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Abstract

A graceful labeling of a graph G with n edges is an injection from
the set of vertices of G to {0, 1, . . . , n} such that if each edge of G
is labeled by the absolute value of the difference of the labels of its
incident vertices, then every edge has a distinct label in {1, . . . , n}. The
famously unsettled graceful labeling conjecture proposes that every tree
has a graceful labeling. A graceful labeling θ of a graph G is said to
be gracious if for each vertex v of G either all adjacent vertices have
larger labels than θ(v) or all adjacent vertices have smaller labels than
θ(v). We introduce novel machinery for combining graceful bipartite
graphs to produce new graceful graphs. If the constituent graphs have a
gracious labeling then our methods produce a gracious labeling. Infinite
families of gracious trees are produced and new classes of graceful trees
are introduced. Along the way we offer a partial solution to a question
posed in 1979.

1 Introduction

Graceful labelings of graphs were introduced by A. Rosa in 1967 [19]. These labelings
have practical as well as theoretical applications. For example, graceful labelings
played a central role in the solution of the two-table Oberwolfach problems [21]. A
graceful graph with n edges cyclically decomposes the complete graph on 2n + 1
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Figure 1: A gracious tree which cannot be α-labeled

vertices [19]. There are graphs which are not graceful but it is unknown whether
or not every tree is graceful. The graceful tree conjecture proposes that every tree
is graceful. While many papers have been written on this conjecture [9] it remains
unresolved.

Some general methods for generating graceful labelings have been discovered [9];
for some previous constructions, see [5] and [13]. The “product” method presented in
[13] (in fact, it appears earlier in [20]) has been subsequently modified and extended
many times (see [3, 14, 15]). In this paper we present new methods for combining
certain families of gracefully labeled graphs to produce new gracefully labeled graphs.
These theorems are of particular interest since our construction is fundamentally
different from previous constructions.

A graph G is a set of vertices V (G) together with a set of edges E(G) ⊆ V (G)×
V (G) whose elements are denoted uv. All graphs are assumed to be simple and
connected. If G is a graph and v is a vertex of G, the neighborhood of v in G,
denoted by N(v), is the set of all vertices adjacent to v. A tree is a connected graph
with no cycles. We refer the reader to West [22] for definitions omitted.

A labeling of a graph G is an injection θ : V (G) → {0, 1, 2, . . .}. A labeled graph
is a pair (G, θ) where G is a graph and θ is a labeling of G. When θ is clear from
context, we may refer to the labeled graph (G, θ) as G and the vertex v of G which
is labeled k as the k-vertex of G. Every labeling θ of a graph G induces a labeling
on E(G) in the following manner: if uv is an edge of G, assign the induced edge label
θ(uv) := |θ (u)− θ (v)| to the edge uv.

A labeling θ of a graph G with n edges is graceful if the range of θ is contained
in the set {0, 1, . . . , n} and the set of induced edge labels is precisely {1, 2, . . . , n}.
If a graph G admits a graceful labeling then G is said to be graceful. All trees with
at most 35 vertices are claimed to be graceful in [8]. For a comprehensive survey of
known results on the topic of graceful labeling see [9].

A labeling θ of a graph G with n edges is said to be an α-labeling (originally
termed an α-valuation by Rosa [19]) if there exists a natural number s such that for
all edges uv of G, either θ(u) ≤ s < θ(v) or θ(v) ≤ s < θ(u). The number s is the
boundary value of the α-labeling.

In this paper Pn will denote the path with n edges and n+ 1 vertices. All paths
and caterpillar graphs (paths with any number of additional pendant vertices) can
be α-labeled [19]. However, there are graceful trees for which an α-labeling does not
exist. The smallest example of such a tree is the “spider” with 3 legs, each of which
has two edges: see Figure 1.

A labeling θ of a graph G is said to be ordered if for each v ∈ V (G), either for all
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u ∈ N(v), θ(u) < θ(v) or for all u ∈ N(v), θ(u) > θ(v). This definition appears to be
due to Cahit [6]; however the concept is also introduced in [10] in which it is called
a gracious labeling and a graph admitting a gracious labeling is termed gracious.
It is also rediscovered in [7], therein referred to as a near-α labeling. In this paper
we will use the term gracious. Every α-labeled tree is also a gracious tree, but not
conversely; see Figure 1. It is well-known that the tree in Figure 1 has no α-labeling.

