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Abstract

Let G be a graph and f : V (G) → N be a function. An f -coloring of a
graph G is an edge coloring such that each color appears at each vertex
v ∈ V (G) at most f(v) times. The minimum number of colors needed to
f -color G is called the f -chromatic index of G and is denoted by χ′

f (G).
It was shown that for every graph G, Δf(G) ≤ χ′

f(G) ≤ Δf (G) + 1,

where Δf (G) = maxv∈V (G)�dG(v)
f(v)

�. A graph G is said to be f -Class 1
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if χ′
f (G) = Δf(G), and f -Class 2, otherwise. Also, GΔf

is the induced

subgraph of G on {v ∈ V (G) : dG(v)
f(v)

= Δf (G)}. In this paper, we show

that if G is a connected graph with Δ(GΔf
) ≤ 2 and G has an edge cut

of size at most Δf(G)− 2 which is a star, then G is f -Class 1. Also, we
prove that if G is a connected graph and every connected component of
GΔf

is a unicyclic graph or a tree and GΔf
is not 2-regular, then G is

f -Class 1. Moreover, we show that except one graph, every connected
claw-free graph G whose f -core is 2-regular with a vertex v such that
f(v) �= 1 is f -Class 1.

1 Introduction

All graphs considered in this paper are simple and finite. Let G be a graph. The
number of vertices of G is called the order of G and is denoted by |G|. Also, V (G)
and E(G) denote the vertex set and the edge set of G, respectively. The degree of a
vertex v in G is denoted by dG(v) and NG(v) denotes the set of all vertices adjacent
to v. Moreover, for S ⊆ V (G), we denote the neighbor set of S in G by NG(S).
Also, let Δ(G) and δ(G) denote the maximum degree and the minimum degree of G,
respectively. A star graph is a graph containing a vertex adjacent to all other vertices
and with no extra edges. A matching in a graph is a set of pairwise non-adjacent
edges. An edge cut is a set of edges whose removal produces a subgraph with more
connected components than the original graph. If the edge cut is the edge set of a
star, then we call it star cut. Moreover, a graph is k-edge connected if the minimum
number of edges whose removal would disconnect the graph is at least k. We mean
G \H , the induced subgraph on V (G) \ V (H). For two subsets S and T of V (G),
where S ∩T = ∅, eG(S, T ) denotes the number of edges with one end in S and other
end in T . For a subset X ⊆ V (G), we denote the induced subgraph of G on X by
〈X〉. An induced K1,3 is called a claw. A graph is called claw-free if it contains no
claw. Moreover, a graph G is called a unicyclic graph if it is connected and contains
exactly one cycle.

A k-edge coloring of a graph G is a function f : E(G) −→ L, where |L| = k
and f(e1) �= f(e2), for every two adjacent edges e1, e2 of G. The minimum number
of colors needed to color the edges of G is called the chromatic index of G and is
denoted by χ′(G). Vizing [6] proved that Δ(G) ≤ χ′(G) ≤ Δ(G) + 1, for any graph
G. A graph G is said to be Class 1 if χ′(G) = Δ(G) and Class 2 if χ′(G) = Δ(G)+1.
A graph G is called critical if G is connected, Class 2 and χ′(G\e) < χ′(G), for every
edge e ∈ E(G). Also, GΔ is the induced subgraph on all vertices of degree Δ(G).

For a function f which assigns a positive integer f(v) to each vertex v ∈ V (G),
an f -coloring of G is an edge coloring of G such that each vertex v has at most f(v)
edges colored with the same color. The minimum number of colors needed to f -color
G is called the f -chromatic index of G, and denoted by χ′

f (G). For a graph G, if
f(v) = 1 for all v ∈ V (G), then the f -coloring of G is reduced to the proper edge

coloring of G. Let Δf (G) = maxv∈V (G)�dG(v)
f(v)

�. A graph G is said to be f -Class 1 if
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χ′
f (G) = Δf (G) and f -Class 2, otherwise. Also, we say that G has a Δf (G)-coloring

if G is f -Class 1. A vertex v is called an f -maximum vertex if dG(v) = f(v)Δf(G).
A graph G is called f -critical if G is connected, f -Class 2 and χ′

f (G \ e) < χ′
f (G),

for every edge e ∈ E(G). The f -core of a graph G is the induced subgraph of G on
the f -maximum vertices and denoted by GΔf

. The following example presents an
f -Class 1 graph.

Example 1.1 Let G be a graph represented in Figure 1 with f(v1) = f(v2) = 2 and
f(vi) = 1, for i = 3, . . . , 7. It is easy to see that Δf (G) = 2 and GΔf

= K3. Now,
by assigning color α to the edges {v1v6, v1v5, v2v3, v2v4} and color β to the edges
{v1v2, v1v7, v2v5}, one can see that G is f -Class 1.

1
v 2

v

3
v

4
v

5
v

6
v

7
v

Figure 1: An f -Class 1 graph

In [3], Hakimi and Kariv obtained the following three results.

Theorem 1.1 [3] Let G be a graph. Then

Δf (G) ≤ χ′
f (G) ≤ maxv∈V (G)�dG(v) + 1

f(v)
� ≤ Δf (G) + 1.

Theorem 1.2 [3] Let G be a bipartite graph. Then G is f -Class 1.

Theorem 1.3 [3] Let G be a graph and f(v) be even, for all v ∈ V (G). Then G is
f -Class 1.

The following result is due to Zhang and Liu, who gave a series of sufficient
conditions for a graph G to be f -Class 1 based on the f -core of G.

Theorem 1.4 [8] Let G be a graph. If GΔf
is a forest, then G is f -Class 1.

In [5], some properties of f -critical graphs are given. In the following, we review
one of them.

