denoted briefly
by t PODLS(n) (POILS(n)) are t pairwise orthogonal Latin squares each of which is
a diagonal (transversal) Latin square of order n. We let N(n) (D(n), I(n)) denote
the maximum number of pairwise orthogonal (diagonal, transversal) Latin squares of
order n.

For t = 2, it has been shown (see [1, 5, 6, 7, 10]) that a pair of orthogonal diagonal
Latin squares exists for all n with the 3 exceptions n € {2, 3,6}.
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For ¢ = 3, Wallis and Zhu [8] showed that d3 < 446. Then Zhu [11] and Du [2]
showed that three pairwise orthogonal diagonal Latin squares of order n exist for all
n with the 5 exceptions n € E = {2,3,4,5,6} and 11 possible exceptions, of which
46 1s the largest number. Thus d3 < 46.

For ¢ = 4, Wallis and Zhu [8] showed that d; < 510. Then Du [3] showed that
four pairwise orthogonal diagonal Latin squares of order n exists for all n with the
5 exceptions n € E and 29 possible exceptions, of which 69 is the largest number.
Thus dy < 69.

For ¢ = 5, Wallis and Zhu [8] showed that d < 2724. It is our purpose to improve
this result. We shall present. some constructions of pairwise orthogonal diagonal Latin
squares and consequently deduce that five pairwise orthogonal diagonal Latin squares
of order n exist for all n with the 6 exceptions n € {2,3,4,5,6,7} and 43 possible
exceptions, of which 164 is the largest number. Thus ds < 164.

Theorem 1.1 There exist five pairwise orthogonal diagonal Latin squares of every
order n where n > 164. Order 2 < n < 7 are impossible; the only orders for which
the edistence is undecided are:

10 12 14 15 18 20 21 22 24 26
28 30 33 34 35 36 38 39 40 42
44 45 46 48 50 51 52 54 55 60
62 66 68 69 70 74 76 82 84 90
98 106 164

For our purpose, let IA,(v, k) denote ¢ pairwise orthogonal Latin squares of order
v (briefly t POLS(v)) with ¢ sub-POLS(k) missing. Usually we leave the size k hole
in the lower right corner. Further denote by JA}(v, k) an IA,(v, k) in which the first
v — k elements in the main diagonal of every square are distinct and different from
the missing elements. It is easy to see that the existence of an 1 A.y1(v, k) implies the
existence of an I A;(v, k), and that JAj(v,1) exists if there exist ¢ pairwise orthogonal
transversal Latin squares of order v.

Finally, we denote by A,(v, k) the t POILS(v) in which the cells {(v—k+4,v—3i+1) :
1 <4< k} is a common transversal about elements x4, z5, - -, zx. It is clear that an
Ai(n,n) exists if D(n) > t.

For the following proof, we construct

Example 1.1. There exists a A, 3(g, k) for odd prime ¢, 0 < k < q.

Proof. In GF(q) = {a0o = 0,01 = 1,0, = —1,a3, - *,a4-1}, consider the ¢ x ¢
arrays '
Ly = (k%) 3<k<g-—1
where hfj = Ma; + praj, M, pr € GF(g\{0,1, -1}, A # pux and Ay + pre = 1. Tt is
easy to see that Li, 3 < k < g — 1, are ¢ — 3 POILS(q) each of which has element 1
in the cells (4,7). Then we obtain A,_a(q, k) by the permutation o:

1 2 o q—k—=1 g—k ¢g—k+1 -+ g-1 q
q—k ¢g—k-1 --- 2 1 q v gq—k+2 q—k+1
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From [2] we have

Example 1.2. An Ag(9,2) exists.

2 Some Constructions

We need the following new constructions. For simplicity we shall not state their most
general form, but only the special case to meet the need of this paper.

