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Abstract

The concept of pendant tree-connectivity was introduced by Hager in
1985. For a graph G = (V,E) and a set S ⊆ V (G) of at least two
vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an
S-tree) is a subgraph T = (V ′, E ′) of G that is a tree with S ⊆ V ′.
For an S-Steiner tree, if the degree of each vertex in S is equal to one,
then this tree is called a pendant S-Steiner tree. Two pendant S-Steiner
trees T and T ′ are said to be internally disjoint if E(T )∩E(T ′) = ∅ and
V (T ) ∩ V (T ′) = S. For S ⊆ V (G) and |S| ≥ 2, the local pendant tree-
connectivity τG(S) is the maximum number of internally disjoint pendant
S-Steiner trees in G. For an integer k with 2 ≤ k ≤ n, pendant tree
k-connectivity is defined as τk(G) = min{τG(S) |S ⊆ V (G), |S| = k}.
In this paper, we prove that for any two connected graphs G and H ,
τ3(G�H) ≥ min{3� τ3(G)

2
	, 3� τ3(H)

2
	}. Moreover, the bound is sharp.

1 Introduction

A processor network is expressed as a graph, where a node is a processor and an
edge is a communication link. Broadcasting is the process of sending a message
from the source node to all other nodes in a network. It can be accomplished by
message dissemination in such a way that each node repeatedly receives and forwards
messages. Some of the nodes and/or links may be faulty. However, multiple copies of
messages can be disseminated through disjoint paths. We say that the broadcasting
succeeds if all the healthy nodes in the network finally obtain the correct message
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from the source node within a certain limit of time. A lot of attention has been
devoted to fault-tolerant broadcasting in networks [10,15,17,36]. In order to measure
the ability of fault-tolerance, the above path structure connecting two nodes are
generalized into some tree structures connecting more than two nodes, see [19,21,25].

To show the properties of these generalizations clearly, we hope to start from
the connectivity in graph theory. We divide our introduction into the following four
subsections to state the motivations and our results of this paper.

1.1 Connectivity and k-connectivity

All graphs considered in this paper are undirected, finite and simple. We refer to
the book [2] for graph theoretical notation and terminology not described here. For
a graph G, let V (G), E(G) and δ(G) denote the set of vertices, the set of edges and
the minimum degree of G, respectively. Connectivity is one of the most basic con-
cepts of graph-theoretic subjects, both in combinatorial sense and the algorithmic
sense. It is well-known that the classical connectivity has two equivalent defini-
tions. The connectivity of G, written κ(G), is the minimum order of a vertex set
S ⊆ V (G) such that G \ S is disconnected or has only one vertex. We call this
definition the ‘cut’ version definition of connectivity. Menger theorem provides an
equivalent definition of connectivity, which can be called the ‘path’ version definition
of connectivity. For any two distinct vertices x and y in G, the local connectivity
κG(x, y) is the maximum number of internally disjoint paths connecting x and y.
Then κ(G) = min{κG(x, y) | x, y ∈ V (G), x �= y} is defined to be the connectivity of
G. For connectivity, Oellermann gave a survey paper on this subject; see [32].

Although there are many elegant and powerful results on connectivity in graph
theory, the basic notation of classical connectivity may not be general enough to
capture some computational settings. So people want to generalize this concept.
For the ‘cut’ version definition of connectivity, we find the above minimum vertex
set without regard to the number of components of G \ S. Two graphs with the
same connectivity may have differing degrees of vulnerability in the sense that the
deletion of a vertex cut-set of minimum cardinality from one graph may produce a
graph with considerably more components than in the case of the other graph. For
example, the star K1,n and the path Pn+1 (n ≥ 3) are both trees of order n + 1
and therefore connectivity 1, but the deletion of a cut-vertex from K1,n produces
a graph with n components while the deletion of a cut-vertex from Pn+1 produces
only two components. Chartrand et al. [4] generalized the ‘cut’ version definition of
connectivity. For an integer k (k ≥ 2) and a graph G of order n (n ≥ k), the k-
connectivity κ′

k(G) is the smallest number of vertices whose removal from G of order
n (n ≥ k) produces a graph with at least k components or a graph with fewer than
k vertices. Thus, for k = 2, κ′

2(G) = κ(G). For more details about k-connectivity,
we refer to [4, 33, 34].



Y. MAO/AUSTRALAS. J. COMBIN. 70 (1) (2018), 28–51 30

1.2 Generalized connectivity

The generalized connectivity of a graph G, introduced by Hager [13], is a natural
generalization of the ‘path’ version definition of connectivity. For a graph G = (V,E)
and a set S ⊆ V (G) of at least two vertices, an S-Steiner tree or a Steiner tree
connecting S (or simply, an S-tree) is a subgraph T = (V ′, E ′) of G that is a tree
with S ⊆ V ′. Note that when |S| = 2 a minimal S-Steiner tree is just a path
connecting the two vertices of S. Two S-Steiner trees T and T ′ are said to be
internally disjoint if E(T ) ∩ E(T ′) = ∅ and V (T ) ∩ V (T ′) = S. For S ⊆ V (G) and
|S| ≥ 2, the generalized local connectivity κG(S) is the maximum number of internally
disjoint S-Steiner trees in G, that is, we search for the maximum cardinality of edge-
disjoint trees which include S and are vertex disjoint with the exception of S. For
an integer k with 2 ≤ k ≤ n, generalized k-connectivity (or k-tree-connectivity) is
defined as κk(G) = min{κG(S) |S ⊆ V (G), |S| = k}, that is, κk(G) is the minimum
value of κG(S) when S runs over all k-subsets of V (G). Clearly, when |S| = 2,
κ2(G) is nothing new but the connectivity κ(G) of G, that is, κ2(G) = κ(G), which
is the reason why one addresses κk(G) as the generalized connectivity of G. By
convention, for a connected graph G with less than k vertices, we set κk(G) = 1.
Set κk(G) = 0 when G is disconnected. Note that the generalized k-connectivity
and k-connectivity of a graph are indeed different. Take for example, the graph H1

obtained from a triangle with vertex set {v1, v2, v3} by adding three new vertices
u1, u2, u3 and joining vi to ui by an edge for 1 ≤ i ≤ 3. Then κ3(H1) = 1 but
κ′
3(H1) = 2. There are many results on generalized connectivity; see the book [24]

and the papers [5, 20–23, 25–29, 35].

The following Table 1 shows how the generalization proceeds.

Classical connectivity Generalized connectivity

Vertex subset S = {x, y} ⊆ V (G) (|S| = 2) S ⊆ V (G) (|S| ≥ 2)

Set of Steiner trees

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Px,y = {P1, P2, . . . , P�}
{x, y} ⊆ V (Pi)

E(Pi) ∩ E(Pj) = ∅
V (Pi) ∩ V (Pj) = {x, y}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TS = {T1, T2, . . . , T�}
S ⊆ V (Ti)

E(Ti) ∩ E(Tj) = ∅
V (Ti) ∩ V (Tj) = S

Local parameter κ(x, y) = max |Px,y| κ(S) = max |TS |
Global parameter κ(G) = min

x,y∈V (G)
κ(x, y) κk(G) = min

S⊆V (G),|S|=k
κ(S)

Table 1. Classical connectivity and generalized connectivity

In fact, Mader [30] studied an extension of Menger’s theorem to independent sets
of three or more vertices. We know that from Menger’s theorem that if S = {u, v} is a
set of two independent vertices in a graph G, then the maximum number of internally
disjoint u-v paths in G equals the minimum number of vertices that separate u and
v. For a set S = {u1, u2, . . . , uk} of k (k ≥ 2) vertices in a graph G, an S-path is
defined as a path between a pair of vertices of S that contains no other vertices of S.
Two S-paths P1 and P2 are said to be internally disjoint if they are vertex-disjoint
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except for the vertices of S. If S is a set of independent vertices of a graph G, then
a vertex set U ⊆ V (G) with U ∩ S = ∅ is said to totally separate S if every two
vertices of S belong to different components of G \ U . Let S be a set of at least
three independent vertices in a graph G. Let μ(G) denote the maximum number of
internally disjoint S-paths and μ′(G) the minimum number of vertices that totally
separate S. A natural extension of Menger’ s theorem may well be suggested, namely:
If S is a set of independent vertices of a graph G and |S| ≥ 3, then μ(S) = μ′(S).
However, the statement is not true in general. Take for example, the graph G0

obtained from a triangle with vertex set {v1, v2, v3} by adding three new vertices
u1, u2, u3 and joining vi to ui by an edge for 1 ≤ i ≤ 3. For S = {v1, v2, v3}, μ(S) = 1
but μ′(S) = 2. Mader proved that μ(S) ≥ 1

2
μ′(S). Moreover, the bound is sharp.