Theorem 1.5 For every vertex v of an f -critical graph G, v is adjacent to at least
2f(v) f -maximum vertices and G contains at least three f -maximum vertices.

There are some results on proper edge colorings of graphs as follows:
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Theorem 1.6 [4] Let G be a connected Class 2 graph with Δ(GΔ) ≤ 2. Then:

1. G is critical;

2. δ(GΔ) = 2;

3. δ(G) = Δ(G)− 1, unless G is an odd cycle.

Theorem 1.7 [1] Let G be a connected graph such that Δ(GΔ) ≤ 2. Suppose that
G has an edge cut of size at most Δ(G)− 2 which is a matching or a star. Then G
is Class 1.

Theorem 1.8 [1] Let G be a connected graph. If every connected component of GΔ

is a unicyclic graph or a tree and GΔ is not 2-regular, then G is Class 1.

Theorem 1.9 [9] If G is a connected f -Class 2 graph with Δ(GΔf
) ≤ 2, then

(i) G is f -critical;

(ii) δ(GΔf
) = 2;

(iii) V (G) = NG(V (GΔf
));

(iv) f(v) = 1 for all v ∈ V (GΔf
);

(v) dG(v) = f(v)Δf(G)− 1, for each v ∈ V (G) \ V (GΔf
).

Theorem 1.10 [2] Let G be a connected graph such that Δ(GΔf
) ≤ 2. Suppose that

G has an edge cut of size at most Δf(G)−2 which is a matching. Then G is f -Class
1 and G has a Δf (G)-coloring in which the edges of the edge cut have different colors.

In this paper, we generalize Theorems 1.7 and 1.8 to f -coloring of graphs. More-
over, we show that, with the exception of one graph, every connected claw-free graph
G whose f -core is 2-regular and a vertex v, such that f(v) �= 1 for some, is f -Class 1.

2 Results

In this section, we generalize Theorems 1.7 and 1.8 and we obtain some results in
f -coloring of claw-free graphs whose f -core is 2-regular. First we want to prove that
if a connected graph G with Δ(GΔf

) ≤ 2 has an edge cut of size at most Δf (G)− 2
which is a star, then G is f -Class 1. To do this, we need the following two lemmas.

Lemma 2.1 [2] Let G be a connected graph with Δ(GΔf
) ≤ 2. Suppose that F =

{uv1, . . . , uvk}, k ≤ Δf(G) − 2, is an edge cut of G and f(u) = 1. Then G is
f -Class 1.

Lemma 2.2 Let G be a graph. If GΔf
= ∅, then G is f -Class 1.

Proof. Let v ∈ V (G) be a vertex such that Δf (G) = �dG(v)
f(v)

�. Let H be the graph

obtained from G by adding (�dG(v)
f(v)

� − dG(v)
f(v)

)f(v) new vertices, all adjacent to v. Let

f ′ : V (H) −→ N be a function defined by
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f ′(z) =

{
f(z) z ∈ V (G),

1 z ∈ V (H) \ V (G).

Clearly, |V (HΔf
)| = 1 and Δf (H) = Δf(G). Now, by Theorem 1.4, H is f -Class 1

and so is G. �

The following theorem together with Theorem 1.10 generalizes Theorem 1.7.

Theorem 2.1 Let G be a connected graph, Δf(G) ≥ 3 and Δ(GΔf
) ≤ 2. Suppose

that G has a star cut of size at most Δf (G)− 2. Then G is f -Class 1.

Proof. Let F = {uv1, . . . , uvk} be a minimal star cut of G. If k = 1, we are done
by Theorem 1.10. Next, we assume that 2 ≤ k ≤ Δf (G) − 2. Also, let X be the
vertex set of the connected component of G \F containing u and let Y be V (G) \X.
Let G1 and G2 be the induced subgraphs on X and Y , respectively. Then u ∈ V (G1)
and vi ∈ V (G2), for i = 1, . . . , k. By Lemma 2.1 we can assume that f(u) ≥ 2. For
a contradiction assume that G is f -Class 2. Since Δ(GΔf

) ≤ 2, by Theorem 1.9, we
get that G is f -critical, and because f(u) ≥ 2, by Theorem 1.5, we conclude that
u �∈ V (GΔf

). Thus by Theorem 1.9, dG(u) = f(u)Δf(G) − 1 ≥ 2Δf (G) − 1. Let
NG1(u) = {w1, . . . , wt}. This means that t ≥ Δf (G) + 1. By the minimality of F ,
we can assume that for every component S of G1 \ {u}, we have |NG1(u) ∩ V (S)| ≥
k ≥ 2. Let D be one of the components of G1 \ {u} such that w1, wt ∈ V (D). Add
two new vertices x and y to G1 \ {u} and join x and y to {w1, . . . , wΔf (G)−k} and
{wΔf (G)−k+1, . . . , wt}, respectively. Then call the resultant graph by H . Clearly,
dH(x) = Δf (G) − k and dH(y) = t − (Δf(G) − k) = (dG(u) − k) − (Δf (G) − k) =
dG(u)−Δf(G). Also, add a new vertex z to G2 and join it to {v1, . . . , vk} and call
it by K. Let f ′ : V (H ∪K) −→ N be a function defined by

f ′(v) =

⎧⎪⎨
⎪⎩
f(v) v ∈ V (G),

1 v ∈ {x, z},
f(u)− 1 v = y.