First we let @ be a Latin square of order n based on the set I, = {0,1,---,n — 1}
and let 5,T be transversals of . We form a permutation ogr on I, as follows:
os,7(s) = t where s and ¢ are the entries of S and T, respectively, occuring in the
same row. We denote by Q(S,T) the Latin ‘square obtained by renamlng symbols
using og7. Obviously we have

(a) If U is a transversal of @ then U is also a transversal of Q(S, T);

(b) If V is a Latin square which is orthogonal to QL, then V is also orthogonal to
Q(S,T).

Let A, B be Latin squares and let A be a symbol. We dencte by A, the copy of
A obtained by replacing each entry « of A with the ordered pair (k,z). Further we
denote by (A, B) the Latin square (As,;), where B = (b;;).

Lemma 2.1. For a positive integer k, let A;, Ay, -+, As be 5 pairwise orthogonal
Latin squares of order k which possess 12 disjoint common transversals Ty, T3, - - -, T1;
and the main diagonal D. Then there exist 5 pairwise orthogonal diagonal Latin
squares of order 12k.

Proof. Consider the 5 pairwise orthogonal Latin squares of order 12k

A= (A, B) 1<3<5

where the B; (1 < i < 5) are 5 pairwise orthogonal Latin squares of order 12.

We denote by A; the Latin square obtained by replacing each subsquare A; with
Ay1(D, T;) in the j-th block column of Ay, 1 < j < 11. As a result of such replacement
the 0-th block column of A; contains the 12k entries from T; which are just the same
as the entries appearing in the main diagonals of blocks in the j-th block column.
For each j (1 < j < 11) exchange the two entries from the above two sets of entries
appearing in the same row of A;. From (a) it follows immediately that the resulting
array A; is a transversal Latin square with a symmetric transversal.

Do the same replacement and exchange of entries for Ay, Az, -+, As. By (b)
the resulting squares Ag, Ag, - A5 together with A, form 5 POILS with a common
symmetric transversal, which consists of the main diagonals of those blocks appearing
in the block back diagonal. By simultaneously permuting rows and columns we have

5 PODLS(12k).

Lemma 2.2. For a positive integer k, let A1, Az, -, As be 5 pairwise orthogonal
diagonal Latin squares of order k which possess three disjoint common transversals
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Ty, T; and the main diagonal D. If the positions of Ty, T, are symmetric about the
main diagonal, then there exist 5 pairwise orthogonal diagonal Latin squares of order

7k.

Proof. Consider the 5 pairwise orthogonal Latin squares of order 7k

A =(4,B) 1<:i<5

where the B; (1 <1 < 5) are 5 pairwise orthogonal transversal Latin squares of order
7.

Notice that the set E(¢) of the entries of the (tk+7)-th column of A; which lie on
the transversals 7; coincides with the set E(t) of the entries of the (T—t—1)k+j]-th
column of A4, lying on the transversals T}, ¢ =0,1,2. Foreach:=1,2, j = 1,2,---  k,
exchange in A; the elements of Ef(t) and E](t) appearing on the same row,t = 0,1,2.
It is clear that the resulting array A; is a transversal Latin square with a transversal
which consists of an element in the central cell and a set of elements in symmetric
positions.

Do the same exchange of entries for Ay As, A5, Tt s easy to see that the
resulting squares AZ,A3,~~-,A5 together with A; form 5 POILS with a common
- transversal, which consists of the back diagonal in the central block and the T in the
upper right blocks and the T3 in the lower left blocks of the block back diagonal. By
simultaneously permuting rows and columns we have 5 PODLS(7k).

Next, we give the following three constructions which are generalizations of the
main constructions in [11].

Lemma 2.3. Suppose there are t + 1 POLS(q) such that ¢ of them are ¢ PODLS(q).

(1) Suppose 2 | gmk, D(k) > t and suppose TA}(m + ki k;) exist for 0 <4 < q—1,
where k = ko +ky + -+ + kq—1. Further suppose an TA*(m + ko, ko) exists if
2| g. Then D(gm + k) > t.

(2) Suppose 24 gmk, D(k) > ¢ and suppose TA{(m + ki, k;) exist for 0 <1< q—1,
where k = ko+k;+---+k, 1,k = 1. Then D(m+1) > ¢t implies D(gm+k) > ¢.