Lovász conjectured an edge analogue of this result and Mader proved this conjecture
and established its sharpness. For more details, we refer to [30–32].

1.3 Pendant-tree connectivity

The concept of pendant-tree connectivity [13] was introduced by Hager in 1985,
which is specialization of generalized connectivity (or k-tree-connectivity) but a gen-
eralization of classical connectivity. For an S-Steiner tree, if the degree of each vertex
in S is equal to one, then this tree is called a pendant S-Steiner tree. Two pendant
S-Steiner trees T and T ′ are said to be internally disjoint if E(T ) ∩ E(T ′) = ∅ and
V (T ) ∩ V (T ′) = S. For S ⊆ V (G) and |S| ≥ 2, the local pendant-tree connec-
tivity τG(S) is the maximum number of internally disjoint pendant S-Steiner trees
in G. For an integer k with 2 ≤ k ≤ n, pendant-tree k-connectivity is defined as
τk(G) = min{τG(S) |S ⊆ V (G), |S| = k}. Set κk(G) = 0 when G is disconnected. It
is clear that {

τk(G) = κk(G), for k = 1, 2;
τk(G) ≤ κk(G), for k ≥ 3.

The relations between the pendant tree-connectivity and generalized connectivity
are shown in the following Table 2.

Pendant tree-connectivity Generalized connectivity

Vertex subset S ⊆ V (G) (|S| ≥ 2) S ⊆ V (G) (|S| ≥ 2)

Set of Steiner trees

⎧⎪⎪⎨
⎪⎪⎩

TS = {T1, T2, . . . , T�}
S ⊆ V (Ti),
dTi(v) = 1 for every v ∈ S
E(Ti) ∩ E(Tj) = ∅,

⎧⎨
⎩

TS = {T1, T2, . . . , T�}
S ⊆ V (Ti),
E(Ti) ∩ E(Tj) = ∅,

Local parameter τ(S) = max |TS | κ(S) = max |TS |
Global parameter τk(G) = min

S⊆V (G),|S|=k
τ(S) κk(G) = min

S⊆V (G),|S|=k
κ(S)

Table 2. Two tree-connectivities

It is clear that generalized k-connectivity (or k-tree-connectivity) and pendant-
tree k-connectivity of a graph are indeed different. For example, let H2 = Wn be a
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wheel of order n. From Lemma 1.1, we have τ3(H2) ≤ 1. One can check that for any
S ⊆ V (H) with |S| = 3, τH2(S) ≥ 1. Therefore, τ3(H2) = 1. From Lemma 1.3, we
have κ3(H2) ≤ δ(H2) − 1 = 3 − 1 = 2. One can check that for any S ⊆ V (G) with
|S| = 3, κH2(S) ≥ 2. Therefore, κ3(H2) = 2.

In [13], Hager derived the following results.

Lemma 1.1 [13] Let � be an integer, and G be a graph. If τk(G) ≥ �, then δ(G) ≥
k + �− 1.

Lemma 1.2 [13] Let � be an integer, and G be a graph. If τk(G) ≥ �, then κ(G) ≥
k + �− 2.

Li et al. [23] obtained the following result.

Lemma 1.3 [23] Let G be a connected graph with minimum degree δ. If there are
two adjacent vertices of degree δ, then κk(G) ≤ δ(G)− 1.

1.4 Application background and our result

In addition to being a natural combinatorial measure, pendant tree k-connectivity
and generalized k-connectivity can be motivated by its interesting interpretation in
practice. For example, suppose that G represents a network. If one considers to
connect a pair of vertices of G, then a path is used to connect them. However, if
one wants to connect a set S of vertices of G with |S| ≥ 3, then a tree has to be
used to connect them. This kind of tree for connecting a set of vertices is usually
called a Steiner tree, and popularly used in the physical design of VLSI circuits
(see [11, 12, 37]). In this application, a Steiner tree is needed to share an electric
signal by a set of terminal nodes. Steiner tree is also used in computer communication
networks (see [9]) and optical wireless communication networks (see [6]). Usually, one
wants to consider how tough a network can be, for the connection of a set of vertices.
Then, the number of totally independent ways to connect them is a measure for this
purpose. The generalized k-connectivity can serve for measuring the capability of a
network G to connect any k vertices in G.

Product networks were proposed based upon the idea of using the cross product
as a tool for “combining” two known graphs with established properties to obtain
a new one that inherits properties from both [8]. There has been an increasing
interest in a class of interconnection networks called Cartesian product networks;
see [1, 8, 14, 19, 21].

The Cartesian product of two graphs G and H , written as G�H , is the graph
with vertex set V (G) × V (H), in which two vertices (u, v) and (u′, v′) are adjacent
if and only if u = u′ and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G).

In this paper, we obtain the following lower bound of τ3(G�H).
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Theorem 1.4 Let G and H be two connected graphs. Then

τ3(G�H) ≥ min

{
3

⌊
τ3(G)

2

⌋
, 3

⌊
τ3(H)

2

⌋}
.

Moreover, the bound is sharp; see Remark 3.1.

2 Proof of main result

In this section, let G and H be two connected graphs with V (G) = {u1, u2, . . . , un}
and V (H) = {v1, v2, . . . , vm}, respectively. Then V (G�H) = {(ui, vj) | 1 ≤ i ≤
n, 1 ≤ j ≤ m}. For v ∈ V (H), we use G(v) to denote the subgraph of G�H
induced by the vertex set {(ui, v) | 1 ≤ i ≤ n}. Similarly, for u ∈ V (G), we use H(u)
to denote the subgraph of G�H induced by the vertex set {(u, vj) | 1 ≤ j ≤ m}. In
the sequel, let Ks,t, Kn and Pn denote the complete bipartite graph of order s + t,
complete graph of order n, and path of order n, respectively. If G is a connected
graph and x, y ∈ V (G), then the distance dG(x, y) between x and y is the length of
a shortest path connecting x and y in G.

We now introduce the general idea of the proof of Theorem 1.4, with a running
example (corresponding to Figure 2.1). From the definition, Cartesian product graph
G�H is a graph obtained by replacing each vertex of G by a copy of H and replacing
each edge of G by a perfect matching of a complete bipartite graph Km,m. Recall
that V (G) = {u1, u2, . . . , un}. Clearly, V (G�H) =

⋃n
i=1 V (H(ui)). For example,

let G = K8 (see Figure 2.1 (a)). Set V (K8) = {ui | 1 ≤ i ≤ 8} and |V (H)| = m.
Then K8�H is a graph obtained by replacing each vertex of K8 by a copy of H and
replacing each edge of K8 by a perfect matching of complete bipartite graph Km,m

(see Figure 2.1 (e)). Clearly, V (K8�H) =
⋃8

i=1 V (H(ui)).