Note that H and K are connected. Moreover, max{Δf ′(H),Δf ′(K)} ≤ Δf (G),
because

dG(v)
f ′(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dG(v)
f(v)

≤ Δf (G) v ∈ V (G),

Δf (G)− k < Δf (G) v = x,

k ≤ Δf (G)− 2 < Δf (G) v = z,
dG(u)−Δf (G)

f(u)−1
=

f(u)Δf (G)−1−Δf (G)

f(u)−1
< Δf (G) v = y.

and since |V (Gi)∩V (GΔf
)| ≥ 2, for i = 1, 2, Δf ′(H) = Δf ′(K) = Δf (G). Moreover,

note that by adding the new vertices x, y and z, dH(v) = dG(v) and dK(v) = dG(v)
for every v ∈ V (G) \ {u}. This implies that Δ(HΔf ′ ) = Δ(KΔf ′ ) = Δ(GΔf

).
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We claim that both H and K are f ′-Class 1. Note that if H is f ′-Class 2, then
by Theorem 1.9, dH(x) = f ′(x)Δf ′(H) − 1 = Δf (G) − 1, but dH(x) = Δf (G) −
k ≤ Δf (G) − 2, a contradiction. So, there exists an f ′-coloring φ of H by colors
{1, . . . ,Δf ′(H)}. Similarly, there is an f ′-coloring θ of K by colors {1, . . . ,Δf ′(K)}
and the claim is proved.

By a suitable permutation of colors, one may assume that

{φ(xw1), . . . , φ(xwΔf (G)−k), θ(zv1), . . . , θ(zvk)}
are distinct. Now, define an f -coloring c : E(G) −→ {1, . . . ,Δf(G)} as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c(e) = φ(e) for every e ∈ E(G1 \ {u}),
c(e′) = θ(e′) for every e′ ∈ E(G2),

c(uvi) = θ(zvi) for i = 1, . . . , k,

c(uwi) = φ(xwi) for i = 1, . . . ,Δf(G)− k,

c(uwi) = φ(ywi) for i = Δf (G)− k + 1, . . . , t.

Since f ′(y) = f(u)− 1, we conclude that G is f -Class 1 which is a contradiction and
the proof is complete. �

Now, we want to prove another result on f -coloring of graphs which classifies
some families of f -Class 1 graphs. We need the following lemma subsequently.

Lemma 2.3 [7] Let C denote the set of colors available to color the edges of a simple
graph G. Suppose that e = uv is an uncolored edge in G, and graph G \ {e} is f -
colored with the colors in C. If for every neighbor x of either u or v, there exists
a color αx which appears at most f(x) − 1 times at vertex x, then there exists an
f -coloring of G using colors of C.

In fact the following result can be derived either from the main result in [7] and
Theorem 1.9, or from the main result of [9]. We give a proof here, which is distinct
from the above.

Theorem 2.2 Let G be a connected graph. If every connected component of GΔf
is

a unicyclic graph or a tree and GΔf
is not 2-regular, then G is f -Class 1.

Proof. First suppose that Δ(GΔf
) ≤ 2. For a contradiction, assume that G is

f -Class 2. By Theorem 1.9, GΔf
is 2-regular, which is a contradiction. So one may

suppose that Δ(GΔf
) ≥ 3. Now the proof is by induction on m = |E(GΔf

)|. Since
Δ(GΔf

) ≥ 3, we have m ≥ 3. First assume that m = 3. Since GΔf
is not 2-regular

and Δ(GΔf
) ≥ 3, we have GΔf

= K1,3. Now, by Theorem 1.4, G is f -Class 1 and
we are done.

Now let G be a graph and let t = |E(GΔf
)|. Assume that the assertion holds for

all graphs with fewer than m edges, where m < t. Note that since Δ(GΔf
) ≥ 3 and
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GΔf
is not 2-regular, there exists an edge e = uv ∈ E(GΔf

) such that dGΔf
(v) = 1

and dGΔf
(u) ≥ 2. Let H = G \ {e} with the function f : V (G) → N. We would like

to show that H is f -Class 1. Two cases may occur.

First assume that H is connected. If Δ(HΔf
) ≥ 3, then by the induction hypoth-

esis we are done. If Δ(HΔf
) ≤ 2 and HΔf

is not 2-regular, then by Theorem 1.9,
H is f -Class 1. Thus assume that HΔf

is 2-regular. Note that by deleting the edge
e = uv, it is not hard to see that since Δ(GΔf

) ≥ 3, GΔf
is a disjoint union of some

cycles and the graph shown in the following figure:

Figure 2: A part of GΔf

Now, by Theorem 1.9, H is f -critical and so by Theorem 1.5, u should have at
least two neighbors in HΔf

, a contradiction.

Next assume thatH is not connected. Let P and Q be two connected components
of H such that u ∈ V (P ) and v ∈ V (Q). Since dGΔf

(u) ≥ 2, we have Δf (P ) =

Δf (G). Now, if Δ(PΔf
) ≥ 3, then by the induction hypothesis, P is f -Class 1. If

Δ(PΔf
) ≤ 2 and PΔf

is not 2-regular, then by Theorem 1.9, P is f -Class 1. Thus
assume that PΔf

is 2-regular. Then it is not hard to see that GΔf
is the disjoint union

of some unicycles, trees and the graph shown in the Figure 2. Now, by Theorem 1.9,
P is f -critical and so by Theorem 1.5, u should have at least two neighbors in PΔf

,
a contradiction and P is f -Class 1. Now, we want to show that Q is f -Class 1, too.
First note that if Δf(Q) < Δf (G), then by Theorem 1.1, Q has an f -coloring with
colors {1, . . . ,Δf(G)}. So, assume that Δf (Q) = Δf (G). Now, if QΔf

= ∅, then by
Theorem 2.2, Q is f -Class 1. If Δ(QΔf

) ≥ 3, then Q is f -Class 1 by the induction
hypothesis. Thus, we can assume that Δ(QΔf

) ≤ 2. Now, if QΔf
is not 2-regular,

then by Theorem 1.9, Q is f -Class 1. Thus assume that QΔf
is 2-regular. Then it is

not hard to see that GΔf
is the disjoint union of some unicycles, trees and the graph

shown in the Figure 2. Now, by Theorem 1.9, Q is f -critical and so by Theorem 1.5,
v should have at least two neighbors in QΔf

, a contradiction and Q is f -Class 1.
Now, since for every x ∈ NG(v) \ {u}, we have x �∈ V (GΔf

), there exists a color αx

which appears at most f(x)− 1 times in x and so by Lemma 2.3, G is f -Class 1 and
we are done. �

Theorem 2.3 Let G be a connected claw-free graph with Δ(GΔf
) ≤ 2. If there exists

a vertex v ∈ V (G) such that f(v) �= 1 and G �= W , where W is the graph shown in
Figure 3, then G is f -Class 1.

