
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 75(3) (2019), Pages 365–384

On the 2-edge-coloured chromatic number of grids

Julien Bensmail∗

Université Côte d’Azur
CNRS, Inria, I3S

France
julien.bensmail.phd@gmail.com

Abstract

The oriented (2-edge-coloured, respectively) chromatic number χo(G)
(χ2(G), respectively) of an undirected graph G is defined as the max-
imum oriented (2-edge-coloured, respectively) chromatic number of an
orientation (signature, respectively) of G. Although the difference be-
tween χo(G) and χ2(G) can be arbitrarily large, there are, however, con-
texts in which these two parameters are quite comparable.

We compare here the behaviour of these two parameters in the context
of (square) grids. While a series of works has been dedicated to the ori-
ented chromatic number of grids, we are not aware of any work dedicated
to their 2-edge-coloured chromatic number. We investigate this through-
out the paper. We show that the maximum 2-edge-coloured chromatic
number of a grid lies between 8 and 11. We also focus on 2-row grids
and 3-row grids, and exhibit bounds on their 2-edge-coloured chromatic
number, some of which are tight. Although our results indicate that the
oriented chromatic number and the 2-edge-coloured chromatic number
of grids are close in general, they also show that these parameters may
differ, even for easy instances.

1 Introduction

Colouring problems are among the most important problems of graph theory, as
they can model many real-life problems under a graph-theoretical formalism. In its
most common sense, a colouring of an undirected graph G refers to a proper vertex-
colouring, which is a colouring of V (G) such that every two adjacent vertices of G get
assigned distinct colours. Many variants of this definition have been introduced and
studied in the literature, including variants dedicated to modified kinds of graphs,
which are of interest in this paper.
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Namely, our investigations are related to two kinds of modified graphs, called
oriented graphs and 2-edge-coloured graphs. An oriented graph

−→
G is a directed graph

obtained from an undirected simple graph G by orienting every edge uv either from u
to v (resulting in an arc −→uv) or conversely (resulting in an arc −→vu). We sometimes also
call

−→
G an orientation of G. Now, from G, we can also get a 2-edge-coloured graph

(G, σ) by assigning a sign σ(uv), being either − (negative) or + (positive), to every
edge uv of G. We call (G, σ) a signature of G. In the literature, 2-edge-coloured
graphs are sometimes also called signified graphs, from which we here borrow the
terminology above.

One of the most judicious ways for extending the notion of proper vertex-colouring
to oriented graphs and 2-edge-coloured graphs is through the notion of graph homo-
morphisms. That is, a proper k-vertex-colouring φ of an undirected graph G can be
regarded as a homomorphism from G to Kk (the complete graph on k vertices), i.e.,
a mapping φ : V (G) → V (Kk) preserving the edges (i.e., for every edge uv of G, we
have that φ(u)φ(v) is an edge of Kk). Quite similarly, we can define an oriented ho-
momorphism as a vertex-mapping (from an oriented graph to another one) preserving
not only the arcs but also the arc directions, and a 2-edge-coloured homomorphism as
a vertex-mapping (from a 2-edge-coloured graph to another one) preserving not only
the edges but also the edge signs. From this, an oriented colouring φ of an oriented
graph can be defined as a vertex-colouring such that, for any two arcs −−→u1v1 and −−→u2v2,
if φ(u1) = φ(v2) then φ(v1) �= φ(u2). Analogously, a 2-edge-coloured colouring φ of a
2-edge-coloured graph has the property that, for any two edges u1v1 and u2v2 with
different signs, if φ(u1) = φ(v1) then φ(u2) �= φ(v2).

Given a graph and a particular colouring variant, the main objective is usually
to find a colouring of the graph that minimizes the number of colours. For an
undirected graph G, the least number of colours in a proper vertex-colouring is called
the chromatic number of G, commonly denoted by χ(G). From the homomorphism
point of view, χ(G) can also be defined as the smallest k such that G admits a
homomorphism toKk. Concerning the aforementioned colouring variants for oriented
graphs and 2-edge-coloured graphs, the associated chromatic parameters are called
the oriented chromatic number and 2-edge-coloured chromatic number, respectively,
and are denoted by χo(

−→
G ) and χ2((G, σ)), respectively (where

−→
G is an oriented

graph, and (G, σ) is a 2-edge-coloured graph). The parameters χo and χ2 can also
be derived for undirected graphs: for an undirected graph G, χo(G) is defined as
the maximum value of χo for an orientation of G, while χ2(G) is defined as the
maximum value of χ2 for a signature of G. In other words, χo(G) and χ2(G) indicate
whether G is the underlying graph of oriented or 2-edge-coloured graphs needing
many colours to be coloured. For more details on these two chromatic parameters,
we refer the interested reader to the recent survey [7] by Sopena dedicated to the
oriented chromatic number, and to the Ph.D. thesis [6] of Sen, which is dedicated, in
particular, to both the oriented chromatic number and the 2-edge-coloured chromatic
number.

Our investigations in this paper are motivated by the general relation between
χo(G) and χ2(G) for a given undirected graph G. Intuitively, one could expect these
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two parameters to be close somehow, as oriented graphs and 2-edge-coloured graphs
are rather alike notions: in both an orientation and a signature of G, every edge has
one of two possible “states” (being oriented in one way or the other, or being positive
or negative). From a more local point of view, though, an oriented edge and a 2-edge-
coloured edge are perceived differently by their two ends. In light of these two facts,
it thus appears legitimate to wonder whether oriented graphs and 2-edge-coloured
graphs have comparable behaviours (in general, or in particular cases). This aspect
was notably investigated by Sen in his Ph.D. thesis [6].