Proof. (1) is Lemma 3.3 in [11], and (2) is Lemma 2.5 in [2].
Lemma 2.4. Suppose there are ¢t + k POLS(g) such that ¢ of them are ¢ PODLS(q)
(1) Suppose 2.4 ¢ and suppose there are TA{(m +wi,w,), 1<i<k, w +wy+
-+ wr = w. Then min{I(m), D(m + w)} > t implies D(gm + w) > t.

(2) Suppose 2 | ¢ and suppose there are TA{(m 4w, w), 1<i<k, w +w+
: -+ +wg = w. Further suppose there are A,(m + w,w). Then I(m) > t implies
Digm +w) >t.

Proof. (1) is Lemma 3.7 in [11], and (2) is Lemma 2.3 in [3]. For the convenience of
the reader we give here the proof of (2).
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The cell (g,q)’s element in each of the k extra order ¢ orthogonal matrices de-
termines a common transversal in the ¢ PODLS(g). For each of k such transversals
intersecting in the cell (g, ¢), fill its cells with an TAf(m + w;,w;), 1 <1 <k, but
leave the cell (g, g) empty. Fill the other cells with ¢ POILS(mm). Notice that the cells
in the back diagonal of t PODLS(q) are filled with some modified IA}(m + w;,w;)
or t POILS(m) whose back diagonal of the order m subarray is occupied by different
elements. Label the elements and get the right and lower parts as we did in Lemma
2.5 in [4]. Then we get an JA}(gm + w, m + w) shown in the figure.

.
DURNNN

" O

( 22k

Now fill the size m + w hole in the lower right corner of the I A} (gm + w,m + w)
with the given A;(m + w,w), and permute rows and columns with permutation o:

12 R T +2 <o gm gn+1 gm+2 -+ gm-+tw
12 - 2 2jwtl Ttwt2 -0 gmituw T4+l 242 0 Truw

then we obtain t PODLS(gm + w).
The remaining verification is a routine matter and the proof is complete.

Lemma 2.5. Suppose there are t+w-+1 POLS(q) such that ¢ of them are £ PODLS(q).

(1) Suppose ho = 0, 24 ¢ and there exist A (m~+h,, h;) and TA}(m+1+h;, hi), 0 <
i<q—1, h="ho+h + -+ hg1. Then min {D(m + w), D(h)} > t implies
D(gm +w+ h) > t, provided 2 | (m +w) or 2 | h.

(2) Suppose ho = 0, 2 | g and there exist IA;(m+hy, h;) and TA;(m+1+4hy, hy), 0 =

i <q—1, h = ho+ hy+ -+ hg1. Further suppose there are A¢((m + w,w).
Then D(h) > t implies D(gm + w + h) > ¢, provided 2 | w or 2 | h.

Proof. (1) is Lemma 3.9 in [11], and (2) is Lemma 2.7 in [2].
We also need the following lemmas from [8].
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Lemma 2.6. If N(g) > r, where r is odd, and 0 < ¢ < g, then

D(g(r +1) +2) > min{I(g), I(r + 1), I(r + 2), D(z)}.

Lemma 2.7. If N(g) > r, r being odd, and z is an odd number satisfying 0 < z < g,
then

D((r+1)g + = — 1) > min{I(g), I(g — 1), D(r + 1), D(r + 2), D(z)}.

Lemma 2.8. If N(g) > r, where g is even, then
Dlg(r +2) + 1) > min{D(g + 1), I(r + 2)}

For the following lemmas we need pairwise balanced designs. A pairwise balanced
design (briefly PBD) of index unity is a pair (X, A) where X is a set (of points) and
A is a collection of some subsets a of X (called blocks) such that any pair of distinct
points of X is contained in exactly one block of A. Denote by (v, K,1)-PBD a PBD
with v points, block sizes all in K, and index unity. We assume that the reader is
familiar with the various composition constructions for PBDs. For details see 9l