In this section, we give the proof of Theorem 1.4. For two connected graphs G and
H , we prove that τ3(G�H) ≥ min{3� τ3(G)

2
	, 3� τ3(H)

2
	}. By the symmetry of Cartesian

product graphs, we assume τ3(H) ≥ τ3(G). We need to show that τ3(G�H) ≥
3� τ3(G)

2
	. Set τ3(G) = k and τ3(H) = �. From the definition of τ3(G�H), it suffices

to show that κG�H(S) ≥ 3�k
2
	 for any S ⊆ V (G�H) and |S| = 3. Furthermore, from

the definition of κG�H(S), we need to find 3�k
2
	 internally disjoint pendant S-Steiner

trees in G�H . Let S = {x, y, z}. Recall that V (G) = {u1, u2, . . . , un}. From the
above analysis, we know that x, y, z ∈ V (G�H) =

⋃n
i=1 V (H(ui)). Without loss

of generality, let x ∈ H(ui), y ∈ H(uj) and z ∈ H(uk) (note that ui, uj, uk are
not necessarily different). For the above example, we have x, y, z ∈ V (K8�H) =⋃8

i=1 V (H(ui)). Without loss of generality, let x ∈ H(u1), y ∈ H(u2) and z ∈ H(u3)
(see Figure 2.1 (e)).

Because ui, uj, uk ∈ V (G) and τ3(G) = k, there are k internally disjoint pen-

dant Steiner trees connecting {ui, uj, uk}, say T1, T2, . . . , Tk. Note that
⋃k

i=1 Ti is
a subgraph of G. Let y′, z′ be the vertices corresponding to y, z in H(ui). Since
τ3(H) = �, there are � internally disjoint pendant Steiner trees connecting {x, y′, z′}
in H(ui), say T ′

1, T
′
2, . . . , T

′
�. Thus (

⋃k
i=1 Ti)�(

⋃�
j=1 T

′
j) is a subgraph of G�H . For
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the above example, we have τ3(G) = τ3(K8) = k = 5 ≤ �. It suffices to prove that

τ3(G�H) ≥ 3� τ3(G)
2

	 = 3�k
2
	. Clearly, there are k = 5 internally disjoint pendant

Steiner trees connecting {u1, u2, u3}, say T1, T2, T3, T4, T5 (see T1, T2, T3, T4 in Figure
2.1 (b), (c)). Note that T1 ∪ T2 or T3 ∪ T4 is a subgraph of G (see Figure 2.1 (b), (c)).
Then (

⋃4
i=1 Ti)�(

⋃�
j=1 T

′
j) is a subgraph of G�H (see Figure 2.1 (d), (h)).

If we can prove that τ(
⋃k

i=1 Ti)�(
⋃�

j=1 T
′
j)
(S) ≥ 3�k

2
	 for S = {x, y, z}, then τG�H(S)

≥ τ(
⋃k

i=0 Ti)�(
⋃�

j=1 T
′
j)
(S) ≥ 3�k

2
	 since (

⋃k
i=1 Ti)�(

⋃�
j=1 T

′
j) is a subgraph of G�H .

Therefore, the problem is converted into finding out 3�k
2
	 internally disjoint pendant

S-Steiner trees in (
⋃k

i=1 Ti)�(
⋃�

j=1 T
′
j). Since

�k/2�⋃
i=1

(T2i−1 ∪ T2i)�(T ′
2i−1 ∪ T ′

2i)

is a subgraph of (
⋃k

i=1 Ti)�(
⋃�

j=1 T
′
j), we only need to show that

τG�H(S) ≥ τ⋃�k/2�
i=1 (T2i−1∪T2i)�(T ′

2i−1∪T ′
2i)
(S) ≥ 3�k/2	.

The structure of
⋃�k/2�

i=1 (T2i−1 ∪ T2i)�(T ′
2i−1 ∪ T ′

2i) in
⋃�k/2�

i=1 (T2i−1 ∪ T2i)�H is shown
in Figure 2.2. In order to show this structure clearly, we take 2�k/2	 copies of
H(uj), and 2�k/2	 copies of H(uk). Note that, these 2�k/2	 copies of H(uj) (re-
spectively, H(uk)) represent the same graph. For the above example, if we can prove
that τ

(T1∪T2∪T3∪T4)�
⋃�k/2�

i=1 (T ′
2i−1∪T ′

2i)
(S) ≥ 3�k/2	 for S = {x, y, z}, then τG�H(S) ≥

τ
(T1∪T2∪T3∪T4)�

⋃�k/2�
i=1 (T ′

2i−1∪T ′
2i)
(S) ≥ 3�k/2	, as desired. The problem is converted into

finding out 3�k/2	 internally disjoint pendant S-Steiner trees in (T1 ∪ T2 ∪ T3 ∪
T4)�

⋃�k/2�
i=1 (T ′

2i−1 ∪ T ′
2i) (see Figure 2.1 (h)).

For each T2i−1∪T2i and T ′
2i−1∪T ′

2i (1 ≤ i ≤ �), if we can find 3 internally disjoint
pendant S-Steiner trees in (T2i−1∪T2i)�(T ′

2i−1∪T ′
2i), say Ti,1, Ti,2, Ti,3, then the total

number of internally disjoint pendant S-Steiner trees in
⋃�k/2�

i=1 (T2i−1 ∪ T2i)�(T ′
2i−1 ∪

T ′
2i) are 3�k/2	, which implies that τG�H(S) ≥τ⋃�k/2�

i=1 (T2i−1∪T2i)�(T ′
2i−1∪T ′

2i)
(S) ≥ 3�k/2	

(Note that we must guarantee that any two trees in {Ti,j | 1 ≤ i ≤ �k/2	, 1 ≤ j ≤ 3}
are internally disjoint).

Furthermore, from the arbitrariness of S, we can get τ3(G�H) ≥ 3� τ3(G)
2

	 and
complete the proof of Theorem 1.4. For the above example, we need to find 3
internally disjoint pendant S-Steiner trees in (T2i−1 ∪ T2i)�(T ′

2i−1 ∪ T ′
2i) (see Figure

2.1 (f), (g)). Then the total number of internally disjoint pendant S-Steiner in⋃�k/2�
i=1 (T2i−1 ∪ T2i)�(T ′

2i−1 ∪ T ′
2i) are 3�k

2
	, which implies

τG�H(S) ≥ τ⋃�k/2�
i=1 (T2i−1∪T2i)�(T ′

2i−1∪T ′
2i)
(S) ≥ 3�k/2	.

Thus the result follows by the arbitrariness of S.

From the above analysis, we need to consider the graph (T2i−1∪T2i)�(T ′
2i−1∪T ′

2i)
and prove that for any S = {x, y, z} ⊆ V ((T2i−1 ∪ T2i)�(T ′

2i−1 ∪ T ′
2i)) there are three
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(a)
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H(u3)
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(b)
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u6

u2 u8
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u1

(e)
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z

H(u4)

H(u5)

H(u2)

H(u3)

H(u6)

H(u7)

H(u1)

(f)

H(u8)
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H(u4)

H(u5)
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(c)
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u4
u5

u6

u2 u8

u7

u1
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u4
u5
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u2 u8

u7
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(d)

H(u2)
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H(u7)
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H(u8)
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z

H(u4)

H(u5)

H(u2)

H(u3)

H(u6)

H(u7)

H(u1)

H(u8)
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z

H(u4)

H(u5)
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(h)

T4
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Figure 2.1: The structure of
⋃�k/2�

i=1 (T2i−1 ∪ T2i)�H .
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internally disjoint pendant S-Steiner trees in (T2i−1 ∪ T2i)�(T ′
2i−1 ∪ T ′

2i) for each
i (1 ≤ i ≤ �k

2
	).