Proof. For a contradiction assume that G is f -Class 2. Then by Theorem 1.9,
G is f -critical and GΔf

is 2-regular. Now, by Theorem 1.5, f(u) = 1, for every
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Figure 3: The graph W (the value of each vertex z denotes f(z))

u ∈ V (GΔf
) and so by the definition we have

dG(u) = Δf(G), for every u ∈ V (GΔf
). (1)

Note that, if Δf(G) = 2, then since G is connected and GΔf
is 2-regular, G = GΔf

and there is no vertex v with f(v) �= 1. Thus we can assume that

Δf (G) ≥ 3. (2)

Let H = G \ GΔf
. Now, if |NGΔf

(x)| ≥ 7, for some x ∈ V (H), then clearly there

exists an independent set of size 3 in NGΔf
(x) which implies that G has a claw, a

contradiction. Thus we have

|NGΔf
(x)| ≤ 6, for every x ∈ V (H). (3)

Now, to prove the theorem, first we need the following claim:

Claim 1. f(z) ≤ 2, for every z ∈ V (G).

Proof of Claim 1. To see this for a contradiction, assume that there exists a vertex
z ∈ V (G) such that f(z) ≥ 3. By Theorem 1.5, for every u ∈ V (GΔf

), f(u) = 1.
Thus, z ∈ V (H). Now, by (3) and Theorem 1.5, we conclude that |NGΔf

(z)| = 6 and

f(z) = 3. Then by Theorem 1.9, dG(z) = 3Δf(G) − 1 and so dH(z) = 3Δf (G)− 7.
Now, we want to show that for every w ∈ NH(z),

|NGΔf
(w) ∩NGΔf

(z)| ≥ 3.

Suppose otherwise and note that there are at least 4 vertices, say u1, u2, u3, u4 ∈
NGΔf

(z), such that wui �∈ E(G), for i = 1, . . . , 4. Since GΔf
is 2-regular, with no

loss of generality, we can assume that u1u2 �∈ E(G). Then 〈{u1, u2, w, z}〉 is a claw, a
contradiction. Thus, we conclude that for every w ∈ NH(z), |NGΔf

(w)∩NGΔf
(z)| ≥ 3

and so eG(NGΔf
(z), NH(z)) ≥ 3(3Δf(G)−7). Moreover, since for every u ∈ V (GΔf

),

dG(u) = Δf (G), we conclude that eG(NGΔf
(z), NH(z)) ≤ 6(Δf (G) − 3). Thus,

3(3Δf (G)−7) ≤ eG(NGΔf
(z), NH(z)) ≤ 6(Δf(G)−3), which yields that Δf (G) ≤ 1,

a contradiction and the claim is proved.

Now, by the assumption of the theorem and Claim 1, we can assume that there
exists a vertex v ∈ V (H) such that f(v) = 2. Then, by Theorem 1.9, dG(v) =
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2Δf (G)−1. By Theorem 1.5 and using (3), we have 4 ≤ |NGΔf
(v)| ≤ 6. Thus, three

cases may occur:

Case 1. |NGΔf
(v)| = 4.

Let NGΔf
(v) = {u1, . . . , u4} and NH(v) = {w1, . . . , w2Δf (G)−5}. Since GΔf

is 2-

regular, with no loss of generality, there are two non-adjacent vertices u1, u2 ∈
NGΔf

(v). Since G is claw-free, u1wi ∈ E(G) or u2wi ∈ E(G), for i = 1, . . . , 2Δf(G)−
5. Thus, 2Δf(G)− 5 ≤ eG(NH(v), {u1, u2}) ≤ 2(Δf (G)− 3), a contradiction.

Case 2. |NGΔf
(v)| = 5.

Let NGΔf
(v) = {u1, . . . , u5} and NH(v) = {w1, . . . , w2Δf (G)−6}. First note that since

G is claw-free, NGΔf
(v) does not contain an independent set of size 3 and so it can

be easily checked that 〈NGΔf
(v)〉 is one of two following graphs:

Figure 4: 〈NGΔf
(v)〉 when |〈NGΔf

(v)〉| = 5

Three subcases may occur:

(i) Δf (G) = 3.
We have dG(v) = 2Δf (G) − 1 = 5. Now, if 〈NGΔf

(v)〉 = C5, then G is the graph

W shown in 3, a contradiction. Thus, assume that 〈NGΔf
(v)〉 is the graph shown in

Figure 4(b). By Theorem 1.9, since GΔf
is 2-regular, there exists u6 ∈ NGΔf

(u5)\{u4}
and u7 ∈ NGΔf

(u4)\{u5}. Now, we divide the proof of this subcase into two parts:

• u6 �= u7. Let L = G\{v, u1, . . . , u5}. Now, add a new vertex x to L and join x
to u6 and u7. Call the resultant graph L′. Let f ′ : V (L′) −→ N be a function defined
by

f ′(z) =

{
f(z) z ∈ V (L),

1 z = x.