Every tree with at most 20 vertices has been verified to have a gracious labeling
[10]. The ordered (or near-α or gracious) labeling conjecture proposes that every
tree has an ordered labeling [6, 7, 10]. Every graph with k edges with a gracious
labeling cyclically decomposes the complete graph on 2kn+ 1 vertices [7].

A graph G is bipartite if there exists a partition (A,B) of V (G) such that for each
edge e of G, e = uv where u ∈ A and v ∈ B. If G admits an α-labeling or a gracious
labeling then G is bipartite. Not all bipartite graphs are graceful; for example the
cycle graph C6 is bipartite yet fails to be graceful [19].

If (G, θ) is a gracefully labeled graph with n edges, the complementary labeling
θ̄ of G is defined for each vertex v of G by θ̄(v) = n − θ(v). If θ is a graceful
labeling, an α-labeling, or a gracious labeling, then so is θ̄. If f is a function, ranf
will denote the range of f . If (G, θ) is a labeled graph, a relabeling function is a
function f : ranθ → {0, 1, 2, . . .}. We may abuse notation and denote (G, f ◦ θ) by
(G, f).

Suppose (G, θ) is a gracefully labeled bipartite graph with bipartition (A,B). We
will say an edge e of G is positively oriented (with respect to the bipartition (A,B))
provided e = uv where u ∈ A, v ∈ B and θ(u) > θ(v). The labeling θ is gracious
if and only if the set of positively oriented edges of G is either empty or is equal to
E(G).

Definition 1.1. Suppose C = {(G1, θ1) , . . . , (Gm, θm)} is an indexed collection of
disjoint bipartite gracefully labeled graphs each with n edges. C is a compatible
collection if there exists a partition (A,B) of {0, 1, . . . , n} and for each i with 1 ≤
i ≤ m there exists a bipartition (A′i, B

′
i) of V (Gi) so that if Ai = {θi(v) : v ∈ A′i},

Bi = {θi(v) : v ∈ B′i} and

Pi = {θi(uv) : uv is a positively oriented edge of Gi} ,

then for each i, Ai ⊆ A, Bi ⊆ B and Pi = P1.

If C is a compatible collection in which all graphs are graciously labeled, then
C is a gracious compatible collection. See Figure 2 for an example of a gracious
compatible collection for which one may choose A = {3, 4, 6, 7}, B = {0, 1, 2, 5}, and
B′i to be the set of vertices of Gi colored white.

Definition 1.2. Suppose C = {(G1, θ1) , . . . , (Gm, θm)} is a compatible collection
of graphs. For each i with 1 ≤ i ≤ m, let wi be the 0-vertex of Gi and let Zi =
{θi(vwi) : vwi ∈ E(Gi)}. C is a 0-compatible collection if for each i, Zi = Z1.

See Figure 3 for an example of a 0-compatible collection of graphs each with 7
edges for which Z1 = {5, 7}.
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Figure 2: A gracious compatible collection

Figure 3: A 0-compatible collection

We introduce graceful pairings in Section 2. In Section 3 we prove that if m =
2k + 1, C = {(G1, θ1) , . . . , (Gm, θm)} is a (gracious) 0-compatible collection, and
G is a (graciously) gracefully labeled graph with k edges, then the graph formed
by identifying the graphs G,G1, . . . , Gm at their 0-vertices is (gracious) graceful.
Using this result we provide a partial answer to a question posed in [13] as well
as produce a new family of graceful trees. We also prove that if m = 2k + 1, C =
{(G1, θ1) , . . . , (Gm, θm)} is a (gracious) compatible collection, and G is a (graciously)
gracefully labeled graph with k − 1 edges, then the graph formed by attaching the
0-vertices of the graphs G,G1, . . . , Gm to a single new vertex v is (gracious) graceful.