In the basis of such an idea, we study pendant tree 3-connectivity of Cartesian
product of the union of two trees T1, T2 in G and the union of two trees T ′

1, T
′
2 in H

first, and show that τ3(T2i−1 ∪ T2i)�(T ′
2i−1 ∪ T ′

2i) ≥ 3 in Subsection 2.2. After this
preparation, we consider the graph G�H where G,H are two general (connected)

graphs and prove τ3(G�H) ≥ 3� τ3(G)
2

	 in Subsection 2.3. In Subsection 2.1, we
investigate the pendant tree 3-connectivity of Cartesian product of a path Pn and
a connected graph H . So the proof of Theorem 1.4 can be divided into the above
mentioned three subsections. The first and second subsections are preparations of
the last one.

H(ui)

H(uk)

H(uj)

G2
G�k/2	−1

x

z

y

y
H(uj)

z
H(uk)

G1

G�k/2	

Figure 2.2: Structure of
⋃�k/2�

i=1 Gi�H , where Gi = (T2i−1 ∪ T2i).

2.1 Cartesian product of a path and a connected graph

A subdivision of G is a graph obtained from G by replacing edges with pairwise
internally disjoint paths. Let G be a graph, and S ⊆ V (G), |S| = 3. If T is an
minimal pendant S-Steiner tree, then T is a subdivision ofK1,3, and hence T contains
a vertex as its root. The following proposition is a preparation of Subsection 2.3.

Proposition 2.1 Let H be a connected graph and Pn be a path with n vertices. Then
τ3(Pn�H) ≥ τ3(H). Moreover, the bound is sharp.

Suppose τ3(H) = �, V (H) = {v1, v2, . . . , vm} and V (Pn) = {u1, u2, . . . , un}.
Without loss of generality, let ui and uj be adjacent if and only if |i − j| = 1,
where 1 ≤ i �= j ≤ n. It suffices to show that τPn�H(S) ≥ � for any S = {x, y, z} ⊆
V (Pn�H), that is, there exist � internally disjoint pendant S-Steiner trees in Pn�H .
We proceed our proof by the following three lemmas.

Lemma 2.2 If x, y, z belongs to the same V (H(uj)) (1 ≤ j ≤ n), then there exist �
internally disjoint pendant S-Steiner trees in Pn�H.
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Proof. Without loss of generality, we assume x, y, z ∈ V (H(u1)). Since τ3(H) = �,
it follows that there are � internally disjoint pendant S-Steiner trees in H(u1), say
T1, T2, . . . , T�. Clearly, they are � internally disjoint pendant S-Steiner trees, as
desired.

Lemma 2.3 If only two vertices of {x, y, z} belong to some copy H(uj) (1 ≤ j ≤ n),
then there exist � internally disjoint pendant S-Steiner trees in Pn�H.

Proof. We may assume x, y ∈ V (H(u1)) and z ∈ V (H(uj)) (2 ≤ j ≤ n). In the
following argument, we can see that this assumption has no impact on the correctness
of our proof. Let x′, y′ be the vertices corresponding to x, y in H(uj), z

′ be the vertex
corresponding to z in H(u1).

y

x
z′

wi

H(u1) H(uj)

(a) (b)

y′

x′
z

w′
i

Pi P ′
i

Q′
i

R′
i

Qi

Ri

y′y

x

wi

H(u1) H(uj)

z

w′
i

Pi P ′
i

Q′
iQi

Figure 2.3: Graphs for Lemma 2.3.

Suppose z′ �∈ {x, y}. Since τ3(H) = �, it follows that τ3(H(u1)) = τ3(H(uj)) = �,
and hence there exist � internally disjoint pendant S-Steiner trees T1, T2, . . . , T� in
H(u1) and there exist � internally disjoint pendant S-Steiner trees T ′

1, T
′
2, . . . , T

′
� in

H(uj) corresponding to T1, T2, . . . , T� in H(u1), respectively. For each i (1 ≤ i ≤ �),
we let wi, w

′
i be the root of Ti, T

′
i , respectively. Let Pi, Qi, Ri denote the unique

path connecting wi and x, y, z′, respectively. Let P ′
i , Q

′
i, R

′
i denote the unique path

connecting w′
i and x′, y′, z, respectively. Without loss of generality, let wi = (u1, vi)

and w′
i = (uj, vi). Then the trees Ti induced by the edges in E(Pi)∪E(Qi)∪E(R′

i)∪
{(ur, vi)(ur+1, vi) | 1 ≤ r ≤ j − 1} (1 ≤ i ≤ �) are � internally disjoint pendant
S-Steiner trees; see Figure 2.3 (a).

Suppose z′ ∈ {x, y}. Without loss of generality, let z′ = x. Since τ3(H) = �,
it follows from Lemma 1.2 that κ(H) ≥ � + 1, and hence κ(H(u1)) ≥ � + 1 and
κ(H(uj)) ≥ � + 1. Then there exist � + 1 internally disjoint paths connecting x
and y in H(u1), say R1, R2, . . . , R�+1, and there exist � + 1 internally disjoint paths
connecting z and y′ in H(uj), say R′

1, R
′
2, . . . , R

′
�+1. Note that there is at most

one path in {R1, R2, . . . , R�+1}, say R�+1, such that its length is 1, and there is at
most one path in {R′

1, R
′
2, . . . , R

′
�+1}, say R′

�+1, such that its length is 1. For each
i (1 ≤ i ≤ �), there is an internal vertex wi in Ri, and there is an internal vertex w′

i

in R′
i. Let Pi, Qi denote the unique path connecting wi and x, y, respectively. Let
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P ′
i , Q

′
i denote the unique path connecting w′

i and y′, z, respectively. Without loss
of generality, let wi = (u1, vi) and w′

i = (uj, vi). Then the trees Ti induced by the
edges in E(Pi)∪E(Qi)∪E(P ′

i )∪ {(ur, vi)(ur+1, vi) | 1 ≤ r ≤ j − 1} (1 ≤ i ≤ �) are �
internally disjoint pendant S-Steiner trees, as desired.

Lemma 2.4 If x, y, z are contained in distinct H(uj)s, then there exist � internally
disjoint pendant S-Steiner trees in Pn�H.

Proof. We may assume that x ∈ V (H(ua)), y ∈ V (H(ub)), z ∈ V (H(uc)), where
1 ≤ a < b < c ≤ n. In the following argument, we can see that this assumption has
no influence on the correctness of our proof. Let y′, z′ be the vertices corresponding
to y, z in H(ua), x

′, z′′ be the vertices corresponding to x, z in H(ub) and x′′, y′′ be
the vertices corresponding to x, y in H(uc).

Suppose that x, y′, z′ are distinct vertices in H(ua). Since τ3(H) = �, it follows
that τ3(H(ua)) = τ3(H(ub)) = τ3(H(uc)) = �, and hence there exist � internally
disjoint pendant S-Steiner trees T1, T2, . . . , T� in H(ua), and there exist � internally
disjoint pendant S-Steiner trees T ′

1, T
′
2, . . . , T

′
� in H(ub), and there exist � internally

disjoint pendant S-Steiner trees T ′′
1 , T

′′
2 , . . . , T

′′
� in H(uc). For each i (1 ≤ i ≤ �),

we let wi, w
′
i, w

′′
i be the root of Ti, T

′
i , T

′′
i , respectively. Let Pi, Qi, Ri denote the

unique paths connecting wi and x, y′, z′, respectively. Let P ′
i , Q

′
i, R

′
i denote the unique

paths connecting w′
i and x′, y, z′′, respectively. Let P ′′

i , Q
′′
i , R

′′
i denote the unique

paths connecting w′′
i and x′′, y′′, z, respectively. Without loss of generality, let wi =

(ua, vi), w
′
i = (ub, vi) and w′′

i = (uc, vi). Then the trees Ti induced by the edges in
E(Pi) ∪ E(Q′

i) ∪ E(R′′
i ) ∪ {(ur, vi)(ur+1, vi) | a ≤ r ≤ b− 1} ∪ {(ur, vi)(ur+1, vi) | b ≤

r ≤ c − 1} (1 ≤ i ≤ �) are � internally disjoint pendant S-Steiner trees; see Figure
2.4 (a).