Note that since Δf (G) = 3, we have dG(u) = 3, for every u ∈ V (GΔf
). Now, since

dG(v) = 5, we conclude that L′ is connected and Δf ′(L′) = Δf(G) = 3. Note that
since dL′(x) = 2, we have x �∈ V (L′

Δf ′
) and so δ(L′

Δf ′
) = 1. Now, since Δ(L′

Δf ′
) ≤ 2

and L′
Δf ′

is not 2-regular, by Theorem 1.9, L′ has an f ′-coloring call θ, with colors

{1, 2, 3}. Without loss of generality, assume that θ(xu7) = 1 and θ(xu6) = 2. Now,
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define an f -coloring c : E(G) → {1, 2, 3} as follows.
Define c(e) = θ(e), for every e ∈ E(L) and

⎧⎪⎨
⎪⎩
c(u4u7) = c(vu1) = c(vu5) = c(u2u3) = 1

c(u5u6) = c(vu4) = c(vu3) = c(u1u2) = 2

c(u4u5) = c(vu2) = c(u1u3) = 3.

• u6 = u7. Since Δf(G) = 3, we have dG(u6) = 3 and so u6 has a neighbor t,
where t �∈ {v, u1, . . . , u5}. Noting that dG(v) = 5 and dG(ui) = 3, for i = 1, . . . , 6,
we conclude that tu6 is a cut edge for G and by Theorem 2.1, G is f -class 1, a
contradiction.

(ii) Δf(G) = 4.
Clearly, dG(v) = 2Δf (G)− 1 = 7 and NH(v) = {w1, w2}. Now, we divide the proof
of this subcase into two parts:

• 〈NGΔf
(v)〉 is the graph shown in Figure 4(a).

Since G is claw-free, noting that u1u4 �∈ E(G), we have u1w1 ∈ E(G) or u4w1 ∈
E(G). Without loss of generality assume that u1w1 ∈ E(G). Moreover, since
〈{v, u1, u4, w2}〉 is not a claw and NG(u1) = {v, u2, u3, w1}, we have u4w2 ∈ E(G).
Similarly, since 〈{v, u1, u5, w2}〉 is not a claw and NG(u1) = {v, u2, u3, w1}, we con-
clude that u5w2 ∈ E(G). Also, since 〈{v, u2, u4, w1}〉 is not a claw and NG(u4) =
{v, u3, u5, w2}, we obtain that u2w1 ∈ E(G). Moreover, since 〈{v, u3, u5, w1}〉 is not
a claw and NG(u5) = {v, u2, u4, w2}, u3w1 ∈ E(G). Clearly, 〈{v, u2, u3, w2}〉 is a claw
which is a contradiction.

• 〈NGΔf
(v)〉 is the graph shown in Figure 4(b). Similar to the previous argu-

ment, one can assume that {u1w1, u2w1, u3w1, u4w2, u5w2} ⊆ E(G). Now, since
dG(w1) ≥ 4, f(w1) ≥ 2. By Claim 1 we conclude that f(w1) = 2 and so by
Theorem 1.9, dG(w1) = 7. Assume that NG(w1) = {v, v1, v2, v3, u1, u2, u3}. Note
that since dG(u4) = dG(u5) = 4 and {v, w2} ⊆ NG{u4, u5}, we conclude that
{v1, v2, v3} ∩ {u4, u5} = ∅. Now, by Theorem 1.5, we have |NGΔf

(w1)| ≥ 4. If

|NGΔf
(w1)| = 4, then by Case 1, we are done. So, we can assume that |NGΔf

(w1)| ≥
5. Without loss of generality, assume that

v1, v2 ∈ V (GΔf
). (4)

Also, since 〈{u1, vi, vj, w1}〉 is not a claw, for i, j = 1, 2, 3, i �= j and NG(u1) =
{v, u2, u3, w1}, we obtain that

〈{v1, v2, v3}〉 = K3, (5)

Now, we claim that v3 �= w2. For a contradiction assume that v3 = w2. Then
dG(w2) ≥ 6 and since w2 �∈ V (GΔf

), we have f(w2) = 2. Let NG(w2) = {v, v1, v2, u4,
u5, w1, y}, where y �∈ {u1, u2, u3}. Since 〈{v1, u4, w2, y}〉 and 〈{v1, u5, w2, y}〉 are not
claws, we conclude that 〈{u4, u5, y}〉 is a K3 in GΔf

and so yv1 �∈ E(G). Then
〈{v, v1, w2, y}〉 is a claw, a contradiction and the claim holds. Consider L = G \
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{v, u1, u2, u3, w1}. Add a new vertex x to L and join x to u5, w2, v2, v3. Call the
resultant graph L′.

Let f ′ : V (L′) −→ N be a function defined by

f ′(z) =

{
f(z) z ∈ V (L),

1 z = x.

Clearly, by (5), L′ is connected and v1, u4 �∈ V (L′
Δf ′

). If v3 �∈ V (GΔf
), then clearly

δ(L′
Δf ′

) = 1 and Δ(L′
Δf ′

) ≤ 2 and by Theorem 1.9, L′ is f ′-Class 1. So assume that

v3 ∈ V (GΔf
). Clearly, L′

Δf ′
is not 2-regular and each of the components is a unicyclic

graph or a tree. By Theorem 2.2, L′ has an f ′-coloring, say θ, with colors {1, 2, 3, 4}.
Without loss of generality, assume that θ(xu5) = 1, θ(xw2) = 2, θ(xv3) = 3 and
θ(xv2) = 4. Define an f -coloring c : E(G) → {1, 2, 3, 4} as follows.

Let c(e) = θ(e), for every e ∈ E(L), c(vu5) = 1, c(vw2) = 2, c(v3w1) = 3,
c(v2w1) = 4 and c(vu4) = a, c(v1w1) = b, where a and b are the colors missed in
coloring θ in u4 and v1, respectively.