In general, it has to be known that, for a given undirected graph G, the difference
between χo(G) and χ2(G) can be arbitrarily large, as noted by Bensmail, Duffy and
Sen in [1]. A natural arising question is thus whether this behaviour is systematic or
can be observed for a restricted number of graph classes only. Towards this question,
we here focus on the class of (square) grids, where the grid G(n,m) with n rows and
m columns is defined as the undirected graph being the Cartesian product of the path
with order n and the path with order m. While, to the best of our knowledge, no
studies dedicated to the 2-edge-coloured chromatic number of grids were led, a series
of works, namely [2, 4, 8], can be found in the literature on the oriented chromatic
number of these graphs. In brief words, these works have (1) pointed out that the
maximum oriented chromatic number of a grid lies between 8 and 11, and have (2)
established the exact oriented chromatic number of grids with at most four rows.
More details on these results will be given throughout this paper as they connect to
our investigations.

We must also report that some upper bounds on the 2-edge-coloured chromatic
number of grids can be derived from more general results. In particular, Nešetřil and
Raspaud proved in [5] that every undirected graph G with acyclic chromatic number
k has 2-edge-coloured chromatic number at most k · 2k−1; since grids were shown
to have acyclic chromatic number at most 3 (see [3]), this implies that grids have
2-edge-coloured chromatic number at most 12.

We thus initiate the study of the 2-edge-coloured chromatic number of grids as
such, our main objective being to investigate how close the oriented chromatic num-
ber and the 2-edge-coloured chromatic number of these graphs are. Before presenting
our results, we first introduce, in Section 2, some definitions and terminology that
are used throughout this paper. We then start, in Section 3, by providing a general
constant upper bound on the 2-edge-coloured chromatic number of grids. Namely,
we prove that χ2(G(n,m)) ≤ 11 holds for every n,m ≥ 1, which improves the upper
bound of 12 mentioned above. We then get, in Sections 4 and 5, first lower bounds on
the 2-edge-coloured chromatic number of grids by focusing on 2-edge-coloured grids
with at most three rows. In particular, we point out that some 2-edge-coloured 3-row
grids cannot be coloured with fewer than 7 colours. We also provide refined bounds
on the 2-edge-coloured chromatic number of 2-row grids and 3-row grids, our bounds
for 2-row grids being sharp. Generalizing the proofs of our lower bounds for 2-edge-
coloured 3-row grids, we then show, in Section 6, that there exist 2-edge-coloured
grids with 2-edge-coloured chromatic number at least 8. We finally conclude this
paper by summarizing our results in Section 7, and by discussing how the oriented
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chromatic number and 2-edge-coloured chromatic number of grids compare.

2 Definitions and terminology

Throughout this paper, we use σ to refer to the implicit signature function of any
2-edge-coloured graphG. For every vertex v ofG, we say that another vertex u is a −-
neighbour (+-neighbour, respectively) of v if uv is a negative (positive, respectively)
edge. The −-degree (+-degree, respectively) of v is its number of −-neighbours (+-
neighbours, respectively)

Let A be a 2-edge-coloured graph. By an A-colouring of G, we refer to a homo-
morphism from G to A. We also say that G is coloured by A. To stick to the colouring
point of view, the vertices of any colouring graph A are generally represented, in our
proofs, by consecutive integers 0, . . . , |V (A)|−1. A downside of this notation is that,
to refer to an edge αβ of A, we sometimes have to write it under the form {α, β} to
avoid any ambiguity. In that spirit, we denote k-paths (i.e., paths of length k) of A
under the form P = (α1, . . . , αk+1), where α1, . . . , αk+1 are the consecutive vertices
of P . Assuming the signs of the k edges of P are s1, . . . , sk, we sometimes say that P
is an s1 . . . sk-path. Similarly as for paths, we denote by (α1, . . . , αk, α1) any k-cycle
(i.e., cycle of length k). Any 2-edge-coloured path or cycle is said alternating if no
two of its consecutive edges have the same sign.

Some of our upper bounds in this paper are established from colourings by special
2-edge-coloured graphs which we call 2-edge-coloured circulant graphs. The definition
is as follows (see Figure 2 (right) for an illustration). Let Kn be the complete graph
with vertex set {0, . . . , n − 1}, and S ⊆ {1, . . . , n − 1} be a set of integers. The 2-
edge-coloured circulant graph C(n, S) (generated by S) is the signature of Kn where
the edge {i, (i+ j) (mod n)} is positive for every j ∈ S and i ∈ {0, . . . , n− 1}, while
all other edges are negative.

3 A general upper bound

The only known upper bound on the oriented chromatic number of grids was exhib-
ited by Fertin, Raspaud and Roychowdhury, who proved in [4] that χo(G(n,m)) ≤ 11
holds for every n,m ≥ 1. In this section, we prove that, for every grid G = G(n,m),
we have χ2(G) ≤ 11 as well. As mentioned in the introductory section, this im-
proves a bound of 12 that can be derived from general results on the 2-edge-coloured
chromatic number.

We more precisely prove that every 2-edge-coloured grid admits an A11-colouring,
where A11 is the signature of K11 depicted in Figure 1. To avoid any ambiguity, the
−-neighbours and +-neighbours of every vertex of A11 are listed in Table 1. A11 has
properties that will prove to be of interest to us, some of which are tedious to prove
formally due to the lack of general symmetries of A11. We point out some of these
properties, that can easily be checked by hand using Table 1.

Observation 3.1. A11 has the following properties:
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Figure 1: The 2-edge-coloured graph A11. Black (gray, respectively) edges are posi-
tive (negative, respectively) edges.