Suppose that two of x, y′, z′ are the same vertex in H(ua). Without loss of
generality, let x = y′. Since τ3(H) = �, it follows from Lemma 1.2 that κ(H) ≥
� + 1, and hence κ(H(ua)) ≥ � + 1, κ(H(ub)) ≥ � + 1 and κ(H(uc)) ≥ � + 1.
Then there exist � + 1 internally disjoint paths connecting x and z′ in H(ua), say
R1, R2, . . . , R�+1, and there exist �+1 internally disjoint paths connecting y and z′′ in
H(ub), say R′

1, R
′
2, . . . , R

′
�+1, and there exist �+1 internally disjoint paths connecting

x′′ and z in H(uc), say R′′
1 , R

′′
2, . . . , R

′′
�+1. Note that there is at most one path in

{R1, R2, . . . , R�+1}, say R�+1, such that its length is 1, and there is at most one path
in {R′

1, R
′
2, . . . , R

′
�+1}, say R′

�+1, such that its length is 1, and there is at most one
path in {R′′

1, R
′′
2, . . . , R

′′
�+1}, say R′′

�+1, such that its length is 1. For each i (1 ≤ i ≤ �),
there is an internal vertex wi in Ri, and there is an internal vertex w′

i in R′
i, and

there is an internal vertex w′′
i in R′′

i . Let Pi, Qi denote the unique path connecting
wi and x, z′, respectively. Let P ′

i , Q
′
i denote the unique path connecting w′

i and y, z′′,
respectively. Let P ′′

i , Q
′′
i denote the unique path connecting w′

i and x′′, z, respectively.
Without loss of generality, let wi = (ua, vi), w

′
i = (ub, vi) and w′′

i = (uc, vi). Then
the trees Ti induced by the edges in E(Pi)∪E(P ′

i )∪E(Q′′
i )∪ {(ur, vi)(ur+1, vi) | a ≤

r ≤ b − 1} ∪ {(ur, vi)(ur+1, vi) | b ≤ r ≤ c − 1} (1 ≤ i ≤ �) are � internally disjoint
pendant S-Steiner trees; see Figure 2.4 (b).
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Figure 2.4: Graphs for Lemma 2.4.

Suppose that x, y′, z′ are the same vertex in H(u1). Since τ3(H) = �, it follows
from Lemma 1.1 that δ(H) ≥ � + 2, and hence δ(H(ua)) ≥ � + 1, δ(H(ub)) ≥
� + 1 and δ(H(uc)) ≥ � + 1. Then there are � + 1 neighbors of x in H(ua), say
(ua, v1), (ua, v2), . . . , (ua, v�+1). By the same reason, there are � + 1 neighbors of y
in H(ub), say (ub, v1), (ub, v2), . . . , (ub, v�+1), and there are � + 1 neighbors of z in
H(uc), say (uc, v1), (uc, v2), . . . , (uc, v�+1). Then the tree Ti induced by the edges in
{x(ua, vi), y(ub, vi), z(uc, vi)} ∪ {(us, vi)(us+1, vi) | a ≤ s ≤ b− 1} ∪ {(us, vi)(us+1, vi) |
b ≤ s ≤ c− 1} is a pendant S-Steiner tree, where 1 ≤ i ≤ �+1. Therefore, the trees
T1, T2, . . . , T�+1 are �+ 1 internally disjoint pendant S-Steiner trees, as desired.

From Lemmas 2.2, 2.3 and 2.4, we conclude that, for any S ⊆ V (Pn�H), there
exist � internally disjoint pendant S-Steiner trees, and hence τPn�H(S) ≥ �. From the
arbitrariness of S, we have τ3(Pn�H) ≥ �. The proof of Proposition 2.1 is complete.

2.2 Cartesian product of two trees in G and two trees in H

In this subsection, we consider the pendant tree 3-connectivity of Cartesian product
of two trees in G and two trees in H , which is a preparation of the next subsection.

Proposition 2.5 Let G,H be two graphs. For S = {x, y, z} ⊆ V (G�H), we assume
that u1, u2, u3 are three vertices in V (G) such that x ∈ V (H(u1)), y ∈ V (H(u2)),
and z ∈ V (H(u3)). Let T1, T2 be two minimal pendant Steiner trees connecting
{u1, u2, u3} in G. Let y′, z′ be the vertices corresponding to y, z in H(u1). Let T ′

1, T
′
2

be two pendant Steiner trees connecting {x, y′, z′} in H(u1). Then

τ(T1∪T2)�(T ′
1∪T ′

2)
(S) ≥ 3.

Proof. Since T1, T2 are two minimal pendant Steiner trees connecting {u1, u2, u3}, it
follows that T1, T2 are subdivisions of K1,3 and hence have roots, say ur, us, respec-
tively. Note that x ∈ V (H(u1)), y ∈ V (H(u2)) and z ∈ V (H(u3)). Let y′, z′ be the
vertices corresponding to y, z in H(u1), x

′, z′′ be the vertices corresponding to x, z in
H(u2) and x′′, y′′ be the vertices corresponding to x, y in H(u3). Let x1, y1, z1 be the
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vertices in H(ur) corresponding to x, y′, z′ in H(u1), respectively, and let x2, y2, z2
be the vertices in H(us) corresponding to x, y′, z′ in H(u1), respectively.

• Let R1, R2, R3 be the three paths connecting ur and u1, u2, u3, respectively.

• Set R1 = u1p1p2 . . . paur, where pi ∈ V (G), 1 ≤ i ≤ a.

• Set R2 = u2p
′
1p

′
2 . . . p

′
bur, where p′i ∈ V (G), 1 ≤ i ≤ b.

• Set R3 = u3p
′′
1p

′′
2 . . . p

′′
cur, where p′′i ∈ V (G), 1 ≤ i ≤ c.

• Let R′
1, R

′
2, R

′
3 be the three paths connecting us and u1, u2, u3, respectively.

• Set R′
1 = u1q1q2 . . . qdus, where qi ∈ V (G), 1 ≤ i ≤ d.

• Set R′
2 = u2q

′
1q

′
2 . . . q

′
eus, where q′i ∈ V (G), 1 ≤ i ≤ e.

• Set R′
3 = u3q

′′
1q

′′
2 . . . q

′′
fus, where q′′i ∈ V (G), 1 ≤ i ≤ f .

We distinguish the following three cases to show this proposition.

Case 1. The vertices x, y′, z′ are distinct vertices in H(u1).

In order to show the structure of pendant S-Steiner trees clearly, we assume all
of the following.

• Let w, t be the roots of T ′
1, T

′
2, respectively.

• Let w′, w′′, w1, w2 be the vertices corresponding to w in H(u2), H(u3), H(ur),
H(us), respectively.

• Let t′, t′′, t1, t2 be the vertices corresponding to t in H(u2), H(u3), H(ur), H(us),
respectively.

• Let P1,1, P1,2, P1,3 be the three paths connecting w and x, y′, z′ in T ′
1, respectively.

• Let Q1,1, Q1,2, Q1,3 be the three paths connecting t and x, y′, z′ in T ′
2, respec-

tively.