Lemma 2.9. Suppose there is a (v, K, 1)-PBD and for every k € K there exist ¢
pairwise orthogonal idempotent Latin squares of order k. Further suppose the v-set
X can be partitioned into disjoint subsets:

X:‘—S1USZUUS",,

such that each S; is a subset of some block B;, at most one S; has odd order, and for
each 1 there exist A,(k;,s;). Then there exist ¢ PODLS(v).
From Lemma 2.9 and composition constructions for PBDs, we have

Lemma 2.10. If N(g) > 7, 0 < u,v < g, g,u odd, then min{D(g), D(u), D(v)} > 5
implies D(7g + u +v) > 5.
Finally, we need the following lemma from [4].

Lemma 2.11. For any prime power order ¢ > 3,

g—3, if gis odd
q—2, if qis even.

nlg) = {

3 The bound for D(n) > 5

From [8] we have
Lemma 3.1. D(n) > 5 for n > 2724.
In this section we give a better bound:

Theorem A. D(n) > 5 for n > 519.
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We prove the theorem in three lemmas.
Lemma 3.2. D(n) > 5 for n € {526,527,574,575, 582, 583, 766, 767}'.

Proof. Apply Lemma 2.10 with (g,u,v) € {(71,13,16),(71,19,31),(79,13,8),
(79,13,9), (79, 13, 16), (79, 13,17), (107,9,8), (107,9,9)}.
Lemma 3.3. D(n) > 5 for n > 8.79 + 36.

Proof. Suppose gisodd and g > 179, g€ F = {85,87,93,95,111,119,123, 159,175,
183,291,295, 335}. Then N(g) > 7and N(g—1) > 6. Ifz € § = {1,9,11,23,29,31,37},
then D(z) > 5 and g > z. So there exist 5 PODLS (8¢ +z) and 5 PODLS (8g+z—1)
for all such z and g.

For g € F, apply Lemmas 2.6 and 2.7 using Table 1. We obtain the lemma.

Table 1

n 8n+1 8n—+9 8n+11 8n-+19

85  8.79+49 8.83+25 8.83+27  8.79+67
87 8.814+49 ' 8.88+1 8.83-+43  8.88+11
03  8.88-+41 8.88+49 8.89+43  8.88+59
95  8.89+49 8.96+1 8.80459  8.89+67
111 8.109+17 8.109+25  8.109+27 8.103+83
119 8.117+17 8.117425  8.117+4+27 8.113+467
123 8.121+417 8.121425  8.121+27 8.117+67
159 8.157+17 8.1574+25  8.157+27 8.153+67
175 8.173+17 8.176+1 8.173427 8.176+11
183 8.181+17 8.184+1 8.1814+27 8.184+11
291 8.289+17 8.280-+25  8.289+427 8.288-+43
295  8.293+17 8.293+25  8.293+27 8.289+67
335 8.333+17 8.333+25  8.333+27 8.3294-67

n  8n+23 8n+29 8n+31 8n+37

85 B.79+71 8.81461 8.83+47 8.83+53
87  8.81+T71 8.89+13 8.884+23  8.88+29
93 Lemma 3.2 8.89+61 8.91+47  8.91453
95  8.89471 8.97+13 8.80+79  8.96429
111 8.105+71  8.113+13  8.109+47 8.109+53
119 8.113+71  8.121+413  8.117+47 8.117+53
123 8.117+71  8.125+13  8.121447 8.121453
159 8.153+71  8.155461  8.157+47 8.157+53
175 8.169+71  8.171+61  8.176+23 8.176+29
183 8.176+79  8.179+61  8.184+23 8.184+429
291 8.288+47  8.288+53  8.289+47 8.289+53
295 8.289+71  8.285+109 8.293+47 8.293+53
335 8.329+71  8.331+61  8.333+4+47 8.333+53
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Lemma 3.4. D(n) > 5 for 519 < n < 8.79 + 36.
Proof. Apply Lemmas 2.6 and 2.7 using Table 2.

