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Abstract

In this paper we give a very natural description of the bijections be-
tween the set of cells in the minimal CW-complex homotopy equivalent
to the complement of a complexified real supersolvable arrangement A,
the nbc-basis of the Orlik-Solomon algebra associated to A and the set
of chambers of A. We use these bijections to describe a bijection between
the symmetric group and the nbc-basis of the braid arrangement.

1 Introduction

The theory of arrangements of hyperplanes is a subject intensively studied during
the last 60 years. The main topic of this theory is the study of the complement of
a set of hyperplanes in the space. It started in 1889 when Roberts gave a formula
to count how many open disconnected regions there are when we cut the plane by
removing a set of lines (see [12] for a detailed reference). A direct generalization
of this problem, the removal of hyperplanes in higher dimensional spaces, stayed
unsolved until 1975, when Zaslavsky gave a general counting formula in [22]. Those
open regions are called chambers. In 1980 Orlik and Solomon introduced the well-
known Orlik-Solomon algebra (see [11]) that is completely described by combinatorial
methods, i.e. by the intersection lattice, and which computes the cohomology group
with integer coefficients of the complement of a complex hyperplane arrangement.

The Orlik-Solomon algebra is a graded algebra with an additive basis nbc called
the non broken circuit basis. It turns out that, when considering complexified real
arrangements, i.e. the case in which the hyperplanes have real defining equations,
the total number of elements in a non broken circuit basis equals the number of
chambers of the underlining real arrangement. The correspondence between those
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two objects has been studied by many authors interested in the combinatorial aspects
of the theory of arrangements of hyperplanes. For example, Barcelo and Goupil in
[1] studied the case of arrangements coming from reflection groups and Gioan and
Las Vergnas in [9], and Jewell and Orlik in [10], studied the general case.

More recently, Dimca and Papadima in [6], and Randell in [13] proved that the
complement of a complex hyperplane arrangement is a minimal space, i.e. it has
the homotopy type of a CW-complex with exactly as many k-cells as the k-th Betti
number bk or, in other words, as many k-cells as the cardinality of nbck, i.e. of the
elements of degree k in the non broken circuits basis. In 2007, Yoshinaga in [20],
Salvetti and the first author in [15] gave a description of this minimal complex in
the case of complexified real arrangements. Then the question arises on existence of
“natural” bijections between the chambers of the real arrangement, the set of cells in
the minimal CW-complex of the complexified one and the nbc-basis. This question
has been addressed by Delucchi in [4], where the author extended Jewell and Orlik
bijection to matroids, and Yoshinaga in [21], where the author introduced a basis of
the Orlik-Solomon algebra labeled by chambers.

It is worth noticing that all maps described so far in the literature are based on a
similar construction which creates a correspondence between each element in the nbc
and chambers contained in a cone defined by the hyperplanes of the fixed non broken
circuit. This gives rise to a correspondence which assigns to each element of nbc not
a single chamber, but a linear combination of chambers (see, for instance, [10] and
[21, Example 3.3]). In this paper, we describe a map for supersolvable arrangements
which assigns to each nbc exactly one and only one chamber. Differently from pre-
vious bijections, this construction is compatible with the supersolvable structure,
meaning that the order on the hyperplanes is the one induced by the filtration of the
supersolvable arrangement. This is particularly interesting in the case of the braid
arrangement A(An), in which the supersolvable filtration is the natural inclusion of
A(An−1) ⊂ A(An) and hence hyperplanes in A(Aj) are smaller than hyperplanes
in A(Aj) \ A(Ai). This new bijection between the minimal complex and nbc-basis
(see Section 4, equation (5)) only involves elements of the intersection poset of the
hyperplane arrangement endowed with an order � and the hyperplanes separating
chambers from a previously fixed chamber C0. In the case of supersolvable arrange-
ments, the results in [5] allow for a purely combinatorial description of order �.
This, in turn, allows for an explicit bijection whose main example is the case of the
braid arrangement described in Section 5. Here it is worth noticing that the set of
hyperplanes separating the chambers from a fixed basis-chamber is in fact equivalent
to the oriented-matroid data, up to reorientation (see [2]).

Moreover, if A = {Hij = {xi = xj}, 1 ≤ i < j ≤ n+1} is the braid arrangement,
then chambers are in one to one correspondence with elements of the symmetric
group. Hence the map f defined in Section 4 also defines a new bijection between
the symmetric group and the non broken circuit basis nbc associated to A (this is
content of Section 5). In 1995 Barcelo and Goupil, joined with Garsia in [1] proved
that if A(W ) is the reflection arrangement associated to the Coxeter group (W,S),
nbc(A(W )) is its non broken circuit basis and Hr ∈ A(W ) is the hyperplane defined
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by the reflection r ∈ W , the map

g : nbc(A(W )) −→ W

(Hr1, . . . , Hrk) �−→ w = r1 . . . rk

is a bijection. However, this map is not compatible with Lefschetz argument. That
is for any choice of a subspace Vk of dimension k in general position with respect
to A(W ), there is a chamber C corresponding to a reflection w = r1 . . . rk =
g((Hr1, . . . , Hrk)) such that C ∩ Vk �= ∅. This can be already seen in A(A2) (see
Remark 3.1 in Section 3). In this paper, we provide a slightly different bijection such
that for all k = 0, . . . , n each element in the group An, image of a k-uple of hyper-
planes in nbc, is in one to one correspondence with a chamber of the arrangement
intersected by a k-dimensional subspace of a general flag of subspaces {Vk}k=0,...,n.
Since the map g above, defined in [1], is for any reflection group it is a natural ques-
tion whether the construction in this paper can be extended also to other reflection
groups (even the non-supersolvable ones).

This paper is organized as follows. In Section 2, we recall the definitions of
the minimal Salvetti’s complex associated to complexified real arrangements and of
the nbc-basis for real supersolvable arrangements. In Section 3, we describe the
example of A(A3). In Section 4, we introduce a relation between the nbc-basis and
the minimal complex of a complexified real supersolvable arrangement A and prove
that this relation is, in fact, a bijection. In Section 5, we give a description of this map
in the special case of the braid arrangement providing a bijection between elements
of the nbc-basis and the permutations of the symmetric group.

2 Preliminaries

Let A be an essential affine hyperplane arrangement in Rd, i.e. a finite set of affine
real hyperplanes whose minimal nonempty intersections are points. Let us remark
that, given an affine or central hyperplane arrangement A in Rd it is always possible
to consider its essentialization ess(A) which is an essential arrangement having same
homotopy type, and hence combinatorics, of A (see [17]). In the rest of the paper, we
will always consider ess(A) even if not explicitly stated. Let F = F(A) denote the
set of closed strata of the induced stratification of Rd. It is customary to endow F
with a partial ordering ≺ given by reverse inclusion of topological closures (see[12]).
The elements of F are called faces of the arrangement. The poset F is ranked by
the codimension of the faces. The connected components of Rd \ A, corresponding
to elements of F of maximal dimension, are called chambers. For any F ∈ F , denote
by |F | the affine subspace spanned by F , called the support of F , and set

AF := {H ∈ A | F ⊂ H}.