• Let P2,j, P3,j, Pr,j, Ps,j (1 ≤ j ≤ 3) be the paths corresponding to P1,j in
H(u2), H(u3), H(ur), H(us), respectively.

• Let Q2,j , Q3,j , Qr,j, Qs,j (1 ≤ j ≤ 3) be the paths corresponding to Q1,j in
H(u2), H(u3), H(ur), H(us), respectively.

• Without loss of generality, let x = (u1, v1), y
′ = (u1, v2), z

′ = (u1, v3), w =
(u1, v4) and t = (u1, v5).

Let T be the S-Steiner tree induced by the edges in

E(P1,1) ∪ E(Pr,2) ∪ E(Pr,3)

∪{w(p1, v4)} ∪ {(pi, v4)(pi+1, v4) | 1 ≤ i ≤ a− 1} ∪ {(pa, v4)w1}
∪{y(p′1, v2)} ∪ {(p′i, v2)(p′i+1, v2) | 1 ≤ i ≤ b− 1} ∪ {(p′b, v2)y1}
∪{z(p′′1, v3)} ∪ {(p′′i , v3)(p′′i+1, v3) | 1 ≤ i ≤ c− 1} ∪ {(p′′c , v3)z1},
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and T ′ be the S-Steiner tree induced by the edges in

E(Qs,1) ∪ E(Q2,2) ∪ E(Q3,3)

∪{x(q1, v1)} ∪ {(qi, v1)(qi+1, v1) | 1 ≤ i ≤ d− 1} ∪ {(qd, v1)x2}
∪{t′(q′1, v5)} ∪ {(q′i, v5)(q′i+1, v5) | 1 ≤ i ≤ e− 1} ∪ {(q′e, v5)t2}
∪{t′′(q′′1 , v5)} ∪ {(q′′i , v5)(q′′i+1, v5) | 1 ≤ i ≤ f − 1} ∪ {(q′′c , v5)t2},

and T ′′ be the S-Steiner tree induced by the edges in
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Figure 2.5: Graphs for Case 1 of Proposition 2.5.

E(Ps,2) ∪ E(Q1,2) ∪ E(Q1,1) ∪ E(P2,2) ∪ E(P3,3)

∪{y′(q1, v2)} ∪ {(qi, v2)(qi+1, v2) | 1 ≤ i ≤ d− 1} ∪ {(qd, v2)y2}
∪{w′(q′1, v4)} ∪ {(q′i, v4)(q′i+1, v4) | 1 ≤ i ≤ e− 1} ∪ {(q′e, v4)w2}
∪{w′′(q′′1 , v4)} ∪ {(q′′i , v4)(q′′i+1, v4) | 1 ≤ i ≤ f − 1} ∪ {(q′′f , v4)w2}.

Since T, T ′, T ′′ are internally disjoint, it follows that

τ(T1∪T2)�(T ′
1∪T ′

2)
(S) ≥ 3,

as desired.

Case 2. Two of x, y′, z′ are the same vertex in H(u1).

Without loss of generality, let x = y′. Note that there are two paths P1, Q1

connecting x and z′ in T1, T2, respectively. Observe that the length of P1 is 1 but
the length of Q1 is at least 2, or the length of Q1 is 1 but the length of P1 is at least
2, or the lengths of Q1 and P1 are at least 2. We now assume that the length of P1

is at least 2. Then there exists an internal vertex in P1, say t, and hence t divides
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P1 into two paths, say P1,1, P1,2. In order to show the structure of pendant S-Steiner
trees clearly, we assume the following.

• Let x1, x2 be the vertices corresponding to x in H(ur), H(us), respectively.

• Let z1, z2 be the vertices corresponding to z′ in H(ur), H(us), respectively.

• Let t′, t′′, t1, t2 be the vertices corresponding to t in H(u2), H(u3), H(ur), H(us),
respectively.

• Without loss of generality, let x = (u1, v1), z
′ = (u1, v2) and t = (u1, v3).

• Let P2,j, P3,j, Pr,j, Ps,j (j = 1, 2) be the paths corresponding to P1,j in H(u2),
H(u3), H(ur), H(us), respectively.

• Let Q2, Q3, Qr, Qs be the paths corresponding to Q1 in H(u2), H(u3), H(ur),
H(us), respectively.

t2 z2

H(u1) H(u2)
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H(u3)

H(ur)

R1 R2

R3

R′
1

R′
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Figure 2.6: Graphs for Case 2 of Proposition 2.5.

Let T be the S-Steiner tree induced by the edges in

{x(p1, v1)} ∪ {(pi, v1)(pi+1, v1) | 1 ≤ i ≤ a− 1} ∪ {(pa, v1)x1}
∪{y(p′1, v1)} ∪ {(p′i, v1)(p′i+1, v1) | 1 ≤ i ≤ b− 1} ∪ {(p′b, v1)x1}
∪E(Qr) ∪ {z(p′′1, v2)} ∪ {(p′′i , v2)(p′′i+1, v2) | 1 ≤ i ≤ c− 1} ∪ {(p′′c , v2)z1},

and T ′ be the S-Steiner tree induced by the edges in

{x(q1, v1)} ∪ {(qi, v1)(qi+1, v1) | 1 ≤ i ≤ d− 1} ∪ {(qd, v1)x2}
∪{y(q′1, v1)} ∪ {(q′i, v1)(q′i+1, v1) | 1 ≤ i ≤ e− 1} ∪ {(q′e, v1)x2}
∪{x′′(q′′1 , v1)} ∪ {(q′′i , v1)(q′′i+1, v1) | 1 ≤ i ≤ f − 1} ∪ {(q′′f , v1)x2} ∪ E(Q3),
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and T ′′ be the S-Steiner tree induced by the edges in

E(P1,1) ∪ E(P2,1) ∪ E(P3,2)

∪{t(p1, v3)} ∪ {(pi, v3)(pi+1, v3) | 1 ≤ i ≤ a− 1} ∪ {(pa, v3)t1}
∪{t′(p′1, v3)} ∪ {(p′i, v3)(p′i+1, v3) | 1 ≤ i ≤ b− 1} ∪ {(p′b, v3)t1}
∪{t′′(p′′1, v3)} ∪ {(p′′i , v3)(p′′i+1, v3) | 1 ≤ i ≤ c− 1} ∪ {(p′′c , v3)t1}.

Since T, T ′, T ′′ are internally disjoint, it follows that

τ(T1∪T2)�(T ′
1∪T ′

2)
(S) ≥ 3,

as desired.

Case 3. x, y′, z′ are the same vertex in H(u1).

Let w, t be the neighbors of x in T ′
1, T

′
2, respectively. Let w

′, w′′, w1, w2 be the ver-
tices corresponding to w in H(u2), H(u3), H(ur), H(us), respectively. Let t′, t′′, t1, t2
be the vertices corresponding to t in H(u2), H(u3), H(ur), H(us), respectively. With-
out loss of generality, let x = (u1, v1), w = (u1, v2) and t = (u1, v3).

w2

t2

H(u1) H(u2)
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Figure 2.7: Graphs for Case 3 of Proposition 2.5.