By a suitable f -coloring of 〈{v, u1, u2, u3, w1}〉, we extend the f ′-coloring θ of L′

to an f -coloring c of G, using four colorings given in Figure 5. For (a, b) = (2, 4),
the Figure 5(i) works. If (a, b) = (1, 3), then interchange two colors 1 and 2, and
two colors 3 and 4 in igure 5(i). For (a, b) = (1, 4) or (a, b) = (2, 3), interchange
two colors 1 and 2, and two colors 3 and 4 in Figure 5(i), respectively. For (a, b) ∈
{(4, 2), (4, 1), (3, 2)}, we can use the same method given in Figure 5(ii). If a, b ∈
{3, 4}, then 5(iii) works. For a, b ∈ {1, 2}, Figure 5(iv) works, and for (a, b) = (3, 1),
Figure 5(v) works.

(iii) Δf (G) ≥ 5.
Consider G \ {v}. Now, add two new vertices v1 and v2 to G \ {v}, join v1 to
{u1, w1, . . . , wΔf (G)−1} and v2 to {u2, . . . , u5, wΔf (G), . . . , w2Δf (G)−6}. Call the resul-
tant graph by L. Let f ′ : V (L) −→ N be a function defined by

f ′(z) =

{
f(z) z ∈ V (G) \ {v},
1 z ∈ {v1, v2}.

It is easy to see that L is connected, Δf ′(L) = Δf (G) and V (LΔf ′ ) = V (GΔf
)∪{v1}.

Noting that |NLΔ
f ′
(v1)| = 1 and using Theorem 2.2, L has an f ′-coloring with colors

{1, . . . ,Δf ′(L)}, call θ. Now, define an f -coloring c : E(G) −→ {1, . . . ,Δf (G)} as
follows. Let ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c(e) = θ(e) for every e ∈ E(G \ {v})
c(vu1) = θ(u1v1)

c(vui) = θ(uiv2) for i = 2, . . . , 5

c(vwi) = θ(v1wi) for i = 1, . . . ,Δf(G)− 1

c(vwi) = θ(v2wi) for i = Δf (G), . . . , 2Δf (G)− 6.
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(v)

Figure 5: 4-edge coloring of 〈{v, u1, u2, u3, w1}〉

This implies that G is f -Class 1, a contradiction.

Case 3. |NGΔf
(v)| = 6.

First note that if there exists a vertex v with f(v) = 2 such that |NGΔf
(v)| ≤ 5,

then by Cases 1 and 2 we are done. Thus, we can suppose that for every ver-
tex v with f(v) = 2, we have |NGΔf

(v)| = 6. Let NGΔf
(v) = {u1, . . . , u6} and

NH(v) = {w1, . . . , w2Δf (G)−7}. Since G is claw-free, every induced subgraph of order
3 of 〈NGΔf

(v)〉 has at least one edge. Thus 〈NGΔf
(v)〉 is disjoint union of two K3.

Without loss of generality, assume that

〈{u1, u2, u3}〉 � 〈{u4, u5, u6}〉 � K3. (6)

Thus, one can assume that:

for every vertex x with f(x) = 2, 〈NGΔf
(x)〉 is the disjoint union of two K3. (7)

Clearly, since dG(v) = 2Δf (G) − 1 ≥ 6, we conclude that Δf (G) ≥ 4. Now, three
cases may be considered:

(i) Δf (G) = 4.
Clearly, dG(v) = 2Δf(G) − 1 = 7 and NH(v) = {w1}. We claim that |NGΔf

(v) ∩
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NGΔf
(w1)| ≥ 3. Otherwise, w1uij �∈ E(G), for j = 1, . . . , 4, where uij ∈ NGΔf

(v).

By (7), and without loss of generality, we can assume that ui1ui2 �∈ E(G). Then
〈{v, w1, ui1, ui2}〉 is a claw, a contradiction. Now, we divide the proof of this subcase
into two parts:

• |NGΔf
(v) ∩ NGΔf

(w1)| ≥ 4. Then, dG(w1) ≥ 5 and since Δf (G) = 4, we

conclude that f(w1) ≥ 2 and by Claim 1 we find that f(w1) = 2. Now, using (7),
〈NGΔf

(w1)〉 is disjoint union of two K3. Since |NGΔf
(w1) ∩ {u1, u2, u3}| ≥ 1 and

|NGΔf
(w1) ∩ {u4, u5, u6}| ≥ 1, we conclude that NGΔf

(w1) = {u1, . . . , u6}. Then, it

is easy to see that G is the graph shown in the following figure which is colored with
Δf (G) = 4 colors and the proof of this subcase is complete.

Figure 6: An f -coloring of G with 4 colors

• |NGΔf
(v) ∩ NGΔf

(w1)| = 3. Since dG(w1) ≥ 4 and w1 �∈ V (GΔf
), f(w1) = 2.

Using (7), without loss of generality we can assume that NGΔf
(w1) ∩ NGΔf

(v) =

{u1, u2, u3}, and there are three vertices, say x1, x2, x3 ∈ NGΔf
(w1), such that 〈{x1,

x2, x3}〉 � K3. Consider L = G\{u1, u2, u3, vw1}. Let f ′ : V (L) −→ N be a function
defined by f ′(z) = f(z), for every z ∈ V (L). Now we want to prove the following
claim which introduces a coloring of L with some properties.

Claim 2. L has an f ′-coloring c with four colors {1, 2, 3, 4} such that

|{c(w1x1), c(w1x2), c(w1x3), c(vu4), c(vu5), c(vu6)}| = 4.

Proof of Claim 2. We consider two cases.