Vertex −-neighbours +-neighbours
0 1, 2, 4, 8, 10 3, 5, 6, 7, 9
1 0, 2, 3, 5, 8, 9 4, 6, 7, 10
2 0, 1, 3, 4, 7 5, 6, 8, 9, 10
3 1, 2, 4, 5, 7 0, 6, 8, 9, 10
4 0, 2, 3, 5, 6, 10 1, 7, 8, 9
5 1, 3, 4, 6, 9 0, 2, 7, 8, 10
6 4, 5, 7, 8 0, 1, 2, 3, 9, 10
7 2, 3, 6, 8, 9, 10 0, 1, 4, 5
8 0, 1, 6, 7 2, 3, 4, 5, 9, 10
9 1, 5, 7, 10 0, 2, 3, 4, 6, 8
10 0, 4, 7, 9 1, 2, 3, 5, 6, 8

Table 1: Adjacencies of A11.

P1. Every vertex of A11 has −-degree (and +-degree) at least 4 and at most 6.

P2. For every two vertices u �= v of A11, there exist ++-paths from u to v.

P3. For every two vertices u �= v of A11, there exist −−-paths from u to v.

P4. For every two vertices u �= v of A11, there exist +−-paths from u to v.

P5. For every two vertices u �= v of A11, there exist −+-paths from u to v.

To ease the checking of Properties P2 to P5, we provide, in Table 2, the exhaustive
list of all ++-paths, −−-paths, +−-paths and −+-paths of A11. Due to the large
number of cases to consider, that table is postponed to the Appendix.

We are now ready to prove our main result.

Theorem 3.2. Every 2-edge-coloured grid is A11-colourable. Therefore, for every
n,m ≥ 1, we have χ2(G(n,m)) ≤ 11.

Proof. Consider G any signature of G(n,m). We construct an A11-colouring φ of
G in the following way. First, we assign a colour by φ to every vertex of the first
row, from the first-column vertex to the last-column vertex. We then repeatedly
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do the following, row by row. Assuming all vertices of the (i − 1)th row have been
assigned a colour by φ, we then extend the partial A11-colouring to the vertices of
the ith row, from the first-column vertex to the last-column vertex. Once this has
been performed for every row of G, we will end up with φ being an A11-colouring of
the whole grid G.

Let us consider the consecutive vertices a1, . . . , an of the first row of G, where
a1 (an, respectively) is the first-column (last-column, respectively) vertex. We start
by setting e.g. φ(a1) = 0. We now claim that, assuming φ(ai−1) has been fixed (for
some i ≥ 1), we can correctly extend the partial A11-colouring to ai. When choosing
φ(ai), we just need to make sure that the sign of φ(ai−1)φ(ai) in A11 matches that of
ai−1ai in G. Since all vertices of A11 have −-degree and +-degree at least 4, recall
Property P1 of Observation 3.1, we then have at least four colours that can correctly
be assigned to φ(ai). Repeating this argument for all successive vertices of the first
row, we end up with a correct A11-colouring of the first row of G.

Now assume all vertices a1, . . . , an of the (i−1)th row (for some i ≥ 1) of G have
been assigned a colour by φ, and consider the consecutive vertices b1, . . . , bn of the
ith row (where, for every j, aj , bj are the vertices of the jth column). Assume we
want to colour the bi’s as going from b1 to bn. When considering a vertex bi, we note
that φ(bi) must be chosen in such a way that the signs of φ(bi−1)φ(bi) and φ(bi)φ(ai)
in A11 match that of bi−1bi and biai, respectively, in G. This implies that we need to
make sure that, in A11, there exist 2-edge-coloured 2-paths φ(bi−1)φ(bi)φ(ai) whose
signs match that of bi−1biai. According to Properties P1 to P5 of Observation 3.1,
such paths always exist in A11, provided φ(bi−1) �= φ(ai), or φ(bi−1) = φ(ai) but
φ(bi−1)φ(bi) and φ(bi)φ(ai) have the same sign. In other words, we must avoid the
situation where φ(bi−1) = φ(ai) when the signs of bi−1bi and biai are different. One
problem is that, as noted in Table 2, there are configurations of colours and signs
where only one colour can be correctly chosen as φ(bi) (for instance, when φ(bi−1) = 0,
φ(ai) = 5 and bi−1bi and biai are both positive). This is an issue, as this might lead
to bi+1 being not correctly colourable (typically when the unique possible colour for
bi is that of ai+1, the edge bibi+1 is positive, and the edge bi+1ai+1 is negative).

Because of such configurations, we cannot just colour the bi’s one after another,
as we may fall into a dead end. What we do instead, is computing and memorizing
the possible colours for bi by all possible correct partial A11-colourings of the previous
vertices b1, . . . , bi−1. More formally, for each vertex bi, we consider the function ψ(bi)
being the set of colours such that for each α ∈ ψ(bi), there is an extension of φ to
b1, . . . , bi where φ(bi) = α. What we prove below is that |ψ(bn)| > 0, which implies
that φ can correctly be extended to all bi’s, thus to the whole row.