A spider tree is a tree with one root for which all branches (or legs) are paths;
these trees are also known as subdivided stars or star-like graphs. An l-spider is a
spider tree all of whose legs have l edges. See Figure 1 for an example of a 2-spider.
In Section 4 we show that for each l there are infinitely many gracious l-spiders. As
a further application we produce a gracious labeling of a spider tree which was not
previously known to be graceful.

2 Graceful pairings

Our product theorems will require new machinery which is introduced in this section.

Definition 2.1. Let k be a natural number. A graceful pairing (of order k) is a
bijection f : {−k, . . . , k} → {−k, . . . , k} such that the function g (x) := x− f (x) is
also a bijection g : {−k, . . . , k} → {−k, . . . , k}.

Notice that if f and g are as in Definition 2.1, then g is also a graceful pairing.

Lemma 2.2. There exists a graceful pairing of order k for each natural number k.
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Proof. Let k be a natural number. Define f : {−k, . . . , k} → {−k, . . . , k} as follows:

f(i) =

{
− (k + i) if i ∈ {−k, . . . , 0}
1 + k − i if i ∈ {1, . . . , k} .

The minimum value assumed by f is −k (when i = 0) and the maximum value of f
is k (when i = 1). Therefore the range of f is contained in {−k, . . . , k}. We show
that f is a graceful pairing.

Clearly f is one-to-one when its domain is restricted to either {−k, . . . , 0} or to
{1, . . . , k}. So suppose i ≥ 1 and j ≤ 0. Then

f(i)− f(j) = 2k + 1 + (j − i) 6= 0

since j − i ≥ −2k. Therefore f is a bijection.

Now let g(x) = x− f(x). Then

g(i) =

{
2i+ k if i ∈ {−k, . . . , 0}
2i− (k + 1) if i ∈ {1, . . . , k} .

The range of g is contained in {−k, . . . , k}. Clearly g is injective on {−k, . . . , 0}
and on {1, . . . , k}. If i ≤ 0 and j ≥ 1, then g(i) 6≡ g(j) mod 2 so that g(i) 6= g(j).
Therefore g is a bijection.

We will need the following technical lemma. The functions defined in this lemma
depend on more than just i; however to simplify notation this information is sup-
pressed.

Lemma 2.3. Let m = 2k + 1 be any odd natural number, let n be any natural
number, and let (W,X, Y ) be any partition of {1, 2, . . . , n}. Let f : {−k, . . . , k} →
{−k, . . . , k} be a bijection, and for each i ∈ {−k, . . . , k} define functions li :
{1, 2, . . . , n} → {k + 1, . . . ,mn+ k} by

li(x) =


mx+ i if x ∈ W
mx+ f(i) if x ∈ X
mx− f(i) if x ∈ Y.

Then {ran li : −k ≤ i ≤ k} forms a partition of {k + 1, . . . ,mn+ k}.

Proof. It is straightforward to verify that the range of each function li is contained
in the set {k + 1, . . . ,mn+ k}. Note that if −k ≤ i ≤ k and −k ≤ j ≤ k then
since −k ≤ f(j) ≤ k we have |i− f(j)| ≤ 2k. If a 6= b and a, b ∈ {1, 2, . . . , n} then
|m (a− b)| ≥ m = 2k + 1.

First we show each li is an injection. Fix i with −k ≤ i ≤ k; then li is clearly
injective on W , on X and on Y . Suppose w ∈ W and x ∈ X; then w 6= x and

li(w)− li(x) = m(w − x) + i− f(i) 6= 0
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since |i− f(i)| ≤ 2k and |m (x− w)| ≥ 2k + 1. The other two cases are argued
similarly.

Now suppose i 6= j; then since f is a bijection, f(i) 6= f(j). We show ranli ∩
ranlj = ∅. There are six cases to consider. If w1 ∈ W and w2 ∈ W , then

li(w1)− lj(w2) = m(w1 − w2) + i− j 6= 0

since i 6≡ j mod m. If x1 ∈ X and x2 ∈ X, then

li(x1)− lj(x2) = m(x1 − x2) + f(i)− f(j) 6= 0

since f(i) 6≡ f(j) mod m. Similarly, if y1 ∈ Y and y2 ∈ Y then li(y1) 6= lj(y2).