In [14], Salvetti constructed a regular CW-complex S(A) (denoted just by S if
no confusion can arise) that is a deformation retract of the complement

M(A) := Cd \
⋃
H∈A

HC,
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of the complexification of A, where HC = H ⊗ C.

The k-cells of S bijectively correspond to pairs [C ≺ F ], where F ∈ F , codim(F )
= k and C is a chamber. A cell [D ≺ G] is in the boundary of [C ≺ F ] if G ≺ F
and the chambers D, C are contained in the same chamber of AG.

2.1 Salvetti-Settepanella minimal complex

In [15], Salvetti and the first author constructed a minimal complex homotopy equiv-
alent to the complement M(A) of a complexified real arrangement A. The main
ingredients of this construction are Forman’s Discrete Morse Theory and Salvetti’s
complex. They explicitly constructed a combinatorial gradient vector field over S
whose critical cells correspond to the cells of the minimal complex. This vector field
is related to a given system of polar coordinates in Rd which is generic with respect
to the arrangement A. This generic system of coordinates allow the authors of [15]
to give a total order � on the faces F that is the key to describe both, gradient
vector field and critical cells. In this paper we are mainly interested in the latter.

In more detail, let {Vk}k=0,...,d be a flag of affine subspaces in general position in
Rd, such that dim(Vk) = k for every i = 0, . . . , d and such that the polar coordinates
(ρ, θ1, . . . , θd−1) of every point in a bounded face of A satisfy ρ > 0 and 0 < θi < π/2,
for every i = 1, . . . , d−1 (see [15, Section 4.2] for the precise description). Every face
F is labeled by the coordinates of the point in its closure that has, lexicographically,
least polar coordinates. The polar ordering associated to such a flag is the total order
� on F obtained by ordering the faces lexicographically according to their labels.
This extends the order in which Vd−1 intersects the faces in Vd while rotating around
Vd−2. If two faces share the same label, thus the same minimal point r, the ordering
is determined by the flag induced on the copy of Vd−1 that is rotated “just past F”
and the ordering it generates by induction on the dimension (see [15, Definition 4.7]).
The k-cells of the minimal complex will be the critical k-cells (see [15, Theorem 6])

Critk(S) =
{
[C ≺ F ]

∣∣∣∣ codim(F ) = k, F ∩ Vk �= ∅,
G� F for all G with C ≺ G � F

}
(1)

(equivalently, F ∩ Vk is the maximum in polar ordering among all facets of C ∩ Vk).

Notation 2.1. We denote by ch(A) the set of chambers of A and by Crit(S) =
∪d
k=0Critk(S) the union of sets Critk(S) of critical k-cells.

2.2 Salvetti-Settepanella minimal complex for supersolvable
arrangements

The class of “strictly linearly fibered” arrangements was introduced by Falk and
Randell [8] in order to generalize the techniques of Fadell and Neuwirth’s proof [7]
of asphericity of the braid arrangement (involving a chain of fibrations). Later on,
Terao [18] recognized that strictly linearly fibered arrangements are exactly those
which intersection lattice is supersolvable [16]. Since then these arrangements are
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known as supersolvable arrangements, and attracted considerable consideration. See
[12] and [17] for more details.

Definition 2.2. A central arrangement A of hyperplanes in Rd is called supersolv-
able if there is a filtration

A = Ad ⊃ Ad−1 ⊃ · · · ⊃ A2 ⊃ A1 such that

(1) rank(Ai) := codim(
⋂

H∈Ai
H) = i for all i = 1, . . . , d ;

(2) for every two H,H ′ ∈ Ai there exists some H ′′ ∈ Ai−1 such that H ∩H ′ ⊂ H ′′.

Let us remark that the above definition of supersolvable arrangement can be
given in the more general case of complex arrangements.

In [5], Delucchi and the first author gave a more general combinatorial descrip-
tion of the minimal complex constructed in [15] and briefly described in Subsection
2.1. This allowed them to give a very handy order � in the case of supersolvable
arrangements.

Given an affine real arrangement of hyperplanes A in Rd, following [5], we call
a flag {Vk}k=0,...,d of affine subspaces general flag if every one of its subspaces is in
general position with respect to A and if, for every k = 0, . . . d − 1, Vk does not
intersect any bounded chamber of the arrangement A∩Vk+1. Note that this is a less
restrictive hypothesis than the one required for being a generic flag in [15].

Fixed a real arrangement A in Rd and a general flag {Vk}k=0,...,d, denote by

Pk(A) := {p ∈ Fk | p ∩ Vk �= ∅}

the set of faces that intersect Vk. In the rest of the paper, we will call those faces
critical faces and denote them by the letter p to make it easier for the reader to dis-
tinguish them from the faces F ∈ Fk such that F ∩Vk = ∅. In [5], the authors showed
that, in case A = Ad ⊃ Ad−1 ⊃ · · · ⊃ A2 ⊃ A1 is a supersolvable arrangement, the
general flag {Vk}k=0,...,d can be chosen in such a way that there exists R ∈ R such
that for all k = 1, . . . , d − 1, every element of Pk(Ad−1) is contained in a ball of
radius R centered in V0, that contains no elements of Pk(Ad) \ Pk(Ad−1). With this
choice of a general flag, they proved (see [5, Theorem II.3.4]) that a real supersolv-
able arrangement A always admits a total order �, that they called recursive special
order (see [5, Definition II.1.1]), which satisfies the following properties. Given two
critical faces p, r ∈ P(A) = ∪d

k=0Pk(A), then p� r if one of the following occurs:

(i) p ∈ Ph(A), r ∈ Pk(A) for h < k;

(ii) there is k such that p, r ∈ Pk(A) and we can write p0 := min�{p′ ∈ Pk−1(A) |
p ⊂ |p′|}, r0 := min�{p′ ∈ Pk−1(A) | r ⊂ |p′|},

(a) either p0 � r0,



S. SETTEPANELLA ET AL. /AUSTRALAS. J. COMBIN. 75 (2) (2019), 223–245 228

(b) or p0 = r0 and there exists a sequence of faces

p0 ≺ p1 � r1 ≺ p2 � r2 · · · ≺ p,

such that codim(pi) = codim(ri)+1 = codim(p), and every ri, pi intersect
|p0| ∩ Vk, and pi �= r for all i.

(iii) If p ∈ Pk(Ai−1) and r ∈ Pk(Ai) \ Pk(Ai−1) lie in the support of the same
(k + 1)-codimensional face.

Any order � on the faces F induced by a general flag {Vk}k=0,...,d induces an
order �A on hyperplanes of A as follows

H �A H ′ if and only if pH � pH′ ,

where pH , pH′ ∈ P1(A) are the only two faces such that |pH | = H, |pH′| = H ′.