We first consider ψ(b1). The possible colours for φ(b1) are those such that the
sign of φ(a1)φ(b1) in A11 matches that of a1b1. This implies that ψ(b1) is highly
dependent of φ(a1). For instance, if φ(a1) = 0 and a1b1 is positive, then ψ(b1) is the
set of all +-neighbours of vertex 0 in A11. If φ(a1) = 0 and a1b1 is negative, then
ψ(b1) is the set of all −-neighbours of vertex 0 in A11. And so on. In other words,
ψ(b1) ∈ L1, where L1 is the union, over all vertices of A11, of the −-neighbourhoods
and +-neighbourhoods; thus, L1 can be extracted directly from Table 1.
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Claim 3.3. ψ(b1) = L, where L ∈ L1 := {{0, 1, 2, 3, 9, 10}, {0, 1, 3, 4, 7}, {0, 1, 4, 5},
{0, 1, 6, 7}, {0, 2, 3, 4, 6, 8}, {0, 2, 3, 5, 6, 10},{0, 2, 3, 5, 8, 9}, {0, 2, 7, 8, 10},{0, 4, 7, 9},
{0, 6, 8, 9, 10}, {1, 2, 3, 5, 6, 8},{1, 2, 4, 5, 7}, {1, 2, 4, 8, 10}, {1, 3, 4, 6, 9}, {1, 5, 7, 10},
{1, 7, 8, 9}, {2, 3, 4, 5, 9, 10}, {2, 3, 6, 8, 9, 10}, {3, 5, 6, 7, 9}, {4, 5, 7, 8}, {4, 6, 7, 10},
{5, 6, 8, 9, 10}}.

One way to ensure that a bad configuration (as described earlier) does not occur,
is to have all ψ(bi)’s having sufficiently many elements (i.e., at least three). This is
already the case for ψ(b1) by Claim 3.3, as ψ(b1) ∈ L1.

Observation 3.4. For every set L∈L1, we have |L| ≥ 3. Consequently, |ψ(b1)|≥3.

We now consider ψ(b2). Note that ψ(b2) depends on ψ(b1) (which itself depends
on φ(a1)), on the signs of b1b2 and b2a2, and on φ(a2). Taking all these elements into
consideration, and playing with Table 2, from a tedious checking it can be checked
that the following holds true:

Claim 3.5. ψ(b2) = L, where either:

• L ∈ L2 := {{0, 1, 2, 3, 9}, {0, 1, 2, 3, 10}, {0, 1, 2, 9, 10}, {0, 1, 3, 9, 10}, {0, 1, 4},
{0, 1, 5}, {0, 1, 6}, {0, 1, 7}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 8}, {0, 2, 3, 5, 6}, {0, 2, 3, 5,
8}, {0, 2, 3, 5, 9}, {0, 2, 3, 5, 10}, {0, 2, 3, 6, 8}, {0, 2, 3, 6, 10}, {0, 2, 3, 8, 9},
{0, 2, 3, 9, 10}, {0, 2, 4, 6, 8}, {0, 2, 5, 6, 10}, {0, 2, 5, 8, 9}, {0, 2, 7, 8}, {0, 2, 7,
10}, {0, 2, 8, 10}, {0, 3, 4, 6, 8}, {0, 3, 5, 6, 10}, {0, 3, 5, 8, 9}, {0, 4, 5}, {0, 4, 7},
{0, 4, 9}, {0, 6, 7}, {0, 6, 8, 9}, {0, 6, 8, 10}, {0, 6, 9, 10}, {0, 7, 8, 10}, {0, 7, 9},
{0, 8, 9, 10}, {1, 2, 3, 5, 6}, {1, 2, 3, 5, 8}, {1, 2, 3, 6, 8}, {1, 2, 3, 9, 10}, {1, 2, 4, 7},
{1, 2, 4, 8}, {1, 2, 4, 10}, {1, 2, 5, 6, 8}, {1, 2, 8, 10}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3,
4, 9}, {1, 3, 5, 6, 8}, {1, 3, 6, 9}, {1, 4, 5}, {1, 4, 6, 9}, {1, 4, 8, 10}, {1, 5, 7}, {1, 5,
10}, {1, 6, 7}, {1, 7, 8}, {1, 7, 9}, {1, 7, 10}, {1, 8, 9}, {2, 3, 4, 5, 9}, {2, 3, 4, 5,
10}, {2, 3, 4, 6, 8}, {2, 3, 4, 9, 10}, {2, 3, 5, 6, 8}, {2, 3, 5, 6, 10}, {2, 3, 5, 8, 9},
{2, 3, 5, 9, 10}, {2, 3, 6, 8, 9}, {2, 3, 6, 8, 10}, {2, 3, 6, 9, 10}, {2, 3, 8, 9, 10},
{2, 4, 5, 9, 10}, {2, 4, 8, 10}, {2, 7, 8, 10}, {3, 4, 5, 9, 10}, {3, 4, 6, 9}, {3, 5, 6, 7},
{3, 5, 6, 9}, {3, 5, 7, 9}, {3, 6, 7, 9}, {4, 5, 7}, {4, 5, 8}, {4, 6, 7}, {4, 6, 10},
{4, 7, 8}, {4, 7, 9}, {4, 7, 10}, {5, 6, 7, 9}, {5, 6, 8, 9}, {5, 6, 8, 10}, {5, 6, 9, 10},
{5, 7, 8}, {5, 7, 10}, {5, 8, 9, 10}, {6, 7, 10}, {6, 8, 9, 10}, {7, 8, 9}}, or

• L is a superset of some set L′ ∈ L1 ∪ L2.

As an illustration, assume that ψ(b1) = {0, 1, 4} and that φ(a2) = 0. If b1b2
and b2a2 are both positive, then, looking at Table 1, we see that 0 ∈ ψ(b1) implies
{3, 5, 6, 7, 9} ⊆ ψ(b2), which makes ψ(b2) be a superset of {3, 5, 6, 7, 9} ∈ L1. If b1b2 is
positive while b2a2 is negative, then 1 ∈ ψ(b1) implies {4, 10} ∈ ψ(b2) while 4 ∈ ψ(b1)
implies {1, 8} ∈ ψ(b2); in total, we thus have ψ(b2) = {1, 4, 8, 10} ∈ L2.

To fully prove that Claim 3.5 holds, the same reasoning must be performed for
every combination of ψ(b1), φ(a2), σ(b1b2), σ(b2a2), which is quite tedious due to the
non-symmetric structure of A11. For this reason, we provide in the online file http:
//jbensmai.fr/code/signed-grids/A11-L2.txt an exhaustive list of all cases.