Let T be the S-Steiner tree induced by the edges in

{x(p1, v1)} ∪ {(pi, v1)(pi+1, v1) | 1 ≤ i ≤ a− 1} ∪ {(pa, v1)x1}
∪{y(p′1, v1)} ∪ {(p′i, v1)(p′i+1, v1) | 1 ≤ i ≤ b− 1} ∪ {(p′b, v1)x1}
∪{z(p′′1, v1)} ∪ {(p′′i , v1)(p′′i+1, v1) | 1 ≤ i ≤ c− 1} ∪ {(p′′c , v1)x1},
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and T ′ be the S-Steiner tree induced by the edges in

{x(q1, v1)} ∪ {(qi, v1)(qi+1, v1) | 1 ≤ i ≤ d− 1} ∪ {(qd, v1)x2}
∪{y(q′1, v1)} ∪ {(q′i, v1)(q′i+1, v1) | 1 ≤ i ≤ e− 1} ∪ {(q′e, v1)x2}
∪{z(q′′1 , v1)} ∪ {(q′′i , v1)(q′′i+1, v1) | 1 ≤ i ≤ f − 1} ∪ {(q′′f , v1)x2},

and T ′′ be the S-Steiner tree induced by the edges in

{xw,w(q1, v2)} ∪ {(qi, v2)(qi+1, v2) | 1 ≤ i ≤ d− 1} ∪ {(qd, v2)w2}
∪{w′′(q′′1 , v2)} ∪ {(q′′i , v2)(q′′i+1, v2) | 1 ≤ i ≤ f − 1} ∪ {(q′′f , v2)w2}
∪{w′′z, zt′′, t′′(p′′1, v3)} ∪ {(p′′i , v3)(p′′i+1, v3) | 1 ≤ i ≤ c− 1} ∪ {(p′′c , v3)t1}
∪{yt′, t′(p′1, v3)} ∪ {(p′i, v3)(p′i+1, v3) | 1 ≤ i ≤ b− 1} ∪ {(p′′b , v3)t1}.

Since T, T ′, T ′′ are internally disjoint, we have

τ(T1∪T2)�(T ′
1∪T ′

2)
(S) ≥ 3,

as desired.

From the above argument, there exist three internally disjoint pendant S-Steiner
trees, which implies τT�H(S) ≥ 3. The proof is now complete.

2.3 Cartesian product of two general graphs

After the above preparations, we are ready to prove Theorem 1.4 in this subsection.

Proof of Theorem 1.4: Suppose τ3(G) = k and τ3(H) = �. Assume without loss of
generality k ≤ �. If � = 0 or k = 0 then the result follows. So we assume that k ≥ 1
and � ≥ 1. Recall that V (G) = {u1, u2, . . . , un}, V (H) = {v1, v2, . . . , vm}. From the
definition of τ3(G�H) and the symmetry of Cartesian product graphs, we need to
prove that τG�H(S) ≥ 3�k/2	 for any S = {x, y, z} ⊆ V (G�H). Furthermore, it
suffices to show that there exist 3�k/2	 internally disjoint pendant S-Steiner trees
in G�H . Clearly, V (G�H) =

⋃n
i=1 V (H(ui)). Without loss of generality, let x ∈

V (H(ui)), y ∈ V (H(uj)) and z ∈ V (H(uk)).

Case 1. The vertices x, y, z belong to the same V (H(ui)) (1 ≤ i ≤ n).

Without loss of generality, let x, y, z ∈ V (H(u1)). From Lemma 1.1, δ(G) ≥
τ3(G) + 2 = k + 2 and hence the vertex u1 has at least k + 2 neighbors in G.
Select k + 2 neighbors from them, say u2, u3, . . . , uk+3. Without loss of generality,
let x = (u1, v1), y = (u1, v2) and z = (u1, v3). Note that there is a pendant Steiner
tree T ′

i connecting {(ui, v1), (ui, v2), (ui, v3)}. Then the tree induced by the edges in
E(T ′) ∪ {x(ui, v1), y(ui, v2), z(ui, v3)} are k + 2 internally disjoint pendant S-Steiner
trees in G�H , which contain no edge of H(u1). Since τ3(H) = �, it follows that
there are � internally disjoint pendant S-Steiner trees in H(u1). Observe that these
� pendant S-Steiner trees and the trees Ti (2 ≤ i ≤ k +3) are internally disjoint. So
the total number of internally disjoint pendant S-Steiner trees is k+ �+2 > 3�k/2	,
as desired.
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Case 2. Only two vertices of {x, y, z} belong to some copy H(uj) (1 ≤ j ≤ n).

Without loss of generality, let x, y ∈ H(u1) and z ∈ H(u2). From Lemma 1.2,
κ(G) ≥ τ3(G) + 1 = k + 1 and hence there exist k + 1 internally disjoint paths
connecting u1 and u2 in G, say P1, P2, . . . , Pk+1. Clearly, there exists at most one of
P1, P2, . . . , Pk+1, say Pk+1, such that Pk+1 = u1u2. We may assume that the length
of Pi (1 ≤ i ≤ k) is at least 2. From Proposition 2.1, there exist � internally disjoint
pendant S-Steiner trees in Pk+1�H , say T1, T2, . . . , T�. For each Pi (1 ≤ i ≤ k), since
Pi is a path of length at least 2, it follows that there exists an internal vertex in Pi,
say ui. Let Qi, Ri be the two paths connecting ui and u1, u2 in Pi, respectively. Set
Qi = u1, u

′
1, u

′
2, . . . , u

′
s, ui and Ri = u2, u

′′
1, u

′′
2, . . . , u

′′
t , ui. In the following argument,

we can see that this assumption has no impact on the correctness of our proof. Let
x′, y′ be the vertices corresponding to x, y in H(u2), z

′ be the vertex corresponding
to z in H(u1), and x′′, y′′, z′′ be the vertices corresponding to x, y, z in H(ui).

Suppose z′ �∈ {x, y}. Without loss of generality, let x = (u1, v1), y = (u1, v2)
and z = (u2, v3). Since τ3(H) = � ≥ 1, it follows that there is a pendant Steiner
tree connecting {x′′, y′′, z′′} in H(ui), say T i. Furthermore, the tree T ′

i (1 ≤ i ≤ k)
induced by the edges in

E(T i) ∪ {x(u′
1, v1)} ∪ {(u′

j, v1)(u
′
j+1, v1) | 1 ≤ j ≤ s} ∪ {x′′(u′

s, v1)} ∪ {y(u′
1, v2)}

∪{(u′
j, v2)(u

′
j+1, v2) | 1 ≤ j ≤ s} ∪ {x′′(u′

s, v2)} ∪ {z(u′′
1, v3)}

∪{(u′′
j , v2)(u

′′
j+1, v2) | 1 ≤ j ≤ t} ∪ {z′′(u′′

s , v3)}

is a pendant S-Steiner tree. Obviously, the trees T1, T2, . . . , T�, T
′
1, T

′
2, . . . , T

′
k are

k + � ≥ 3�k/2	 internally disjoint pendant S-Steiner trees.

Suppose z′ ∈ {x, y}. Without loss of generality, let z′ = x, x = (u1, v1), y =
(u1, v2). Then z = (u2, v1). Since τ3(H) ≥ 1, it follows that there is a path connecting
x′′ and y′′, say P ′. Furthermore, the tree T ′

i (1 ≤ i ≤ k) induced by the edges in

E(P ′) ∪ {x(u′
1, v1)} ∪ {(u′

j, v1)(u
′
j+1, v1) | 1 ≤ j ≤ s} ∪ {x′′(u′

s, v1)} ∪ {y(u′
1, v2)}

∪{(u′
j , v2)(u

′
j+1, v2) | 1 ≤ j ≤ s} ∪ {x′′(u′

s, v2)} ∪ {z(u′′
1, v3)}

∪{(u′′
j , v2)(u

′′
j+1, v2) | 1 ≤ j ≤ t} ∪ {z′′(u′′

s , v3)}

is a pendant S-Steiner tree. Obviously, the trees T1, T2, . . . , T�, T
′
1, T

′
2, . . . , T

′
k are

k + � ≥ 3�k/2	 internally disjoint pendant S-Steiner trees.

Case 3. The vertices x, y, z are contained in distinct H(ui)s.