By [(iii)], the order � can be chosen in such a way that the following property
holds

if H ∈ Ai \ Ai−1, H
′ ∈ Aj \ Aj−1 with i < j, then H �A H ′. (2)

As no confusion can arise, we will denote the order �A simply by �.

2.3 nbc-basis for supersolvable arrangements.

Let us briefly recall some basic facts on the Orlik-Solomon algebra and its nbc-basis.

Fix an arbitrary order � on a central arrangement A in Rd. Then an ordered
k-tuple (H1, . . . , Hk+1), with H1� . . .�Hk+1, is independent if rank(∩k+1

i=1Hi) = k+1,
and it is dependent otherwise. It is called a circuit if it is minimally dependent, that
is (H1, . . . , Hk+1) is dependent, while (H1, . . . , Ĥp, . . . , Hk+1) is independent for any
1 ≤ p ≤ k + 1.

An ordered independent k-tuple (H1, . . . , Hk) is a broken circuit if there exists
an hyperplane H �H1 such that (H,H1, . . . , Hk) is a circuit. It is well-known that
a basis for the Orlik-Solomon algebra of the arrangement A is given by all ordered
k-tuples (H1, . . . , Hk), 1 ≤ k ≤ d, that do not contain any broken circuit. Such a
basis is called a non broken circuit basis, or simply nbc-basis.

Björner and Ziegler (see [3, Corollary 2.9]) proved that in a supersolvable ar-
rangement a k-tuple (H1, . . . , Hk) does not contain a broken circuit if and only if it
does not contain a 2-broken circuit. From this we get the following proposition.

Proposition 2.3. Let A be a supersolvable arrangement in Rd together with an
order � that satisfies property (2). If, for any Hi ∈ A, hi denote the index such that
Hi ∈ Ahi

and Hi /∈ Ahi−1, then the set

nbck(A) = {(H1, . . . , Hk) ∈ Ak | Hi ∈ Ahi
, hi < hi+1}

is a nbc-basis of the k-stratum of the Orlik-Solomon algebra associated to A.
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Proof. 1 By Björner and Ziegler’s result, it is enough to check that k-tuples (H1, . . . ,
Hk) ∈ nbck do not contain couples (Hi, Hj) that are broken circuits. Since A
is a supersolvable arrangement, if Hi, Hj are hyperplanes that belong to the same
subarrangement Ahi+1 \Ahi

then there exists H ∈ Ahi
such that Hi ∩Hj ⊂ H , that

is (H,Hi, Hj) is a broken circuit.

On the other hand, if Hi ∈ Ahi+1 \ Ahi
and Hj ∈ Ahj+1 \ Ahj

belong to different
subarrangements with hi < hj , then for anyH�Hi we get that rank(H∩Hi∩Hj) = 3.
Indeed if H ∈ Ah, h < hi this is obvious while, if H ∈ Ahi

then there exists H ′ ∈
Ahi−1 such thatH∩Hi = H ′∩Hi and rank(H∩Hi∩Hj) = rank(H ′∩Hi∩Hj) = 3.

Following the previous proposition we denote

nbc(A) := ∪knbck(A).

For the sake of simplicity, when no confusion arises, we will omit A in the rest of the
paper and we will simply denote nbck(A) by nbck and nbc(A) by nbc. Similarly,
we will simply denote Pk(A) by Pk and P(A) by P.

3 The braid arrangement A(A3).

In this section, we illustrate how the construction described in Section 2 works in
the case of the braid arrangement in R4,

A(A3) = {Hi,j = {xi = xj}, 1 ≤ i < j ≤ 4} 2.

In Figure 1 is depicted a general flag {Vk}k=0,...,3 which induces a recursive special
order on the faces of A(A3), as described in Subsection 2.2. In particular, V0 is chosen
inside the chamber C0. For the sake of simplicity we assume that C0 corresponds to
the identity element in the symmetric group. The walls of C0 in the section V2 are the
hyperplanes H1,2, corresponding to permutation (1, 2) � s1 ∈ A3,H2,3, corresponding
to permutation (2, 3) � s2 ∈ A3, and H3,4, corresponding to permutation (3, 4) �
s3 ∈ A3. The order induced by V1 on the hyperplanes corresponds exactly to the
one described in Subsection 2.3. Indeed H1,2 ∈ A(A1) is smaller than H1,3, H2,3 ∈
A(A2) \ A(A1) smaller than H1,4, H2,4, H3,4 ∈ A(A3) \ A(A2). The order inside each
A(Ai) \ A(Ai−1) is a lexicographic order on indices of the hyperplanes. Notice that
this is the usual order on nbc for the braid arrangement case.

While Figure 1 describes how 1-codimensional critical faces, i.e. 1-codimensional
faces intersected by V1, are ordered, in Figure 2 the rotation of V1 inside V2 “just
passing” the 2-codimensional critical faces p2i is described. The construction in Sub-
section 2.2 essentially tells us that the flag {Vk}k=0,...,3 can be chosen in such a way
that first all the 2-codimensional faces belonging to hyperplane H1,2 are ordered fol-
lowingH1,2 starting from its 1-critical face, and hence faces belonging toH1,3 andH2,3

1 This proposition is a well-known fact but we could not find a detailed proof of it anywhere, so
we provide it here.

2Note that ess(A) is an arrangement in R3
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V2

V1

V0

C0 p11
p12

p13

p14

p15

p16

H1,2

H1,3

H2,3

H1,4

H2,4

H3,4

Figure 1: Section V2 ⊃ V1 ⊃ V0 ∈ C0 with 0-critical face C0 and 1-critical faces p1i ,
for i = 1, . . . , 6.

follow respecting the order of hyperplanes H1,2 � H1,3 � H2,3 (see Figure 2). Note
that this also induces an order between non critical faces. So, for example, when
V1 = V −

1 (p21) is rotated just passing p21, we obtain V +
1 (p21) which induces an order on

1-codimensional faces it crosses exactly as it happens along V1, i.e. F
1
1 � F 1

2 � F 1
3

with F 1
1 the face having p21, p

2
6 in its closure, F 1

2 the face having p21, p
2
4 in its closure

and F 1
3 the face having p21, p

2
2 in its closure (see Figure 2). Order on the chambers is

analogous (see Figure 3).

V2

V1 = V −
1 (p21)

V −
1 (p22) = V +

1 (p21)

V0
C0

p21

p22

p23

p24

p25

p26

p27

Figure 2: Rotation of V1 inside V2 around V0 to order the 2-critical faces p2i , with
p2i � p2j if and only if i < j.