Observation 3.6. For every set L∈L2, we have |L| ≥ 3. Consequently, |ψ(b2)|≥3.
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The exact same process can then be performed for ψ(b3) (except that, here, ψ(b3)
depends on ψ(b2), φ(a3), σ(b2b3), σ(b3a3)). We here get:

Claim 3.7. ψ(b3) = L, where either:

• L ∈ L3 := {{0, 1, 2, 10}, {0, 1, 3, 9}, {0, 1, 9, 10}, {0, 2, 4, 8}, {0, 2, 5, 8}, {0, 2,
5, 10}, {0, 2, 6, 10}, {0, 2, 8, 9}, {0, 3, 4, 6}, {0, 3, 5, 6}, {0, 3, 5, 9}, {0, 4, 6, 8},
{0, 5, 6, 10}, {0, 5, 8, 9}, {0, 7, 8}, {0, 7, 10}, {1, 2, 5, 8}, {1, 2, 6, 8}, {1, 3, 5, 6},
{1, 3, 9, 10}, {1, 4, 6}, {1, 4, 8}, {1, 4, 9}, {1, 4, 10}, {1, 5, 6, 8}, {2, 4, 5, 10},
{2, 4, 9, 10}, {2, 6, 8, 10}, {2, 8, 9, 10}, {3, 4, 5, 9}, {3, 4, 6, 8}, {3, 5, 6, 10},
{3, 5, 8, 9}, {3, 6, 8, 9}, {3, 6, 9, 10}, {4, 5, 9, 10}, {5, 6, 7}, {5, 7, 9}, {6, 7, 9},
{7, 8, 10}}, or

• L is a superset of some set L′ ∈ L1 ∪ L2 ∪ L3.

Again, we provide the external online file:
http://jbensmai.fr/code/signed-grids/A11-L3.txt,

which contains a full analysis of all cases.

Observation 3.8. For every set L∈L3, we have |L|≥3. Consequently, |ψ(b3)|≥3.

We are now done, because applying the same deduction process onto ψ(b4) gives
that ψ(b4) (and thus each of ψ(b5), . . . , ψ(bn)) must be a superset of a set in L1 ∪
L2 ∪ L3. Again, the exhaustive process is described in details online at http://
jbensmai.fr/code/signed-grids/A11-L4.txt.

Claim 3.9. For every i = 4, . . . , n, we have ψ(bi) = L, where L is a superset of
some set L′ ∈ L1 ∪ L2 ∪ L3.

In particular, ψ(bi) is thus defined for every bi. Consequently, there is a way to
extend φ to an A11-colouring so that φ(bn) ∈ ψ(bn), thus to the whole row by the
definition of ψ. Repeating this colouring process row by row, we end up with φ being
an A11-colouring of G.

4 2-edge-coloured grids with two rows

The oriented chromatic number of 2-row grids was fully determined by Fertin, Ras-
paud and Roychowdhury in [4], who proved that χo(G(2, n)) = 6 for every n ≥ 4,
while G(2, 2) and G(2, 3) have oriented chromatic number 4 and 5, respectively. We
here completely determine the 2-edge-coloured chromatic number of 2-row grids by
mainly showing that χ2(G(2, n)) ≤ 5 for every n ≥ 3. Hence, for this type of grid,
the 2-edge-coloured chromatic number is always smaller than the oriented chromatic
number.

We start off by noting that G(2, 2), which is the cycle of length 4, admits a
signature for which each of the vertices must be coloured with a unique colour in any
2-edge-coloured colouring.

Proposition 4.1. We have χ2(G(2, 2)) = 4.
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Figure 2: A 2-edge-coloured 4-colouring of a signature of G(2, 2) (left), a 2-edge-
coloured 5-colouring of a signature of G(2, 3) (middle), and the 2-edge-coloured cir-
culant graph C(5, {1}) (right). Black (gray, respectively) edges are positive (negative,
respectively) edges.

Proof. Consider the signature of G(2, 2) depicted in Figure 2 (left). In this 2-edge-
coloured graph, every two non-adjacent vertices are joined by an alternating 2-path.
Since, for every such alternating 2-path, the two end-vertices must receive distinct
colours by any 2-edge-coloured colouring, we get that this signature of G(2, 2) cannot
be coloured with fewer than |V (G(2, 2))| colours.

Since G(2, 2) is a subgraph of G(2, n) for every n ≥ 2, by Proposition 4.1 we
get that χ2(G(2, n)) ≥ 4 for every n ≥ 2. In the following, we prove that, actually,
χ2(G(2, n)) ≥ 5 holds for every n ≥ 3.

Proposition 4.2. We have χ2(G(2, 3)) ≥ 5.

Proof. To be convinced of this statement, consider the signature of G(2, 3) depicted
in Figure 2 (middle), and assume, for contradiction, that it admits a 2-edge-coloured
4-colouring φ. We note that the vertices a1, a2, b1, b2 form exactly the signature of
G(2, 2) described in the proof of Proposition 4.1. As explained earlier, these four
vertices must be assigned different colours by φ. Assume φ(a1) = 0, φ(a2) = 1,
φ(b1) = 2 and φ(b2) = 3 without loss of generality. Now, because a3 is adjacent to
a2, and a3 is joined by alternating 2-paths to both a1 and b2, clearly we must have
φ(a3) = 2. But now, b3 cannot be assigned any of colours 1, 2 or 3 for the same
reasons, while it cannot be assigned colour 0 since a1b1 and a3b3 have different signs
and φ(a3) = φ(b1) = 2. So b3 cannot be assigned a colour by φ, contradicting our
initial hypothesis.