Table 2

n  8n+41 8n+3 8n+5 8n+7

65 8.64+9 8.64+11 864413 Lemma3.2
66 8.64+17 8.64+19 8.65+13 8.64+23

67 8.64+25 8.64+27 8.64+29 8.64+31

68 8.65+25 8.65+27 8.65429 8.65+31

69 8.64+41 8.64+43 8.65+37 8.64+47

70 8.654+41 8.65+43 8.65+53 8.65+47

71 87141 8.64+59 8.65+61 Lemma 3.2
72 8.724+41 8.71+11 8.714+13 Lemma3.2
73 8.73+1 8.72+11 8.724+13 8.71+23

74 8.73+9  8.73+11 8.713+13 8.72+23

75 B8.73+17 8.73+19 8.72429 8.73+23

76 8.73+25 T7.73+27 8.73+29 8.73+31

77 8.72+41 8.72+43 8.73+37 8.72+47

78 8.73+41 8.73+43 8.724+53 8.73+47

79 8.79+41 8.72+59 8.73+53 8.71+71

80 8.794+49 8.79+11 8.79+13 8.72+71

81 8.814+1 8.87+19 8.80+13 8.79+23

82 8.81+9 8.81+11 881413 8.80+23

83 8.83+1 8.81+19 8.79+37 8.81+23

4 The case n odd

In this section we prove Theorem 1.1 for n odd.
First, from Lemma 2.11 we have

Lemma4.1. D(n) > 5forn € {59,61,71,79,83,101,103, 107, 121,125, 127, 131, 173}.
Lemma 4.2. D(n) > 5 for n € {57, 85}.

Proof. Apply Lemma 2.8 with (g,7) € {(8,5),(12,5)}.

Lemma 4.3. D(n) > 5 for n € {63,77,91,119}.

Proof. Apply Lemma 2.2 with k € {9,11,13,17}.

Lemma 4.4. D(n) > 5 for n € {75,93,123,135,177}.

Proof. Apply Lemma 2.4 (1) with (g,m;w) € {(9,8;3),(11,8;5),(17,7; 4),(19,7;2),
(25,7;2)}.

Lemma 4.5. D(n) > 5 for n € {87,133,175}.
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Proof. Apply Lemma2.5 (1) with (g, m;w, h) € {(11,7;2,8),(11,7;1,3),(23,7; 1, 13)}.
We then have
Theorem B. Theorem 1.1 is true for n odd.

Proof. Apply Lemmas 2.6 and 2.10 using Table 3. Combining Lemmas 4.1-4.5, we
obtain the desired result.

Table 3
n 8n+l 8n+3 8n+5 8n-+7
7 Lemma4.2 Lemmad4.l Lemma4.l Lemma4.3
8  8.8+1 Lemma 4.1 7 Lemma 4.1
g 8.9+1 Lemma 4.4 Lemma 4.3 Lemma4.l
10 8.949 Lemma 4.1 Lemma 4.2 Lernma4.5
11 8.11+1 Lemma 4.3 Lemma4.4 (11,9,9)
12 8.11+49 8.11+11 Lemma 4.1 Lemma4.1
13 8.13+1 Lemma4.1 (13,9,9) (13,11,9)
14 8.13+9 8.13+11 8.13+13 Lermma 4.3
15 Lemma4.] Lemma4.4 Lemma4.4 Lemmad.l
16 8.16+1 Lemma 4.1 Lemma 4.5 Lemma 4.4
17 8.17+1 8.16+11 8.16+13 (17,13,11)
18 8.17+9 8.17+11 8.17+13 (19,9,9)
19 8.19+1 (19,11,11)  (19,13,11)  (19,17,9)
20 8.19+9 8.19+411 8.19+13 (19,17,17)

21 8.19+17 8.19-+19 Lemma 4.1 Lemma 4.5
22 Lemma 4.4 (23,9,9) (23,11,9) (23,11,11)