First assume that L is not connected. So, L has two connected components, one
of them containing v and another containing w1. It is easy to see that for every
connected component I of L, Δf ′(I) = Δf ′(L) = Δf(G) and so Δ(IΔf ′ ) = 2. Now,
since f ′(v) = f ′(w1) = 2 and dL(v) = dL(w1) = 3, by Theorem 1.9, every component
of L is f ′-class 1. Moreover, noting that f ′(v) = f ′(w1) = 2, we obtain that there
are at least two distinct colors appeared in the edges incident with v and also with
w1. Now, by a suitable permutation of colors on these edges in one of components,
Claim 2 is proved.

Now, assume that L is connected. Consider K = L \ {w1, x1x2, x2x3, x1x3}. Let
f ′′ : V (K) −→ N be a function defined by

f ′′(z) =

{
f ′(z) z ∈ V (L) \ {w1},
1 z = v.
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We want to show that K is f ′′-Class 1. It is not hard to see that every connected
component of K has at least one of the three vertices {x1, x2, x3}. Let J be a
connected component of K. If Δf ′′(J) < Δf ′′(K), then by Theorem 1.1, J has an
f ′′-coloring with 4 colors. So, assume that Δf ′′(J) = Δf ′′(K) = 4. Now, since there
exists xi ∈ V (J), for some i ∈ {1, 2, 3} and noting that dJ(xi) = 1, by Theorem 1.9,
J is f ′′-Class 1 and so K has an f ′′-coloring with 4 colors {1, 2, 3, 4}, call θ. Let
NK(x1) = {y1}, NK(x2) = {y2} and NK(x3) = {y3}. We can assume that

|{θ(x1y1), θ(x2y2), θ(x3y3)}| ≥ 2. (8)

Because otherwise, we have |{θ(x1y1), θ(x2y2), θ(x3y3)}| = 1. Now, since for every
vertex u ∈ V (G), f(u) ≤ 2, we conclude that |{y1, y2, y3}| ≥ 2. Without loss of
generality, one can suppose that y1 is not adjacent to x2 and x3. Using (7), we find
that f(y1) = 1 and so f ′′(y1) = 1. Thus since dK(y1) = Δf ′′(K) − 1 = 3, there is a
missed color call α in y1 different from θ(x1y1). One can replace θ(x1y1) by α.

Now, without loss of generality, and noting that f ′′(v) = 1, one can assume that
θ(vu4) = 1, θ(vu5) = 2, θ(vu6) = 3, θ(x1y1) = α, θ(x2y2) = β and θ(x3y3) =
γ. Now, to prove Claim 2, it suffices to extend the f ′′-coloring of K to an f ′-
coloring of L. To see this, in Figure 7 we introduce such a suitable coloring for
〈{w1, x1, x2, x3}〉 ∪ {x1y1, x2y2, x3y3}.

Note that if α = β = 1 and γ = 4 and f ′′(y1) = 1, then there is a missed color
in y1 different from 1. Now, by changing color w1x1 by this missed color, similar to
one of the coloring of graphs shown in Figure 7. If f ′′(y1) = 2, then y1 = y2 = y3, by
(7). So there is a color, say l, appeared in the neighbors y1 once. Now, by changing
the color w1x1 to l we obtain one of the cases given in Figure 7.

We can easily color 〈{v, u1, u2, u3, w1}〉 by colors {1, 2, 3, 4} similar to one of the
graphs in Figure 5. This implies that G is f -Class 1 and we are done.

(ii) Δf(G) = 5.
By (6), u1u4 �∈ E(G). Thus u1w1 ∈ E(G) or u4w1 ∈ E(G). Without loss of generality,
assume that u1w1 ∈ E(G). Since two graphs 〈{v, u1, u4, w2}〉 and 〈{v, u1, u4, w3}〉
are not claws and dG(u1) = 5, with no loss of generality, we can suppose that u1w2 ∈
E(G) and u4w3 ∈ E(G). Moreover, since 〈{v, u1, u5, w3}〉 and 〈{v, u1, u6, w3}〉 are
not claws and NG(u1) = {v, u2, u3, w1, w2}, we have u5w3, u6w3 ∈ E(G). Now, we
want to show that

uiwj ∈ E(G), for i = 2, 3 and j = 1, 2. (9)

For a contradiction and with no loss of generality assume that u2w1 �∈ E(G). Then
since 〈{v, u2, ui, w1}〉 is not a claw, we have uiw1 ∈ E(G), for i = 4, 5, 6. This implies
that dG(w1) ≥ 5 and since Δf (G) = 5, we conclude that f(w1) = 2. Now, by (7),
u2w1 ∈ E(G), a contradiction. Similarly, other cases of (9) hold.

Now, we would like to show that G is f -Class 1. Two cases may occur:

• w1w2 �∈ E(G).
Since 〈{v, u4, w1, w2}〉 is not a claw, with no loss of generality, u4w1 ∈ E(G) and so
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Figure 7: A 4-edge coloring of 〈{w1, x1, x2, x3}〉 ∪ {x1y1, x2y2, x3y3}

dG(w1) ≥ 5, which implies that f(w1) = 2 and by (7), u5w1, u6w1 ∈ E(G). Since
dG(w1) = 9, there exists a vertex z ∈ NG(w1)\{v, u1, . . . , u6, w3} and 〈{z, u1, u4, w1}〉
is a claw, a contradiction and the proof of this case is complete.