Again, since G(2, 3) is a subgraph of G(2, n) for every n ≥ 3, Proposition 4.2
implies that χ2(G(2, n)) ≥ 5 holds for every n ≥ 3. Actually, it turns out that five
colours are sufficient to colour any signature of any 2-row grid.

Proposition 4.3. For every n ≥ 1, we have χ2(G(2, n)) ≤ 5.

Proof. We actually show that every signature of G(2, n), where n ≥ 1, can be
coloured by the 2-edge-coloured circulant graph C(5, {1}) (see Figure 2 (right)).
To that aim, let us first point out the following property of C(5, {1}).
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Figure 3: Examples of the 2-edge-coloured 3-paths of C(5, {1}) claimed in the proof
of Observation 4.4, for (u, v) = (0, 1) (top), and (u, v) = (0, 2) (bottom). Black (gray,
respectively) edges are positive (negative, respectively) edges.

Observation 4.4. For every two distinct vertices u, v of C(5, {1}), and for every set
{s1, s2, s3} of {−,+}3, there exists a 3-path uw1w2v in C(5, {1}) such that σ(uw1) =
s1, σ(w1w2) = s2, σ(w2v) = s3.

Proof. Due to the signature-preserving automorphisms of C(5, {1}), we may restrict
our attention to the cases (u, v) = (0, 1) and (u, v) = (0, 2). Furthermore, only six of
the sets among {−,+}3 have to be considered. To see that the claim holds, refer to
Figure 3, which gathers examples of the claimed twelve 3-paths of C(5, {1}).

Back to the proof of Proposition 4.3, we now describe how to get a colouring φ
by C(5, {1}) of any signature G of G(2, n) with n ≥ 1. Let us denote by a1, . . . , an
and b1, . . . , bn the consecutive vertices of the first and second rows of G, respectively,
where ai, bi are the vertices of the ith column for every i = 1, . . . , n. As a first step,
we colour a1 and b1. For this purpose, we choose an edge {α, β} of C(5, {1}) having
sign σ(a1b1) and set φ(a1) = α and φ(b1) = β.

To complete the colouring by C(5, {1}), it now suffices to repeatedly apply the
following procedure. Assuming vertices ai−1 and bi−1 have been coloured in the
previous step, we extend φ to ai and bi. Let s1, s2, s3 be the signs of ai−1ai, aibi, bibi−1,
respectively. According to Observation 4.4 (applied to u = φ(ai−1), v = φ(bi−1) and
s1, s2, s3), there exists a 3-path (φ(ai−1), α, β, φ(bi−1)) in C(5, {1}) whose edges have
sign s1, s2, s3, respectively. By hence setting φ(ai) = α and φ(bi) = β, we get an
extension of φ to ai and bi.

From all the previous results, we end up with the following characterization of
the 2-edge-coloured chromatic number of 2-row grids.

Theorem 4.5. We have:

• χ2(G(2, 2)) = 4,

• χ2(G(2, n)) = 5 for every n ≥ 3.
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5 2-edge-coloured grids with three rows

The investigations on the oriented chromatic number of 3-row grids were initiated by
Fertin, Raspaud and Roychowdhury who proved, in [4], that χo(G(3, 3)), χo(G(3, 4)),
χo(G(3, 5)) = 6, while χo(G(3, n)) ∈ {6, 7} for every n ≥ 6. Later on, Szepietowski
and Targan completely determined, in [8], the values of χo(G(3, n)) for every n ≥ 6
by proving that χo(G(3, 6)) = 6 while χo(G(3, n)) = 7 for every n ≥ 7.

Before presenting our results on 2-edge-coloured 3-row grids, we first introduce
some definitions and terminology that are used throughout this section.

Whenever dealing with a (2-edge-coloured) 3-row grid G = G(3, n), we assume
that its vertices are labelled by a1, . . . , an, b1, . . . , bn and c1, . . . , cn, where the ai’s are
the consecutive vertices of the first row, the bi’s are the consecutive vertices of the
second row, and the ci’s are the consecutive vertices of the third row. This labelling
is such that, for every i = 1, . . . , n, the vertices of the ith column are ai, bi, ci (see
Figure 4 (left) for an illustration).

Let A be a 2-edge-coloured graph, and assume now that G is a 2-edge-coloured
3-row grid. In the sequel, we will mainly A-colour G by extending a partial A-
colouring φ from column to column, starting from the first column. When doing so,
for each column i we get a set of possible triplets of colours, which are 3-element sets
(α, β, γ) ∈ {0, 1, . . . , |V (A)| − 1}3 such that, when extending φ to the ith column,
we can correctly set φ(ai) = α, φ(bi) = β and φ(ci) = γ. Note that every triplet
(α, β, γ) verifies β �= α, γ.

When extending φ to the ith column ofG, the possible colours for ai, bi, ci, i.e., the
possible triplets (αi, βi, γi) of colours that can be assigned to this column, are highly
dependent of the triplet (αi−1, βi−1, γi−1) of colours assigned to the (i−1)th column.
Also, assuming φ(ai−1) = αi−1, φ(bi−1) = βi−1, φ(ci−1) = γi−1, the possible triplets
(αi, βi, γi) depend on the set of five edges {ai−1ai, bi−1bi, ci−1ci, aibi, bici} which form a
2-edge-coloured subgraph that we call a 2-comb. Formally, a 2-comb refers to a graph
obtained from a path uw1w2w3v of length 4 by joining w2 to a new pendant vertex
w. Under that labelling, we say that the 2-comb joins u, w, v and call w1w2w3 the
spine of the 2-comb. We note that any 2-edge-coloured 3-row grid can be obtained,
starting from a 2-edge-coloured 2-path a1b1c1, by repeatedly joining aibici (being
the original path a1b1c1, or the spine of the lastly-added 2-comb) via a new 2-edge-
coloured 2-comb with spine ai+1bi+1ci+1.