In the case of A(A3) we get the correspondence described in Table 1. Note that
in this table the correspondence with chambers that will be described in Section 4 is
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V2

V1 = V −
1 (p21)

V −
1 (p22) = V +

1 (p21)

V0
C0

C1

C2

C3

C4
C5

C6

C7

C8
C9

C10

C11

C12

C13

C14

C15

C16

C17

Figure 3: Chambers in the section V2 ordered following V ±
1 (p2i ).

k k-critical cell nbck Chamber
0 [C0 ≺ C0] ∅ C0

1 [C0 ≺ p11] H1,2 C1 = opp11
(C0)

1 [C1 ≺ p12] H1,3 C2 = opp12
(C1)

1 [C2 ≺ p13] H2,3 C3 = opp13
(C2)

1 [C3 ≺ p14] H1,4 C4 = opp14
(C3)

1 [C4 ≺ p15] H2,4 C5 = opp15
(C4)

1 [C5 ≺ p16] H3,4 C6 = opp16
(C5)

2 [C1 ≺ p21] (H1,2, H1,3) C8 = opp21
(C1)

2 [C2 ≺ p21] (H1,2, H2,3) C7 = opp21
(C2)

2 [C3 ≺ p22] (H1,2, H1,4) C10 = opp22
(C3)

2 [C4 ≺ p22] (H1,2, H2,4) C9 = opp22
(C4)

2 [C5 ≺ p23] (H1,2, H3,4) C11 = opp23
(C5)

2 [C8 ≺ p24] (H1,3, H2,4) C12 = opp24
(C8)

2 [C9 ≺ p25] (H1,3, H1,4) C14 = opp25
(C9)

2 [C10 ≺ p25] (H1,3, H3,4) C13 = opp25
(C10)

2 [C7 ≺ p26] (H2,3, H2,4) C16 = opp26
(C7)

2 [C12 ≺ p26] (H2,3, H3,4) C15 = opp26
(C12)

2 [C13 ≺ p27] (H2,3, H1,4) C17 = opp27
(C13)

Table 1: Correspondence between critical k-cells, nbck and chambers in A(A3) up
to k = 2.
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also described. Precise definition of opp(C), the opposite chamber of C with respect
to a given face p used in Table 1, is provided in equation (6) in Section 4.

Remark 3.1. Finally, note that in the bijection described in [1] by Barcelo, Goupil
and Garsia, the hyperplanes H1,2, H1,3 and H2,3, as 1 non broken circuits, correspond,
respectively, to reflections s1, s1s2s1, s2 which, in turn, correspond to chambers C1, C3

and C7 (as labeled in Figure 3). Already from this basic example, it is possible to
see how there is no way for those three chambers to be all intersected by the same
1-dimensional space in general position with respect to the arrangement A(A3).

4 Orlik-Solomon algebra and minimal complex

In this section, A is a supersolvable arrangement in Rd endowed with a recursive
special order � induced by a generic flag {Vk}k=0,...,d of affine subspaces as described
in Subsection 2.2.

4.1 A natural relation

If p ∈ Pk is a k-critical face and |p| = ∩m
j=1H

′
j is its support, then p is the only

k-codimensional face that contains the intersection |p| ∩ Vk. That is, there is a nat-
ural bijection between elements of the intersection poset L(A) and critical faces.
Moreover, by the properties of supersolvable arrangements described in the Defini-
tion 2.2, to get a k-codimensional intersection |p| in the poset L(A) of a supersolv-
able arrangement it is enough to consider a k-tuple (H1, . . . , Hk) ∈ nbck such that
∩k
i=1Hi = ∩m

j=1H
′
j = |p|. Notice that this is not a bijection. With the previous no-

tations, if Hj ∈ Aij \ Aij−1 and H �= Hj is another hyperplane in Aij \ Aij−1 that
contains p, then (H1, . . . , Hj, . . . , Hk) and (H1, . . . , H, . . . , Hk), with H in the j-th
position, are both k-tuples in nbck with intersection equal the support |p| of p.

Let H ∈ Aij \ Aij−1 be a hyperplane that contains the critical face p, we define
the set

[H ]p := {H ′ ∈ Aij \ Aij−1 | p ⊂ H ′}.
Then to any critical k-codimensional face p is attached one and only one k-tuple

of classes of hyperplanes
[p] := ([H1]p, . . . , [Hk]p). (3)

Notice that since a (k − 1)-face F such that F ≺ G verifies, by definition of
≺, that G is contained in its closure, it is a straightforward remark that, if p′ is
a critical (k − 1)-face such that p′ ≺ p, then there exists an index 1 ≤ j ≤ k

such that [p′] = ([H ′
1]p′ , . . . , [̂H

′
j ]p′, . . . , [H

′
k]p′), H

′
i ∈ [Hi]p. Notice that the inclusion

[H ′
1]p′ ⊆ [H ′

1]p holds.

Definition 4.1. Given two chambers C,C ′ ∈ ch(A) and an hyperplane H in A, we
define

(C | C ′)H :=

{
−1 if H separates C and C ′,

1 otherwise .
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Let C0 be the chamber containing V0, with the previous notations, define

fk : Critk(S) −→ nbck (4)

as fk([C ≺ p]) = (H1, . . . , Hk) if and only if

(i) ∩k
i=1Hi = |p|;

(ii) if (−1)k−j = −1, then

Hj = min
�

{H ∈ [Hj]p | (C | C0)H = −1};

(iii) if (−1)k−j = 1, then

Hj = max
�

{H ∈ [Hj ]p | (C | C0)H = 1};

(iv) Hk is a wall of C and (C | C0)Hk
= 1.

The above map naturally defines a function

f : Crit(S) −→ nbc (5)

between the critical cells of Salvetti’s complex and the nbc-basis of the Orlik-Solomon
algebra of the supersolvable arrangement A.

4.2 Preliminary Notations and Lemmas

Before proving that the maps fk, k = 0, . . . , d, defined in equation (4), are well
defined bijective maps, we need some notation and lemmas.

Notation 4.2. For a given critical cell p ∈ Pk(A) denote by p the point p ∩ Vk in
Vk and by V +

k−1(p) the copy of Vk−1 that is rotated in Vk around Vk−2 “just past p”
and V −

k−1(p) the copy of Vk−1 that is rotated in Vk around Vk−2 “just before p” , as
in Figure 4. Let us remark that “just past p” means that, when Vk−1 rotates moving
between V −

k−1(p) and V +
k−1(p), the rotation is as small as possible in such a way that

p is the only k-face crossed. Following notation in [15], given a chamber C and a
facet p, we will denote by C.p the unique chamber of A containing p in its closure
and lying in the same chamber as C in Ap.

Let us remark that, by the construction of the polar ordering, all faces F ≺ p
such that F ∩ V +

k−1(p) �= ∅ and F ∩ V −
k−1(p) = ∅ satisfy F � p. Moreover, given a

chamber C ∈ ch(A) and a critical face p ∈ P(A), C ≺ p, the k-cell [C ≺ p] is critical
if and only if C ∩ V −

k−1(p) is a bounded chamber in V −
k−1(p).