Without loss of generality, let x ∈ V (H(u1)), y ∈ V (H(u2)) and z ∈ V (H(u3)).
Since τ3(G) = k, it follows that there exist k internally disjoint pendant Steiner
trees connecting {u1, u2, u3} in G, say T1, T2, . . . , Tk. Let y

′, z′ be the vertices corre-
sponding to y, z in H(u1), x

′, z′′ be the vertices corresponding to x, z in H(ui) and
x′′, y′′ be the vertices corresponding to x, y in H(uj). Since τ3(H) = �, it follows that
there exist � internally disjoint pendant Steiner trees connecting {x, y′, z′} in H(u1),
say T ′

1, T
′
2, . . . , T

′
�. Note that

⋃k
i=1 Ti is a subgraph of G,

⋃�
j=1 T

′
j is a subgraph of

H , and (
⋃k

i=1 Ti)�(
⋃�

j=1 T
′
j) is a subgraph of G�H . From Proposition 2.5, for any

Ti, Tj (1 ≤ i �= j ≤ k) and any T ′
r, T

′
s (1 ≤ r �= s ≤ �), (Ti ∪ Tj)�(Tr ∪ Ts) contains
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internally disjoint pendant S-Steiner trees. Since k ≤ �, there exist 3�k/2	 internally
disjoint pendant S-Steiner trees in (

⋃k
i=1 Ti)�(

⋃�
j=1 T

′
j), and hence there are 3�k/2	

internally disjoint pendant S-Steiner trees in G�H .

From the above argument, we conclude, for any S ⊆ V (G�H), that

τG�H(S) ≥ τ(
⋃k

i=1 Ti)�(
⋃�

j=1 T
′
j)
(S) ≥ 3�k/2	,

which implies that τ3(G�H) ≥ 3�k/2	 = 3�τ3(G)/2	. The proof is complete.

3 Applications

In this section, we demonstrate the usefulness of the proposed constructions by ap-
plying them to some instances of Cartesian product networks.

Given a vertex x and a set U of vertices, an (x, U)-fan is a set of paths from x
to U such that any two of them share only the vertex x. The size of an (x, U)-fan is
the number of internally disjoint paths from x to U .

Lemma 3.1 (Fan Lemma, [39], p. 170) A graph is k-connected if and only if it has
at least k+1 vertices and, for every choice of x, U with |U | ≥ k, it has an (x, U)-fan
of size k.

In [38], S̆pacapan obtained the following result.

Lemma 3.2 [38] Let G and H be two nontrivial graphs. Then

κ(G�H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G) + δ(H)}.

3.1 Grid graph, mesh, and torus

A two-dimensional grid graph Gn,m that is the Cartesian product Pn�Pm of path
graphs on m and n vertices. For more details on grid graph, we refer to [3, 16].

Proposition 3.3 Let n and m be two integers with n ≥ 3, m ≥ 3. The network
Pn�Pm has no pendant Steiner tree connecting any three nodes.

Proof. From Theorem 1.4, we have τ3(Pn�Pm) ≥ 3� τ3(Pn)
2

	+3� τ3(Pm)
2

	 = 0. Choose
a vertex of degree 2 in Pn�Pm, say x. Let y, z be two neighbors of x. Then there is
no pendant Steiner tree connecting {x, y, z}. Therefore, τ3(Pn�Pm) = 0.

Remark 3.1. For Pn�Pm (n ≥ 3, m ≥ 3), τ3(Pn�Pm) = 0 = 3� τ3(Pn)
2

	 + 3� τ3(Pm)
2

	.
So the graph Pn�Pm is a sharp example of Theorem 1.4.

An n-dimensional mesh is the Cartesian product of n paths. By this definition,
two-dimensional grid graph is a 2-dimensional mesh. An n-dimensional hypercube is
a special case of an n-dimensional mesh, in which the n linear arrays are all of size
2; see [18].
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Corollary 3.4 Let k be a positive integer with k ≥ 3. For n-dimensional mesh
Pm1�Pm2 � · · ·�Pmn,

0 ≤ τk(Pm1�Pm2� · · ·�Pmn) ≤ n− k + 2.

Proof. From Lemma 3.2, κ(Pm1�Pm2� . . .�Pmn) ≤ δ(Pm1�Pm2� . . .�Pmn−1)
+ δ(Pmn) = n, and hence

0 ≤ τk(Pm1�Pm2� · · ·�Pmn) ≤ n− k + 2

by Lemma 1.2.

An n-dimensional torus is the Cartesian product of n cycles Cm1 , Cm2 , · · · , Cmn

of size at least three. The cycles Cmi
are not necessary to have the same size. Ku

et al. [19] showed that there are n edge-disjoint spanning trees in an n-dimensional
torus.

Proposition 3.5 Let k be a positive integer with k ≥ 3. For network Cm1�Cm2� · · ·
�Cmn ,

1 ≤ τk(Cm1�Cm2� · · ·�Cmn) ≤ 2n− k + 2,

where mi is the order of Cmi
and 1 ≤ i ≤ n.

Proof. Set G = Cm1�Cm2� · · ·�Cmn . From Lemma 3.2, we have κ(G) = 2n, and
hence

τk(G) ≤ 2n− k + 2

by Lemma 1.2. Since κ(G) = 2n > k, it follows from Lemma 3.1 that there is at
least one pendant S-Steiner tree for any S ⊆ V (G) and |S| = k, and hence

1 ≤ τk(Cm1�Cm2� · · ·�Cmn) ≤ 2n− k + 2,

as desired.

3.2 Generalized hypercube and hyper Petersen network

Let Km be a clique of m vertices, m ≥ 2. An n-dimensional generalized hypercube
[8, 10] is the product of m cliques. We have the following:

Proposition 3.6 Let k be a positive integer with k ≥ 3. For network Km1�Km2�
· · ·�Kmn where mi ≥ k (1 ≤ i ≤ n),

τk(Km1�Km2� · · ·�Kmn) ≤
n∑

i=1

mi − n− k + 2.
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Proof. From Lemma 3.2, we have κ(Km1�Km2� · · ·�Kmn) =
∑n

i=1mi − n, and
hence

τk(Km1�Km2� · · ·�Kmn) ≤
n∑

i=1

mi − n− k + 2

by Lemma 1.2.

An n-dimensional hyper Petersen network HPn is the product of the well-known
Petersen graph and Qn−3 [7], where n ≥ 3 and Qn−3 denotes an (n− 3)-dimensional
hypercube. Note that HP3 is just the Petersen graph.

Proposition 3.7 (a) The network HP3 has one pendant Steiner tree connecting any
three nodes.

(b) The network HP4 has two internally disjoint pendant Steiner trees connect-
ing any three nodes. The number of internally disjoint pendant Steiner trees is the
maximum.

Proof. (a) Note that HP3 is just the Petersen graph. Set G = HP3. Since δ(G) = 3,
it follows that τ3(G) ≤ 1 by Lemma 1.1. From Lemma 3.1, there exists an (x, S)-fan
for any S ⊆ V (G) and |S| = 3, where x ∈ V (G) \ S. Thus τ(S) ≥ 1, and hence
τ3(G) = 1, that is, HP3 has one pendant Steiner tree connecting any three nodes.

(b) Since δ(G) = 4, it follows from Lemma 1.1 that τ3(HP4) ≤ 2. One can check
that for any S ⊆ V (G) and |S| = 3, τ(S) ≥ 2. So τ3(G) = 2.

4 Concluding Remarks

In this paper, we have proved that τ3(G�H) ≥ min{3� τ3(G)
2

	, 3� τ3(H)
2

	} for any two
connected graphs G and H . For general k, we can propose the following problem:
Give exact value or sharp upper and lower bounds of τk(G ∗H), where ∗ is a kind of
graph products.
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