• w1w2 ∈ E(G).
Clearly, 〈{v, u1, u2, u3, w1, w2}〉 � K6 and so

for every vertex v with f(v) = 2, v is contained in a K6. (10)

Note that since dG(wi) ≥ 5 and wi �∈ V (GΔf
), by Claim 1 we conclude that

f(wi) = 2, for i = 1, 2. Let P be the induced subgraph on the union of vertices of all
K6 in G. First note that three vertices of each K6 have degree 5 in G. This implies
that every two K6 have at most three vertices in common. Also, every two K6 have
not one vertex in common, because otherwise there exists a vertex of degree 10 in
G. On the other hand, every two K6 have not three vertices in common, because
otherwise there exists a vertex v ∈ V (P ) such that dP (v) = 8 and it is not hard to
see that v is a center of a claw in G, a contradiction. Thus, the vertex set of every
two K6 have empty intersection or they have exactly two vertices in common. Hence
each connected component of P is one of the graphs in Figure 8.

Define f ′ : V (P ) −→ N as follows:



S. AKBARI ET AL. /AUSTRALAS. J. COMBIN. 75 (1) (2019), 32–49 47

Figure 8: Every component of the graph P

f ′(z) =

{
1 if dP (z) = 5

2 if dP (z) = 9.

It is not hard to see that P has an f ′-coloring with colors {1, . . . , 5}.
Now, let L = G \ E(P ). We would like to prove the following claim.

Claim 3. χ′(L) = 5.

If the claim is proved, then we color all edges of L and P by 5 colors to obtain
an f -coloring of G. Since for every vertex v which are incident to some edges in L
and P , we have f(v) = 2, we find an f -coloring of G using 5 colors.

Proof of Claim 3. Clearly, the maximum degree of each connected component of
L is at most 5. If the maximum degree is less than 5, then by Vizing’s Theorem
we are done. Now, let I be a connected component of L such that Δ(I) = 5. Note
that V (IΔ) ⊆ V (GΔf

) and Δ(IΔ) ≤ 2. Note that since G is connected, there exists
a vertex x ∈ V (I) ∩ V (P ) and so dI(x) ≥ 1. Since δ(P ) = 5 and dG(x) = 9, we
conclude that dI(x) = 4. This implies that f(x) = 2 and by (7), it is not hard
to see that | NI(x) ∩ V (GΔf

) |= 3 and so there exists a vertex y ∈ NI(x) such
that dI(y) = 4. Let NI(x) ∩ V (GΔf

) = {u, u′, u′′}. Obviously, since G is claw-free,
yu, yu′, yu′′ ∈ E(I).

Let J = I \ {x, y, uu′, uu′′, u′u′′}. We show that J has a 5-edge coloring. If
Δ(J) ≤ 4, then by Vizing’s Theorem, J has a 5-edge coloring. Thus assume that
Δ(J) = 5 and so Δ(JΔ) ≤ 2 and dJ(u) = dJ(u

′) = dJ(u
′′) = 1. Hence by Vizing’s

Theorem and Theorem 1.6, every connected component of J has a 5-edge coloring.
Let NJ(u) = {z}, NJ(u

′) = {z′} and NJ(u
′′) = {z′′}. We claim that there exists a

5-edge coloring of J in which the colors of edges uz, u′z′ and u′′z′′ are distinct. To
see this, if z = z′ = z′′, then we are done. If z �= z′ = z′′ and the colors of edges
uz, u′z′ are the same and different from color of the edge u′′z′′, then since dJ(z

′) = 4,
we conclude that there exists a missed color in z′ which is different from the color
of u′z′ and u′′z′′. Now, by substituting this missed color with the color of u′z′, we
are done. Now, assume that z, z′ and z′′ are distinct. Then, remove three vertices
u, u′, u′′ of J . Also, add a new vertex s, join s to the vertices z, z′, z′′ and call the
resultant graph by K. Now, since Δ(K) = 5, Δ(KΔ) ≤ 2 and δ(K) = 3, by Theorem
1.6, K has a 5-edge coloring. Now, by a suitable extending this 5-edge coloring to a
5-edge coloring of J , we conclude that there exists a 5-edge coloring of J such that
three distinct colors appear in edges uz, u′z′ and u′′z′′.
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Now, we want to extend the 5-edge coloring of J to a 5-edge coloring of I to
complete the proof of Claim 3. To see this, we show that there exists a 5-edge
coloring for Q = 〈{u, u′, u′′, x, y}〉 such that three missed colors in u, u′ and u′′ are
distinct. Add a new vertex q to Q and join q to u, u′, u′′ and call the resultant graph
by R. Clearly, R is the subgraph of K6 and so χ′(R) = 5. Now, Claim 3 is proved.

(iii) Δf (G) ≥ 6.
Consider G\{v}, add two new vertices v1, v2 to G\{v}, and join v1, v2 to {u1, w1, . . . ,
wΔf (G)−1} and {u2, . . . , u6, wΔf (G), . . . , w2Δf (G)−7}, respectively. Call the resultant
graph L. Let f ′ : V (L) −→ N be a function defined by

f ′(v) =

{
f(v) v ∈ V (G) \ {v, v1, v2},
1 v ∈ {v1, v2}.

It is easy to see that L is connected, Δf ′(L) = Δf (G) and V (LΔf ′ ) = V (GΔf
)∪{v1}.

Note that |NLΔ
f ′
(v1)| = 1. Now, by Theorem 2.2, L has an f ′-coloring with colors

{1, . . . ,Δf ′(L)}; call it θ.
Now, define an f -coloring c : E(G) −→ {1, . . . ,Δf(G)} as follows. Let

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c(e) = θ(e) for every e ∈ E(G) ∩ E(L)

c(u1v) = θ(u1v1)

c(uiv) = θ(uiv2) for i = 2, . . . , 6

c(vwi) = θ(v1wi) for i = 1, . . . ,Δf(G)− 1

c(vwi) = θ(v2wi) for i = Δf (G), . . . , 2Δf (G)− 7.

Thus G is f -Class 1, a contradiction, and the proof of the theorem is complete. �
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