23 8.23+1 (23,17,9)  23,17,11)  (23,17,13)
24 8.23+9 8.23+11  8.23+13 25,1211
25 8.25+1 8.23+19  (2519,11)  8.23+23
26 8.25+9 825411 825+13  (27,17,9)
97 825417  825+19  (27,23,9)  8.25+23
28 8.27+9 8.27+11  8.27+13  (27,25,17)
29 8.29+1 8.27+19  (31,11,9)  8.27+23
30 8.29+9 820411 820413  (31,19,11)
31 8.31+1 820419  (31,27,9)  8.29+23
32 8.32+1 8.31+11  831+13  (31,29,17)
33 8.32+49 8.32+411  832+13  8.31423

34 8.32+17 8.324+19  8.31+29 8.32423
35 8.32425 8.32-4+-27 8.32-+29 8.32431
36 (37,17,13)  (37,19,13)  (37,23,11)  (37,23,13)
37 8.37+1 (37,27,13)  (37,29,13)  (37,31,13)
38 8.37+9 8.37+11 8.37+13 (41,13,11)
39 8.37+17 8.37+19 (41,19,11)  8.37423
40 8.37+25 8.37427 8.37+29 8.37+31
41 8.41+1 (43,19,11)  8.37+37 (43,23,11)
42 8.41+9 8.41+11 8.41+13 (43,31,11)
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43 8.43+1 8.41+19  (47,11,9) 8.43+23
44 84349 8.43+11  843+13  8.41+31
45 8.43+17  8.43+19 841437 843423
46 8.43+25  8.43+27 843429  8.43+31
47 84741 (49,27,9) 8.43+37  (49,31,9)
48 8.47+9 8.47+11  847+13  (49,31,17)
49 8.47+17  847+19  (53,17,9) 8.47423
50 8.47+25  8.47+27  847+29  8.47+31
51 (53,19,19) (53,31,9) (53,31,11) 8.49+23
52 8.49+25  8.49+27 849429  8.49+431
53 8.53+1 (53,29,27) 8.49+37  (59,9,9)
54 8.53+9 8.53+11  8.53+13  8.49+47
55 8.53+17  8.53+19  (61,9,9)  8.53+23
56  8.56+1 8.53+27  8.53+29  8.53+31
57 8.57+1 8.56+11  856+13  (61,27,9)
58 8.57+9 8.57+11  857+13  8.56+23
59 8.57+17  8.57+19  8.56+29  8.57+23
60 8.57+25  8.57+27  8.57+29  8.57+31
61 B8.59+17  8.59+19  8.57+37  8.59423
62 8.57+41  8.57+43  8.59+29  8.57+47
63 8.57+49  8.61+19  857+53  8.61+23
64 8.64+1 8.59+43  8.61+29  8.61+31

5 The case for n even

In this section we prove Theorem 1.1 for n even.
Lemma 5.1. D(n) > 5 for n € {58,114,116,118,122}.

Proof. Apply Lemma 2.4 (2) with (g,m; w) € {(8,7;2),(16,7;2),(16, 7;4), (16, 7; 6),
(16,7;10)}. The conditions A5(9,2), As(11,4), As(13,6), As(17,10) come from Exam-
ples 1.2 and 1.1

Lemma 5.2. D(n) > 5 for n € {124,126}.

Proof. Apply Lemma 2.5 (2) with (g,m;w,h) € {(16,7;4,8),(16,7;6,8)}. The
conditions As(11,4), A5(13,6) come from Example 1.1.

Lemma 5.3. D(n) > 5 for n = 156.

Proof. Apply Lemma 2.1 with & = 13.

Lemma 5.4. D(n) > 5 for n = 168.

Proof. Apply Lemma 2.6 with (r,g,z) = (7,19, 6).

Lemma 5.5. D(n) > 5 for n € {266,274}.

Proof. Apply Lemma 2.7 with (r, g,z) € {(7,32,11),(7,32,19)}.
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We then have

Theorem C. Theorem 1.1 is true for n even.

Proof. Apply Lemmas 2.3 (2) and 2.10 using Table 4.