Now suppose w ∈ W and x ∈ X. Then w 6= x and

li(w)− lj(x) = m(w − x) + i− f(j) 6= 0

since |m (w − x)| ≥ 2k + 1 and |i− f(j)| ≤ 2k.

If w ∈ W and y ∈ Y , then w 6= y and

li(w)− lj(y) = m(w − y) + i+ f(j) 6= 0

since |m (w − y)| ≥ 2k + 1 and |i+ f(j)| ≤ 2k. Similarly, if x ∈ X and y ∈ Y then
x 6= y and

li(x)− lj(y) = m(x− y) + f(i) + f(j) 6= 0

since |m (x− y)| ≥ 2k + 1 and |f(i) + f(j)| ≤ 2k.

Since for each i the function li is injective, |ranli| = n. Since the range of each li is
contained in the set {k + 1, . . . ,mn+ k}, and if i 6= j the range of li is disjoint from
the range of lj, and since |{−k, . . . , k}| = 2k + 1 = m and |{k + 1, . . . ,mn+ k}| =
mn, we have ⋃

−k≤i≤k

ranli = {k + 1, . . . ,mn+ k} .

3 Product theorems

In this section we describe a new type of product of graceful graphs. Our construction
is different from those in [3, 13, 14]. One notable difference is that our construction
preserves the gracious property. The assumption of 0-compatibility is weaker than
the technical assumption on the labelings in the constructions of [3, 13]. Our
construction allows for graphs other than trees to be combined, not just trees as
in [13, 14]. However, the number of graphs to be combined is more restrictive.

Theorem 3.1. Suppose m = 2k + 1, C = {(G1, θ1) , . . . , (Gm, θm)} is a (gracious)
0-compatible collection, and G is a (graciously) gracefully labeled graph with k edges.
Then the graph formed by identifying the graphs G,G1, . . . , Gm at their 0-vertices is
(gracious) graceful.
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Proof. Let m and C be as in the statement of the theorem and assume each graph in
C has n edges. For convenience re-index the sets in C so that C = {(G−k, θ−k), . . . ,
(Gk, θk)}. Since C is a compatible collection, there exists a partition (A,B) of
{0, 1, . . . , n} so that 0 ∈ B and bipartitions (A′i, B

′
i) of V (Gi) for −k ≤ i ≤ k so that

if Ai = {θi(v) : v ∈ A′i} and Bi = {θi(v) : v ∈ B′i} then Ai ⊆ A and Bi ⊆ B.

Fix a graceful pairing f : {−k, . . . , k} → {−k, . . . , k} of order k. Then f is a
bijection. For each i with −k ≤ i ≤ k, let li : {1, . . . , n} → {k + 1, . . . ,mn+ k} be
defined as follows:

li (x) =

{
mx+ i if x ∈ A
mx+ f(i) if x ∈ B\{0}.

It follows from Lemma 2.3 (taking W = A, X = B\{0}, and Y = ∅) that each li is
an injection, and if i 6= j then ranli ∩ ranlj = ∅.

Let wi be the 0-vertex of Gi. Let

P ′i = {θi (uv) : uv is a positively oriented edge of Gi} ,

Zi = {θi (vwi) : vwi ∈ E(Gi)} and Qi = {1, 2, . . . , n} \P ′i . Since 0 ∈ B we have
wi ∈ B′i, so that if vwi ∈ E(G) then vwi is positively oriented. Thus Zi ⊆ P ′i . Let
Pi = P ′i\Zi and Z = Z0, P = P0 and Q = Q0. Then {Z, P,Q} is a partition of
{1, 2, . . . , n}. Since C is a 0-compatible family, for each i with −k ≤ i ≤ k we have
Zi = Z, Pi = P and Qi = Q.

The function g : {−k, . . . , k} → {−k, . . . , k} defined by g(x) = x − f(x) is a
bijection since f is a graceful pairing. For −k ≤ i ≤ k define qi : {1, . . . , n} →
{k + 1, . . . ,mn+ k} as follows:

qi (x) =


mx+ i if x ∈ Z
mx+ g(i) if x ∈ P
mx− g(i) if x ∈ Q.