In the rest of the paper we will often deal with chambers C such that C ∩V −
k−1(p)

(respectively C ∩V +
k−1(p)) is bounded in V −

k−1(p) (respectively V +
k−1(p)). In this case,

for the sake of simplicity, we will say that C is bounded in V −
k−1(p) (respectively

V +
k−1(p)).
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V0

p
V +
1 (p)

V −
1 (p)

V2

Figure 4: Rotation of V1 in V2 around V0 “just past p”.

If F ∈ F is a face of a chamber C ∈ ch(A), then define opF (C) ∈ ch(A) as the
unique chamber such that the set of hyperplanes of A that separates C and opF (C)
equals AF . The map

η : Crit(S) −→ ch(A)

[C ≺ p] �→ opp(C)
(6)

is a bijection (see [15] and Figure 2 and Table 1 for an example).

We remark that if [C ≺ p] is critical then C is bounded in V −
k−1(p) by hyperplanes

in Ap. Indeed, by construction, V −
k−1(p) and V +

k−1(p) are chosen “just before p” and
“just past p”, i.e. we can assume that they intersect a small ball in Vk centered at p
that intersects only hyperplanes in Ap. Since C is bounded in V −

k−1(p) by hyperplanes
in Ap then opp(C) is a bounded chamber in V +

k−1(p) and the following lemma holds.

Lemma 4.3. If [C ≺ p] is a critical k-cell and p̆ = min�{p′ ∈ Pk−1(A) | p ∈ |p′|},
then [opp̆(C.p̆) ≺ p̆] is a critical (k − 1)-cell.

Proof. If [C ≺ p] is a critical k-cell, then C is bounded in V −
k−1(p) by hyperplanes in

Ap. Hence there exists at least one face F ∈ Fk−1 of codimension k− 1 with p ⊂ F ,
i.e. F is the intersection of hyperplanes in Ap, F ⊂ C and F is smaller than C in

the local order inside V −
k−1(p). Let F̆ ∈ Fk−1 denote the smallest of the faces F with

the above property. Let C(Ap) denote the chamber of Ap containing C. Then any
chamber C ′ contained in C(Ap) with C ′ ∩ Vk−1 �= ∅ is a bounded chamber in Vk−1,
as it is contained in C(Ap) ∩ Vk−1. In particular, if p̆ ∈ Pk−1(A) is the critical k − 1

face such that | p̆ |=| F̆ |, then C.p̆ is contained in C(Ap) ∩ Vk−1 and it is bounded
too. Finally the flag in Vk−1 and the flag in V −

k−1(p) induce the same order on faces

of Ap. That is C.p̆ � p̆, since C is bigger than F̆ in the local order inside V −
k−1(p),

and p̆ = min�{p′ ∈ Pk−1(A) | p ∈ |p′|}, since F̆ is the smallest face too.
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By C.p̆ bounded in Vk−1 and C.p̆ � p̆, it follows that C.p̆ ∩ V +
k−2(p̆) �= ∅ is a

bounded chamber in V +
k−2(p̆) and C.p̆ ∩ V −

k−2(p̆) = ∅ (indeed if C.p̆ ∩ V −
k−2(p̆) �= ∅

then, by construction, C.p̆ � p̆). That is C.p̆ is bounded in V +
k−2(p̆) by hyperplanes

in Ap̆ and hence opp̆(C.p̆) is a bounded chamber in V −
k−2(p̆) and [opp̆(C.p̆) ≺ p̆] is a

critical (k − 1)-cell.

4.3 Bijection between nbc and critical cells.

In this subsection, we prove that the maps fk, defined in equation (4), are well defined
bijective maps, for all k = 0, . . . , d.

Lemma 4.4. If p ∈ Pk is a critical k-face with [p] = ([H1]p, . . . , [Hk]p), then
there exists one and only one critical (k − 1)-face p̆ such that p̆ ≺ p and [p̆] =
([H1]p, . . . , [Hk−1]p).

Proof. Let p ∈ Pk be a critical k-face with [p] = ([H1]p, . . . , [Hk]p), Hi ∈ Ahi
\ Ahi−1

and let p1, p2 ≺ p be two critical (k − 1)-faces with [p1] = ([H ′
1]p1, . . . , [H

′
k−1]p1) and

[p2] = ([H ′′
1 ]p2 , . . . , [H

′′
k−1]p2), where H ′

i, H
′′
i ∈ [Hi]p, i = 1, . . . , k − 1. If p1 �= p2, then

| p1 | ∩ | p2 | would be a space of codimension ≥ k that contains p and this is not
possible as | p1 | ∩ | p2 | is an element in the intersection lattice of the arrangement
Ahk−1

while | p |⊂ Hk and Hk ∈ Ahk
\ Ahk−1

. Then there is a unique critical

(k− 1)-face p̆ ≺ p, [p̆] = ([H̆1]p̆, . . . , [H̆k−1]p̆) and it follows that [H̆i]p̆ = [Hi]p for any
i = 1, . . . , k − 1.

From now on, given a critical k-cell [C ≺ p] we will always denote by p̆ the unique
critical (k − 1)-face satisfying the condition in Lemma 4.4.

Lemma 4.5. If [C ≺ p] ∈ Critk(S) is a critical k-cell then [opp̆(C.p̆) ≺ p̆] is a
critical (k − 1)-cell.

Proof. It follows from Lemma 4.3 and the fact that p̆ = min�{p′ ∈ Pk−1 | p ∈| p′ |}
by property [(iii)] of the recursive order �.

Lemma 4.6. Let p ∈ Pk be a critical k-face, [p] = ([H1]p, . . . , [Hk]p). If [C ≺ p] ∈
Critk(S) is a critical k-cell, then C has exactly one wall H ∈ [Hk]p that satisfies
(C | C0)H = 1.

Proof. Let C.p̆(Ap̆) be the chamber of the arrangement Ap̆ that contains the chamber
C.p̆ and hence C. Let [C ′ ≺ p] be another critical k-cell with C ′ �= C and C ′ ⊂
C.p̆(Ap̆). Then C and C ′ have to be separated by at least one hyperplane and, as they
belong to the same chamber of Ap̆, they are separated by a hyperplane H ∈ [Hk]p.
It can be easily verified that (C | C0)H = 1 if and only if (C ′ | C0)H = −1.

Vice versa, any hyperplane H ∈ [Hk]p intersects the chamber C.p̆(Ap̆) and hence
it is the separating hyperplane of two different chambers contained in C.p̆(Ap̆). That
is for each hyperplane H ∈ [Hk]p there is a chamber C ′ ⊂ C.p̆(Ap̆) such that H is a
wall of C ′ and (C ′ | C0)H = 1.
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We are now ready to prove uniqueness. If H,H ′ ∈ [Hk]p are two hyperplanes
walls of C such that (C | C0)H = 1 and (C | C0)H′ = 1 then, by supersolvability,
there exists H ∈ [Hk−1]p such that H∩H ′ ⊂ H. It follows that rank(H∩H ′∩H) = 2
and hence H,H ′ and H cannot be walls of the same chamber C, that is either H
or H ′ separates chamber C from a chamber C having H as wall. By the order
chosen on the supersolvable arrangement it follows that an ordered minimal path
from C0 will cross C first and then C, i.e. H ′ separates C from C0 which contradicts
(C | C0)H′ = 1.