Table 4
n o+l Tn+3 Tn+5 Tn+7
9 T7.9+1 ? ? ?
11 7.1141 (9,9,8) ? ?
13 7.13+1 (11,9,8)  (11,11,8)  (13,13,8)
15 7 (13,9,8) (13,11,8) Lemma 5.2
17 T.17+1 Lemma 5.1 Lemma 5.2 (17,13,8)
19 7.19+1 TATHIT (17,11,8)  (19,13,8)
21 (17,18,16)  T7.19+17 7.19+19 (19,19,16)
23 7.23+1 ? (19,17,16) Lemma 5.4
25 T7.25+1 7.23+17 7.23+19 (23,13,8)
27 7.27+1 7.254+17 7.254+19 (23,19,16)
29 7.29+1 T2TH1T 721419 (25,19,16)
31 73141 7.29+17 7.294+19 (27,19,16)
33 T7.29+29 7.314+17 7.31+19 (29,19,16)
35 731420 731431 (31,258)  (31,19,16)
37 7.37+1 (31,29,16)  (31,31,16) Lemma 5.5
39 Lemma5.5 T7.37+17 7.37+19  (37,13,8)
41 74141 737431 (37,17,16)  (37,19,16)
43 7.43+1 741417 TA41+19  (41,13,8)
45 7.414+29 7.43+17 7.43+19 (41,19,16)
47 74741 7.43+31 (41,31,16)  (41,17,32)
49 T7.49+1 T.47+17 T7.47+19 (47,13,8)
51 7.47+29 7.49+17 7.494-19 (47,27,8)
53 17.53+1 7.49+431 T.474-47 (47,41,8)
55 7.49+43 7.53+17 7.53+19 7.49+49
57 17.53+29 7.53+31 (53,25,8) (53,27,8)
59 7.50+1 (53,37,8)  T.53+47  7.53+49
61 7.61+1 7.59+17 7.59+19 (53,47,16)
63 7.59+429 T.61+17 7.61+19 (61,13,8)
65 T7.614+29 7.61+31 7.59-+47 7.59+49
67 T7.67+1 7.59-+59 7.614+47 7.61+49
69 T7.61+57 T.67+17 7.67+19 (67,13,8)
71 77141 7.974+31 (67,17,16)  (67,19,16)
73 T7.734+1 771417 7.714+19 7.67+49
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n  Tn+9 Tn+11 Tn+13

9 T7.94+9 7 7

11 71149 7.114+11 ?

13 7.1349 7.13+11 7.13+13
15 Lemma5.1 Lemmab.l Lemma 5.1
17 7.17+9 717411 717413
19 7.1949 7.19+11 7.19+4+13
21 Lemma5.3 (19,17,8) (19,19,8)
23 7.2349 7.23+11 7.23+13
25 7.2549 7.25411 7.25+4+13
27 7.2749 7.27+11 7.27+13
29 7.29+9 7.29+11 7.29+13
31 7.31+9 7.31411 7.31+13

33 731423  7.31425  T.31+27
35 (31,29,8)  (31,23,16)  (31,25,16)

37 73749 7.37+11 7.37+13
39 7.37423 7.374+25 7.37+27
41 74149 741411 7.41+13
43 7.4349 7.43+11 7.43+13
45 7.43+23 7.43+25 7.434-27
47 74749 7.47+11 7.47+413
49 74949 7.49+11 7.49413
51 7.49+23 7.494-25 7.494-27
53 7.5349 7.53+11 7.53+13

55 7.53+23 7.53425 7.53+27
57 7.53437 (53,31,8) 7.53+41
59 7.5949 7.59+11 7.59+13
61 7.6149 7.61+11 7.614+13
63 7.61+23 7.61425 7.61427
65 T7.61+437 7.59+53 7.61441

67 T.6749 7.674+11 7.67+13
69 7.674+23 7.67+25 T.674-27
71 7.7149 7.71411 7.71413
73 7.7349 7.73+11 7.73+13

Combining Theorems B and C, we obtain Theorem 1.1.
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