Back to our context, the possible triplets (αi, βi, γi) for the ith column of G are
precisely those 3-element sets such that A has a 2-comb joining αi−1, βi−1, γi−1, with
spine αiβiγi, and whose edge signs are precisely the signs, in G, of the 2-comb with
spine aibici joining ai−1bi−1ci−1.

5.1 Lower bounds

We start off by investigating general lower bounds on the 2-edge-coloured chromatic
number of 3-row grids. To begin, note that for some signatures of G(3, 3) at least
six colours are needed.
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Figure 4: A 2-edge-coloured 6-colouring of a signature of G(3, 3) (left), and the 2-
edge-coloured circulant graph C(9, {2, 4}) (right). Black (gray, respectively) edges
are positive (negative, respectively) edges.

Proposition 5.1. We have χ2(G(3, 3)) ≥ 6.

Proof. Let G be the signature of G(3, 3) depicted in Figure 4 (left), and assume, for
contradiction, that there is a signature A of K5 such that G admits an A-colouring φ.

We note that every two vertices in {a2, b1, b3, c2} are joined by an alternating 2-
path. For this reason, all colours φ(a1), φ(a2), φ(b1), φ(b3), φ(c2) must be different. As
in Figure 4 (left), let us assume, without loss of generality, that φ(b2) = 0, φ(a2) = 1,
φ(b3) = 2, φ(c2) = 3 and φ(b1) = 4. This reveals that, in A, edges {0, 1} and {0, 4}
are positive, while {0, 2} and {0, 3} are negative.

Now consider c3. Since b2 and c3 are joined by an alternating 2-path, we have
either φ(c3) = 1 or φ(c3) = 4. At this point of the proof, we may assume that
φ(c3) = 1. This reveals that, in A, edge {1, 2} is negative while {1, 3} is positive.
Now consider c1. Since c1 is joined by an alternating 2-path to both b2 and c3, we
must have φ(c1) = 2. Hence, edges {2, 3} and {2, 4} are negative in A. For similar
reasons, vertex a1 must receive colour 2 or 3 by φ. Actually, we cannot have φ(a1) = 2
since edge {1, 2} was shown to be negative in A. So, we have φ(a1) = 3.

We finally note that a3 cannot be coloured with either of colours 0, 1, 2 due to
some edges or alternating 2-paths of G. Furthermore, we cannot have φ(a3) = 3
since edge {2, 3} is negative in A, or φ(a3) = 4 since edge {2, 4} is negative in A.
Hence a3 cannot be assigned a valid colour by φ, a contradiction.

It turns out that some 2-edge-coloured 3-row grids need at least seven colours
to be coloured. To verify this, it suffices to exhibit, for every signature A of K6, a
2-edge-coloured 3-row grid GA that cannot be A-coloured. Once we have such a grid
GA for every A, it then suffices to consider a large 2-edge-coloured 3-row grid G that
contains all GA’s; there is then no signature of K6 that can colour G, meaning that
G has 2-edge-coloured chromatic number at least 7.

Let A be a fixed signature of K6. Designing such a 2-edge-coloured 3-row grid
GA is tedious because we have to prove that there is no way to A-colour it. For that
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reasons, we made use of a computer, through the following approach. We start off
from GA being the 2-path a1b1c1 signed in some way, and we consider L1 the set of
triplets (α1, β1, γ1) of colours that can be assigned to a1, b1, c1 in an A-colouring. If
this set L1 is empty, then A cannot colour GA, and we are done. Otherwise, we make
GA one column larger by joining a1, b1, c1 by a 2-comb with spine a2, b2, c2. For a
signature of the resulting five new edges (a1a2, b1b2, c1c2, a2b2, b2c2), we would like
to find a bad signature, i.e., a signature such that, by all A-colourings of GA, the
set L2 of triplets (α2, β2, γ2) of colours that can be assigned to a2, b2, c2 is as small
as possible. We note that, for a fixed signature of the 2-comb, computing L2 can
be done easily from L1, by just consider every (α1, β1, γ1) ∈ L1, and checking, in A,
what are the 2-combs with spine α2β2γ2 joining α1, β1, γ1 which have their signature
matching that of the 2-comb in G. Then we can try out all possible signatures of
the 2-comb in G, and find one that minimizes the size of L2. The same principle
can be applied again and again iteratively, adding new 2-combs (with spine aibici
joining ai−1, bi−1, ci−1) to G and computing the resulting sets L3,L4, . . . Hopefully,
at some point a set Li with Li = ∅ will be reached, meaning that a non-A-colourable
2-edge-coloured 3-row grid has been obtained.

It turns out that, for every fixed signature A of K6, this strategy does result in a
2-edge-coloured 3-row gridGA that cannot beA-coloured. We give a certificate of this
in the online file http://jbensmai.fr/code/signed-grids/G3n-lower-bound.txt,
which describes, for every A, the signature of a candidate as GA, and the resulting
sets Li. The number of non-equivalent signatures of K6 is 78, as two signatures
A1, A2 of K6 are isomorphic as soon as the set of positive edges of A1 induce a graph
isomorphic to that induced by the set of positive edges of A2, and two signatures
A1, A2 of A are equivalent as soon as the set of positive edges of A1 induce a graph
isomorphic to that induced by the set of negative edges of A2 (just invert all edge
signs). Since the number of non-isomorphic graphs on 6 vertices is 156, this gives that
only 78 non-equivalent signatures of K6 exist. A remarkable fact is that, for every
signature A of K6, a claimed grid GA we construct always has at most six columns.
Thus, without trying to optimize further, an upper bound on the parameter n0 in
the next result is 78× 6.