Theorem 4.7. The four conditions stated after (4) i determine a well-defined map
fk, and the map is a bijection between Critk(S) and nbck.

Proof. We will prove the theorem by induction on the dimension k of the critical
cells in Crit(S). The theorem holds trivially for the critical 0-cell that corresponds
to the empty set.

Let [C ≺ p] be a critical k-cell. Then, by Lemma 4.5, the (k−1)-cell [opp̆(C.p̆) ≺ p̆]
is critical and, by inductive hypothesis, there exists one and only one (k−1)-tuple of
hyperplanes (H1, . . . , Hk−1) ∈ nbck−1 such that (H1, . . . , Hk−1) = fk−1([opp̆(C.p̆) ≺
p̆]). Moreover, since when crossing a face p the order of hyperplanes in Ap is reversed
and since C and C.p̆ belong to the same chamber C.p̆(Ap̆) of the arrangement Ap̆

and C.p̆ and opp̆(C.p̆) are opposite chambers with respect to p̆, it follows that

min
�

{H ∈ [Hj]p | (C | C0)H = −1}

= min
�

{H ∈ [Hj]p | (C.p̆ | C0)H = −1}

= max
�

{H ∈ [Hj]p | (opp̆(C.p̆) | C0)H = 1},

for j = 1, . . . , k − 1. Analogously,

max
�

{H ∈ [Hj]p | (C | C0)H = 1}

= max
�

{H ∈ [Hj ]p | (C.p̆ | C0)H = 1}

= min
�

{H ∈ [Hj ]p | (opp̆(C.p̆) | C0)H = −1},

for j = 1, . . . , k − 1.

Then, if H ∈ [Hk]p is the only hyperplane satisfying Lemma 4.6, the k-tuple
(H1, . . . , Hk−1, H) satisfies all conditions of (4) and it is clearly the only element in
fk([C ≺ p]), that is fk is a map.

We need to verify that fk is bijective. Since nbck and Critk(S) are finite sets
of the same cardinality, it is enough to show that fk is injective. Let [C ′ ≺ p] be
a critical k-cell with fk([C

′ ≺ p]) = fk([C ≺ p]). Then, by inductive hypothesis,
opp̆(C.p̆) = opp̆(C

′.p̆), that is C.p̆ = C ′.p̆ and hence C.p̆(Ap̆) = C ′.p̆(Ap̆). By Lemma
4.6 there is only one hyperplane H ′ ∈ [Hk]p satisfying condition (iv) in the definition
of the map fk, that is C = C ′. Hence fk is injective.

As immediate corollaries, we get the following results.
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Corollary 4.8. The map f defined in (5) is a bijection.

Corollary 4.9. The map η−1f is a bijection between ch(A) and nbc.

Remark 4.10. In the construction of the map fk, we used properties of supersolvable
arrangements, but the main argument behind its description and construction is
merely a geometrical one. In fact, the map could be extended in general for any
complexified arrangement in a similar way to what has been done for different maps
by other authors, such as Yoshinaga in [21], Delucchi in [4], Jewell and Orlik in [10]
and Gioan and Las Vergnas in [9]. The interest of this map is its handy and natural
description that allows applications such as the one in the subsequent section. A
natural question is to which extent and how this map can be generalised without
losing its simple description. A partial answer about the non triviality of this question
is given by the following example.

4.4 Nice arrangements

A natural generalization of the notion of supersolvable arrangements is the one of
nice arrangements introduced by Terao in [19].

Fix an arrangement A in Rd. A partition π = (π1, . . . , πs) of A is called inde-
pendent if for any Hi ∈ πi ⊂ A, the hyperplanes H1, . . . , Hs are independent, i.e.
rank(H1 ∩ · · · ∩Hs) = s.

Consider now X ∈ L(A) and π = (π1, . . . , πs) a partition of A. Then the induced
partition πX is a partition of the arrangement AX whose blocks are the subsets
πi ∩ AX , for i = 1, . . . , s, which are not empty.

Definition 4.11. A partition π = (π1, . . . , πs) of A is called nice if

1. π is independent;

2. for any X ∈ L(A), the induced partition πX contains a block which is a single-
ton unless AX = ∅.

We will call A a nice arrangement if it admits a nice partition.

A supersolvable arrangement A is a nice arrangement with s = d − 1 and πi =
Ai+1 \ Ai.

Nice arrangements have been introduced by Terao since they answered the ques-
tion of which arrangements have their Orlik-Solomon algebra factorizable. In partic-
ular, π = (π1, . . . , πs) is a nice partition of A if and only if the Orlik-Solomon algebra
of A, viewed as Z-module factorizes as

A(A) = (Z⊕ B(π1))⊗ · · · ⊗ (Z⊕ B(πs)),

where B(πi) denotes the submodule of A1(A) spanned by the hyperplanes in πi.
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Figure 5: Nice arrangement.

Example 4.12. Let us consider the arrangement A described in Figure 5. The
cone cA over A is supersolvable and hence nice. Consider the partition defined by
π1 := {H1}, π2 := {H2, H

′
2} and π3 := {H3}. This partition is nice, but π1 ⊂ π1 ∪ π2

is not supersolvable arrangement, that is the partition π = (π1, π2, π3) is not com-
patible with supersolvable structure of cA. If we replace the nbc-basis obtained by
supersolvable filtration A = {H1, H2, H

′
2, H3} ⊃ A2 = {H1, H2} ⊃ {H1} with the

one obtained using partition π, the map f2 defined in 4 should associate to the crit-
ical 2-cell [C2 ≺ p] a 3-tuple of hyperplanes with H3 as last entry since π3 := {H3}.
But this clearly does not satisfy condition (iv) in the definition of the map fk.

Let us remark that in the above example no recursive order is compatible with
the nice partition π.

5 Braid arrangement

In this section, we describe the isomorphism between the symmetric group and the
nbc-basis of the Orlik-Solomon algebra for the braid arrangement in Rn+1

A(An) = {Hi,j = {xi = xj}, 1 ≤ i < j ≤ n + 1}.

In order to simplify the notation, we indicate by An both the Coxeter group and
the symmetric group on n+1 elements3, acting by permutations of the coordinates,
A = A(An) is the braid arrangement and S(An) is the associated CW-complex.

Notice thatA is a supersolvable arrangement with filtration given by A1 = {H1,2}
and Aj \ Aj−1 = {H1,j+1, . . . , Hj,j+1}, for j = 2, . . . , n.

In [15], the authors gave a tableaux description of S(An) and constructed singular
tableaux, that is tableaux corresponding to critical faces.

5.1 Tableaux description of S(An) and singular tableux

Given a system of coordinates in Rn+1 it is possible to describe S(An) through certain
tableaux as follow.