Then since {Z, P,Q} partitions {1, 2, . . . , n} and g is a bijection, the family of
functions qi for −k ≤ i ≤ k satisfy the hypotheses of Lemma 2.3, with f = g,
W = Z, X = P , and Y = Q.

Next we relabel each Gi. For −k ≤ i ≤ k define

fi : Ai ∪Bi → {0} ∪ {k + 1, . . . ,mn+ k}

as follows:

fi (x) =

{
0 x = 0

li (x) x 6= 0
=


0 x = 0

mx+ i x ∈ Ai

mx+ f(i) x ∈ Bi\{0}.
(1)

Consider (Gi, fi) = G′i. We show that for each edge e = uv of G′i

|fi (θi (u))− fi (θi (v))| = qi (θi (uv)) .
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First suppose e is an edge of Gi such that e = vwi where wi is the 0-vertex of
(Gi, θ). Then θi (vwi) ∈ Z and v ∈ A′i. Since θi (v) > θi (wi) = 0 and θi (v) ∈ Ai,
θi(vwi) = θi(v). Therefore

fi (θi (v))− fi (θi (wi)) = fi (θi (v))− fi (0) = m · θi (v) + i− 0 = qi (θi (vwi)) .

Next, suppose e = uv is an edge of Gi so that u ∈ A′i, v ∈ B′i, v 6= wi and
θi (u) > θi (v). Then θi (uv) ∈ P and

fi (θi (u))− fi (θi (v)) = m · θi (u) + i− (m · θi (v) + f (i))

= m (θi (u)− θi (v)) + (i− f (i))

= m · θi (uv) + g (i)

= qi (θi (uv)) .

Finally, suppose e = uv is an edge of Gi so that u ∈ A′i and v ∈ B′i and θi (v) >
θi (u). Then θi (uv) ∈ Q and

fi (θi (v))− fi (θi (u)) = m · θi (v) + f (i)− (m · θi (u) + i)

= m (θi (v)− θi (u))− (i− f (i))

= m · θi (uv)− g (i)

= qi (θi (uv)) .

Let H ′ be the tree with mn edges formed by identifying the 0-vertices of G′−k, . . . ,
G′k. It follows from Lemma 2.3 that the set of vertex labels of H ′ is contained in the
set {0} ∪ {k + 1, . . . ,mn+ k}, no two vertices have the same label, and the set of
induced edge labels is precisely the set {k + 1, . . . ,mn+ k}.

Now let G be as in the statement of the theorem and let θ be a graceful labeling
of G. Let H be the graph formed by identifying the 0-vertex of G with the 0-vertex
of H ′. Define a graceful labeling h of H by

h (x) =

{
θ(x) x ∈ V (G)

fi (θi (x)) x ∈ V (Gi) .

Next, we show that each fi defined as in Equation 1 is increasing. Suppose
0 < x1 < x2. If x1, x2 are both in Ai or both in Bi then fi(x1) < fi(x2). So suppose
x1 ∈ Ai and x2 ∈ Bi. Then

f(x2)− f(x1) = m (x2 − x1) + f(i)− i
≥ m− 2k = 1.
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Figure 4: The collection in Figure 3 relabeled as in Theorem 3.1

Figure 5: Theorem 3.1 applied to the collection in Figure 3 and P2

The case x1 ∈ Bi and x2 ∈ Ai is similar. If x1 = 0 and 0 < x2 then fi (x1) = 0 <
fi (x2) since fi (x2) ≥ k + 1.

Since each fi is an increasing function, the set of positively oriented edges of
(Gi, θi) is equal to the set of positively oriented edges of (Gi, fi) (both with respect
to the bipartition (A′i, B

′
i)). Therefore if C is a gracious 0-compatible collection and

(G, θ) is gracious then (H, h) is gracious.

The 0-compatible collection in Figure 3 relabeled as in the proof of Theorem
3.1 appears in Figure 4. See Figure 5 for the result of applying Theorem 3.1 to
the 0-compatible collection in Figure 3 and the path P2, using the graceful pairing
appearing in the proof of Lemma 2.2.

Corollary 3.2. If G is a (graciously) gracefully labeled graph with k edges, then the
graph formed by taking 2k+ 2 copies of G and identifying them at their 0-vertices is
(gracious) graceful.

Proof. Let C consist of 2k + 1 copies of G; then C is a (gracious) 0-compatible
collection. Apply Theorem 3.1 to C and G to obtain the result.

Although Corollary 3.2 is similar to Theorem 2 of [13] if the graph G is a graceful
tree, in fact Corollary 3.2 generates a new class of graceful trees. This is because
Theorem 2 of [13] additionally requires the labeled tree (G, θ) to satisfy the following
condition: if G has n edges and w is the 0-vertex of G, then if v ∈ N(w) and θ(v) 6= n
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Figure 6: Theorem 3.3 applied to the gracious collection in Figure 2 and P1

then there is u ∈ N(v) with θ(u) = n − θ(v). Weakening this condition appears to
be difficult. In fact, in [13] the authors pose the question of whether there always
exists a graceful labeling on this type of product of copies of (G, θ) which can be
defined in terms of the original labeling θ, regardless of whether or not θ satisfies the
additional requirement. Our Corollary 3.2 is a partial answer to this question: yes,
if the number of copies of G is as described in Corollary 3.2.

Theorem 3.3. Suppose m = 2k + 1, C = {(G1, θ1) , . . . , (Gm, θm)} is a (gracious)
compatible collection, and G is a (graciously) gracefully labeled graph with k−1 edges.
Then the graph formed by attaching the 0-vertices of the graphs G,G1, . . . , Gm to a
single new vertex v is (gracious) graceful.

Proof. Let C , m, and k be as in the statement of the theorem and suppose each
Gi has n edges. For each i with 1 ≤ i ≤ m, let (Hi, fi) be the labeled graph
obtained by appending a single vertex labeled n + 1 to the 0-vertex of Gi. Next
let C ′ =

{(
Hi, f̄i

)
: 1 ≤ i ≤ m

}
, where f̄i denotes the complementary labeling of fi.

Then C ′ is a (gracious) 0-compatible collection. Let G be as in the statement of the
theorem, and let (H, f) be the labeled graph resulting from appending a new vertex
labeled k to the 0-vertex of G. Applying Theorem 3.1 to C ′ and

(
H, f̄

)
yields the

result.

See Figure 6 for the result of applying Theorem 3.3 to the gracious compatible
collection in Figure 2 and the path P1, with the graceful pairing as in the proof of
Lemma 2.2.

Corollary 3.4. Suppose m = 2k+ 2 and C = {(G1, θ1) , . . . , (Gm, θm)} is a gracious
compatible family so that each Gi has k−1 edges. Then the graph formed by attaching
the 0-vertex of each Gi to a single new vertex has a gracious labeling.

Proof. C ′ = C \ {G1} is a gracious compatible collection with 2k+1 members; apply
Theorem 3.3 to C and G1.
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Figure 7: The path P5 with an α-labeling

4 Spider trees

As an application of our product theorems, in this section we produce labelings of
spider trees. A spider is a tree with at most one vertex of degree larger than two.
We allow paths to be considered spiders. It is well-known that every path has an
α-labeling in which the 0-vertex is a degree 1 vertex [18]; see Figure 7. If a spider is
not a path, we refer to the highest degree vertex of the spider as its center.

An l-spider is a spider for which every leg has l edges. Since l-spiders are
symmetrical trees, every l-spider is graceful [4]. Every 2-spider has a gracious labeling
(proven in both [7, 16]) however it is unknown whether or not every l-spider is
gracious.

Theorem 4.1. For each natural number l ≥ 2 there are infinitely many gracious
l-spiders.

Proof. Fix a natural number l ≥ 2. There is at least one gracious l-spider since the
path with l edges has an α-labeling. We can choose this labeling so that the 0-vertex
is a degree 1 vertex, and we will refer (somewhat unusually) to this 0-vertex as the
center of the l-spider.

Suppose S is a graciously labeled l-spider whose center vertex is labeled 0 and
suppose the number of edges of S is k. Apply Corollary 3.2 to S to obtain a graciously
labeled graph S ′ with (2k + 2) k edges. Since S ′ was obtained by identifying the 0-
vertices of (2k + 2) copies of S, S ′ is also a graciously labeled l-spider whose center
vertex labeled 0. This completes the proof.