3With the obvious correspondence si = (i, i+ 1).
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Every k-cell [C ≺ F ] is represented by a tableau with n+ 1 boxes and n+ 1− k
rows (aligned on the left), filled with all the integers in {1, . . . , n + 1}. There is no
monotony condition on the length of the rows. One has:

- (x1, . . . , xn+1) is a point in F if and only if:

1. i and j belong to the same row if and only if xi = xj ,

2. i belongs to a row less than the one containing j if and only if xi < xj ;

- the chamber C belongs to the half-space xi < xj if and only if:

1. either the row which contains i is less than the one containing j or

2. i and j belong to the same row and the column which contains i is less than
the one containing j.

Notice that the geometrical action of An on the stratification induces a natural
action on the complex S(An), which, in terms of tableaux, is given by a left action
of An: σ. T is the tableau with the same shape as T, and with entries permuted
through σ.

Denote by T(An) the set of “row-standard” tableaux, i.e. with entries increasing
along each row. Each face in the stratification F(An) corresponds to an equivalence
class of tableaux, where the equivalence is up to row preserving permutations. Let
Tk(An) be the set of tableaux of dimension k (briefly, k-tableaux), i.e. tableaux with
exactly n + 1 − k rows. Moreover, write T ≺ T ′ if and only if F ≺ F ′, where the
tableaux T and T ′ correspond respectively to F and F ′.

Define the following operations between tableaux:

1. T ∗ T ′ is the new tableau obtained by attaching vertically T ′ below T ;

2. T ∗i h is the tableau obtained by attaching the one-box tableau with entry h
to the i-th row of T ;

3. T op is the tableau obtained from T by reversing the row order. Notice that
(T ∗ T ′)op = T ′op ∗ T op.

Fix k integers 1 < j1 < · · · < jk ≤ n+1 and, for any 1 ≤ h ≤ k+1, let Th be the
0-tableau (that is, the one-column tableau) with entries Jh = {jh−1 + 1, . . . , jh − 1}
in the natural order (set j0 = 0, jk+1 = k + 2). Then, for any suitable choice of
integers i1, . . . , ik define a k-tableau

T k = ((· · · ((((T op
1 ∗i1 j1) ∗ T2)

op ∗i2 j2) ∗ T3)
op · · · )op ∗ik jk) ∗ Tk+1. (7)

In [15], the authors proved that there exists a system of polar coordinates, generic
with respect to A(An), such that a k-facet p is critical if and only if the tableau Tp

which represents p is of the form in (7). Moreover the induced order � between
critical k-facets p equals the order between critical k-tableaux induced by the order
between sequences of pairs ((j1, i1), . . . , (jk, ik)), (jt, it) < (j′t, i

′
t) if and only if either

jt < j′t or jt = j′t and it > i′t. While a critical k-tableau is smaller than an critical
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h-one, with k �= h, if and only if k < h. This ordering is special recursive ordering.
As no confusion can arise, we will denote this order among critical tableaux by �.

Example 5.1. In the case A(A3) described in Section 3, following the notations in
Figures 1 and 2, the polar order on critical faces is

C0 � p11 � . . .� p16 � p21 � . . .� p27 � p3

which exactly correspond to the ordered sequence of corresponding tableaux:

1
2
3
4

�
1 2
3
4

�
2
1 3
4

�
2 3
1
4

�
3
2
1 4

�
3
2 4
1

�
3 4
2
1

� 1 2 3
4

� 3
1 2 4

� 3 4
1 2

� 1 3
2 4

� 1 3 4
2

� 1
2 3 4

� 1 4
2 3

� 1 2 3 4 .

Notice, for example, that the critical 1-face p11 with support | p11 |= H1,2 corre-

sponds to the tableau
1 2
3
4

and, analogously, the critical 2-face p27, | p27 |= H1,4∩H2,3

corresponding to couple of hyperplanes (H1,4, H2,3) corresponds to tableau 1 4
2 3

.

In a similar way, following the algorithm described above, it is possible to order all
faces, including chambers, and give a direct correspondence between chambers and
elements of the group. So, for example, the chamber C1 in Figure 3 corresponding to

the reflection s1 = (1, 2) corresponds to the tableau

2
1
3
4

, while the tableau

3
2
1
4

(which

is exactly opposite permutation of numbers {1, 2, 3} of the identity corresponding to
C0) corresponds to the chamber C3 = opp11

(C0) corresponding to the reflection s1s2s1
and so on.

We will now describe how to attach to each critical cell a 0-tableau to construct
a bijection between the nbc-basis of the Orlik-Solomon algebra of A(An) and the
symmetric group An.

5.2 Non broken circuits of the symmetric group

Fix p a critical k-face, [p] = ([Hi1 ]p, . . . , [Hik ]p). Consider then a critical k-cell [C ≺ p]
with fk([C ≺ p]) = (H ′

1, . . . , H
′
k), where H ′

j ∈ [Hij ]p. Because we are considering the
braid arrangement, for anyH ∈ A we can writeH = H(s,t) for some 1 ≤ s < t ≤ n+1.
Hence we can write

([Hi1 ]p, . . . , [Hik ]p) = ([H(s1,t1)]p, . . . , [H(sk,tk)]p)
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and
(H ′

1, . . . , H
′
k) = (H(s′1,t1), . . . , H(s′k,tk)).

Let Tp be the tableau attached to the critical k-face p. Then Tp is of the form
described in (7). Suppose that Tp has rows (Tp)1, . . . , (Tp)n+1−k.

We will describe how to attach to [C ≺ p] one and only one 0-tableaux T[C≺p]

starting from the tableau Tp.

Definition 5.2. Given a tableau T , define the map

rT : {1, . . . , n + 1} −→ {1, . . . , n+ 1}

such that rT (j) is the row of T where j is. If T = TF for a face F , we will simply
write rF instead of rTF

.

Remark 5.3. By construction, if Hs,t is a hyperplane such that Hs,t ⊃ p then s and
t lie in the same row of the tableau Tp, that is rp(s) = rp(t), while if Hs,t �⊃ p then
rp(s) �= rp(t). Moreover, if C is a chamber, that is a 0-codimensional facet, then it
is represented by a column tableau TC . Let C0 be the base chamber corresponding
to the tableau with entry i in the i-th row. By construction, if the hyperplane Hs,t,
s < t, separates the chambers C and C0 then rC(s) > rC(t), while rC(s) < rC(t)
otherwise. It is easy to see that if Hs,t is a wall of C, then |rC(s)− rC(t)| = 1, that
is s and t belong to consecutive rows.

Definition 5.4. Consider fk([C ≺ p]) = (H(s′1,t1), . . . , H(s′k,tk)). Then we define an
order <[C≺p] on the set of integers {s′1, . . . , s′k, t1, . . . , tk} as follows

i) if (−1)k−j = 1, then tj <[C≺p] s
′
j;

ii) if (−1)k−j = −1, then s′j <[C≺p] tj;

iii) tk <[C≺p] s
′
k are consecutive numbers in the order <[C≺p].

Proposition 5.5. The relation <[C≺p] is a total order on the entries of (Tp)i, for all
i = 1, . . . , n+ 1− k.

Proof. We will prove the statement using induction on k. Suppose k = 1. Then the
statement is obvious as Tp is a tableau with n− 1 rows of length one and one row of
length two with entries {s1, t1} and, by definition, t1 <[C≺p] s1.

Suppose now k > 1 and let (H(s′1,t1), . . . , H(s′k−1,tk−1)) be the k − 1-tuple obtained

removing the last entry of fk([C ≺ p]) = (H(s′1,t1), . . . , H(s′k,tk)). By Lemma 4.4 and
Corollary 4.8, there exists a unique critical (k−1)-cell [C ′ ≺ p̆] attached to it. Hence
we can consider the tableau Tp̆ and we know by induction that <[C′≺p̆] is a total
order on the rows of Tp̆. Tp ≺ Tp̆ differ only by the rows that contains s′k and tk as
rp̆(s

′
k) �= rp̆(tk) while rp(s

′
k) = rp(tk). As a consequence we just need to prove that

<[C≺p] is a total order on the row rp(s
′
k) = rp(tk). In all the other rows of Tp the

order is given by
b <[C≺p] a if and only if a <[C′≺p̆] b.
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Notice that, by tableaux definition, �(Tp̆)rp̆(tk) = 1 and hence (Tp)rp(s′k) = (Tp̆)rp̆(s′k) ∪
{tk}. By condition iii) in Definition 5.4 tk <[C≺p] s

′
k are consecutive numbers in the

order <[C≺p] then the rest of the row is naturally ordered by a ∈ (Tp̆)rp̆(s′k) \ {s′k},
a <[C′≺p̆] s

′
k implies a <[C≺p] tk and, similarly, s′k <[C′≺p̆] a implies tk <[C≺p] a, i.e.

<[C≺p] is a total order.

For all i = 1, . . . , n+ 1− k, denote by T i
[C≺p] the column tableau obtained trans-

posing the i-th row (Tp)i of the tableau Tp with entries ordered from upper to bottom
by <[C≺p]. Define

T[C≺p] := T 1
[C≺p] ∗ · · · ∗ T n+1−k

[C≺p] .

The following theorem holds.

Theorem 5.6. The map T : Crit(S(An)) −→ T0(An) defined by T([C ≺ p]) = T[C≺p]

is a bijection.

By Definition 5.4, we get that the bijection T factorizes through the bijection f .
That is, there exists a bijection

g : nbc(An) −→ T0(An)

between non broken circuit basis of the Orlik-Solomon algebra A(An) and 0-tableaux
such that T = g ◦ f . Moreover, as tableaux in T0(An) naturally correspond to
permutations in the symmetric group An on one hand and to chambers C � [C ≺ C]
of the braid arrangement A(An) on the other hand, if we consider the map η described
in (6), we get the following diagram of maps

Crit(S(An))
f−→ nbc(An)

η ↓ g ↓
ch(An)

ϕ−→ T0(An) � An

(8)

where ϕ is the bijection described in Section 5.1. The following Theorem holds.

Theorem 5.7. The diagram in (8) is a commutative diagram of bijective maps.

Example 5.8. In the case of A(A3), described in Section 3, Table 1 can be completed
adding the corresponding tableaux. We obtain Table 2. Notice that the tableaux in
the last column of Table 2 are the transpose of the corresponding tableaux, i.e. one
row tableaux instead of one column ones, simply for graphic reasons.

We remark that in this construction, the inverse map g−1 of the map g can be ob-
tained by direct computation as follows. Let T (An) be the set of all critical tableaux
computed as in equation (7). Given a permutation w ∈ An and the associated
tableau Tw, then Tw = TC′ for a chamber C ′ = opp(C) = η([C ≺ p]) where p is the
smallest critical face in the order � such that C ′ ≺ p and hence

Tp = min
�

{T ∈ T (An) | TC′ ≺ T}.
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k k-critical cell nbck Chamber Tableau

0 [C0 ≺ C0] ∅ C0
1 2 3 4

1 [C0 ≺ p11] H1,2 C1 = opp11
(C0) 2 1 3 4

1 [C1 ≺ p12] H1,3 C2 = opp12
(C1) 2 3 1 4

1 [C2 ≺ p13] H2,3 C3 = opp13
(C2) 3 2 1 4

1 [C3 ≺ p14] H1,4 C4 = opp14
(C3) 3 2 4 1

1 [C4 ≺ p15] H2,4 C5 = opp15
(C4) 3 4 2 1

1 [C5 ≺ p16] H3,4 C6 = opp16
(C5) 4 3 2 1

2 [C1 ≺ p21] (H1,2, H1,3) C8 = opp21
(C1) 3 1 2 4

2 [C2 ≺ p21] (H1,2, H2,3) C7 = opp21
(C2) 1 3 2 4

2 [C3 ≺ p22] (H1,2, H1,4) C10 = opp22
(C3) 3 4 1 2

2 [C4 ≺ p22] (H1,2, H2,4) C9 = opp22
(C4) 3 1 4 2

2 [C5 ≺ p23] (H1,2, H3,4) C11 = opp23
(C5) 4 3 1 2

2 [C8 ≺ p24] (H1,3, H2,4) C12 = opp24
(C8) 1 3 4 2

2 [C9 ≺ p25] (H1,3, H1,4) C14 = opp25
(C9) 4 1 3 2

2 [C10 ≺ p25] (H1,3, H3,4) C13 = opp25
(C10) 1 4 3 2

2 [C7 ≺ p26] (H2,3, H2,4) C16 = opp26
(C7) 1 4 2 3

2 [C12 ≺ p26] (H2,3, H3,4) C15 = opp26
(C12) 1 2 4 3

2 [C13 ≺ p27] (H2,3, H1,4) C17 = opp27
(C13) 4 1 2 3

Table 2: Correspondence in diagram (8) in case A(A3) up to k = 2.

Then, given TC′ and Tp it is possible to retrieve the nbc-tuple of hyperplanes
associated to w via Definition 5.4.

Notice that the map g is slightly different from the map constructed by Barcelo
and Goupil in [1]. If, from one side, g is a less natural map, from the group point of
view, than Barcelo and Goupil’s one4, on the other side it verifies the property that
all the chambers corresponding to reflections w � (H(s1,t1), . . . , H(sk,tk)) intersect a k-
dimensional subspace. So far this property, i.e. Lefschetz type argument, seems to be
quite important in order to study (co)homology related problems for A. Moreover,
the map g behaves properly with respect to the natural inclusion Ai ⊂ Ai+1.

An interesting question is whether this construction can be extended to other
reflection groups.

4and from Jewell-Orlik one from geometric point of view
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