We use our product method to create large classes of gracious spiders, for some
of which the existence of a graceful labeling was previously unknown. We will need
the following fact, due to Rosa [18]:

Fact 4.2. [18] If P is a path with n edges, then if n 6= 4, for any vertex v of P there
exists an α-labeling of P in which the vertex v is labeled 0.

We use these labeled paths to build gracious spiders.

Corollary 4.3. Suppose P is a graciously labeled path and S is a graciously labeled
spider with k edges whose center is labeled 0. Then the spider tree formed by
identifying the 0-vertices of S and 2k + 1 copies of P is gracious.

If G is an (α-labeled) gracefully labeled graph and H is an α-labeled graph, then
the graph formed by identifying the 0-vertex of G with the 0-vertex of H has an (α-
labeling) graceful labeling; see Theorem 3.1 of [23] (see also [2]) and Lemma 2.1 of
[12]. This result extends to gracious labelings, as shown in the following proposition.
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Proposition 4.4. If (H, f) is an α-labeled graph and (G, θ) is a graciously labeled
graph then the graph formed by identifying the 0-vertices of G and H is gracious.

Proof. Assume (H, f) is an α-labeled graph with n edges and with boundary value
s and that (G, θ) is a graciously labeled graph with m edges. Let W be the graph
formed by identifying the 0-vertex of G with the 0-vertex of H. Label W as follows:

w (v) =


s− f(v) v ∈ V (H), f(v) ≤ s

s− f(v) + n+m+ 1 v ∈ V (H), f(v) > s

θ(v) + s v ∈ V (G).

We verify that w is a gracious labeling. Let uH and uG be the 0-vertices of H and
G, respectively, and note that w (uH) = s = w (uG). If v ∈ V (G) and v 6= uG then
s+1 ≤ w(v) ≤ m+s. If v ∈ V (H) with v 6= uH and f(v) ≤ s, then 0 ≤ w(v) ≤ s−1.
If v ∈ V (H) and f(v) > s then m + s + 1 ≤ w(v) ≤ n + m. These facts together
show that w is an injection from V (G) ∪ V (H) to {0, 1, . . . , n+m}.

Next, notice that if uv is an edge of G then θ (uv) = w (uv) and so the labeled
graph

(
G,w �V (G)

)
has induced edge labels {1, 2, . . . ,m}. If uv is an edge of H, then

since f is an α-labeling, we can suppose f(u) ≤ s < f(v). Then

n+m+ 1− f(uv) = w(v)− w(u) = w(uv)

so the edge labels of
(
H,w �V (H)

)
are {m+ 1, . . . ,m+ n}. Therefore w is graceful.

Moreover, it is clear that w preserves the orientation of the edges of H, and w
preserves the orientation of the edges of G. Therefore since θ is gracious then so is
w.

We note that the labeled spiders created as in Theorem 4.1 and Corollary 4.3 have
their centers labeled 0, and so one may add two new legs of any length to such a
spider, provided the new legs do not both have two edges, and obtain a new gracious
spider using Proposition 4.4 and Fact 4.2.

We conclude this paper by providing a gracious labeling for a spider tree S which
was previously unknown to be graceful. This spider tree S has 13 legs of length 5 and
3 legs of length 2. The spider tree S has more than 4 legs [12], diameter greater than
5 [11], more than 35 vertices (it has 72) [8], is not an olive tree [17], contains two legs
which differ in length by more than 1 [1], and cannot be composed of equally-sized
smaller rooted trees that are identified at their roots (the construction in [13]) since
71 is prime.

Example 4.5. We begin by taking 13 copies of P5 labeled as in Figure 7 and
relabeling them as in the proof of Theorem 3.1; the 13 copies of P5 form a gracious
0-compatible family. Next, take the gracious 2-spider labeled as in Figure 1 and
attach the 13 relabeled paths and the 2-spider at their 0-vertices, as in the proof of
Theorem 3.1. See Figure 8.
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Figure 8: A new graceful spider with a gracious labeling
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