Theorem 5.2. There exists n0 such that for every n ≥ n0, we have χ2(G(3, n)) ≥ 7.

5.2 Upper bounds

As in the previous section, we here systematically colour any 2-edge-coloured grid
from column to column (as going from the first column to the last column), by
essentially extending triplets of colours from 2-comb to 2-comb (i.e., colouring the
first-column vertices first, then the second-column vertices, and so on), as they are
attached to each other

Our upper bounds on the 2-edge-coloured chromatic number of 3-row grids rely
on the existence of 2-edge-coloured circulant graphs with properties analogous to that
described in the statement of Observation 4.4. More precisely, we are here interested
in 2-edge-coloured circulant graphs that make the following proposition applicable.
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Proposition 5.3. Suppose we have a 2-edge-coloured graph A such that, for every
three distinct vertices u, v, w of A, and for every set {s1, s2, s3, s4, s5} of {−,+}5,
there exists, in A, a 2-comb with spine w1w2w3 joining u, w, v such that σ(uw1) = s1,
σ(ww2) = s2, σ(vw3) = s3, σ(w1w2) = s4, σ(w2w3) = s5. Then every signature of
G(3, n) is A-colourable.

Proof. We prove by induction on n, the number of columns, that every signature G
of G(3, n) can be A-coloured, provided A has the desired property. In case n = 1,
we note that G is actually a 2-edge-coloured path on two edges. Since, by our
assumptions, A has both positive edges and negative edges, and has positive edges
adjacent to negative edges, it is easy to see that a1, b1, c1 can be coloured.

Assume now that the claim is true for every n up to value i − 1 and consider
the case n = i. By the induction hypothesis, there exists an A-colouring φ of the
i − 1 first columns of G, which form a signature of G(3, n − 1). We now extend
φ the ith column, i.e., to the vertices ai, bi, ci. To that aim, consider the 2-edge-
coloured 2-comb C of G joining ai−1, bi−1, ci−1 with spine aibici. According to the
initial assumption on A, no matter what the triplet (φ(ai−1), φ(bi−1), φ(ci−1)) is, and
no matter what the signs of the edges of C are, we can find, in A, a 2-comb joining
φ(ai−1), φ(bi−1), φ(ci−1), and with the same edge signs as C. Denote its spine by
αiβiγi. Then we can simply extend φ to ai, bi, ci by setting φ(ai) = αi, φ(bi) = βi,
φ(ci) = γi.

Hence, by showing that a 2-edge-coloured graph A with small order has the
property described in Proposition 5.3, we immediately get that every 2-edge-coloured
3-row grid is A-colourable, thus that its 2-edge-coloured chromatic number is at most
|V (A)|. Using a computer, we have determined that the smallest 2-edge-coloured
circulant graphs having that property have order 10.

Proposition 5.4. The smallest 2-edge-coloured circulant graphs C(n, S) having the
property described in Proposition 5.3 have n = 10. An example of a such graph is
C(10, {2, 4}).

From Propositions 5.3 and 5.4, we thus directly get the following.

Theorem 5.5. For every n ≥ 1, we have χ2(G(3, n)) ≤ 10.

We now improve the upper bound in Theorem 5.5 down to 9, by showing that
every 2-edge-coloured 3-row grid can be coloured by the 2-edge-coloured circulant
graph C(9, {2, 4}) (illustrated in Figure 4 (right)). The colouring strategy we use
is again the column-to-column one that we have used earlier. We however have to
be more careful here, because, as indicated by Proposition 5.4, there are situations
where a colouring of the (i− 1)th column cannot be extended to a colouring of the
ith one, because C(9, {2, 4}) does not admit all possible kinds of 2-edge-coloured
2-combs.

Following Proposition 5.4, we know that C(9, {2, 4}) has bad triplets, namely
triplets (α, β, γ) of vertices such that C(9, {2, 4}) has no 2-comb, with a particular
signature, joining α, β, γ. Hence, when colouring a new column of a 2-edge-coloured
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3-row grid, we should avoid assigning a bad triplet as it might then be not possible
to extend the partial colouring to the next column.

Using a computer program to enumerate all 3-element sets of colours (α, β, γ)
and, for every signature, all 2-edge-coloured 2-combs joining α, β, γ in C(9, {2, 4}), we
came up with the following characterization of the bad triplets of C(9, {2, 4}) (refer to
http://jbensmai.fr/code/signed-grids/C924-triplets.txt for an exhaustive
list of the possible ways to extend a C(9, {2, 4})-colouring from a column to the next
column):

Observation 5.6. A triplet (α, β, γ) of C(9, {2, 4}) is bad if and only if:

• (β, γ) ∈ {(α + 2, α+ 4), (α− 2, α− 4), (α+ 3, α+ 6), (α− 3, α− 6)}, or

• (β, α) ∈ {(γ + 2, γ + 4), (γ − 2, γ − 4), (γ + 3, γ + 6), (γ − 3, γ − 6)},
where the operations are understood modulo 9. In other words, (α, β, γ) is bad if
and only if (α, β, γ) ∈ {(0, 3, 6), (0, 4, 2), (0, 5, 7), (0, 6, 3), (1, 4, 7), (1, 5, 3), (1, 6, 8),
(1, 7, 4), (2, 5, 8), (2, 6, 4), (2,7,0), (2, 8, 5), (3, 0, 6), (3, 6, 0), (3, 7, 5), (3, 8, 1), (4,0,2),
(4, 1, 7), (4, 7, 1), (4, 8, 6), (5,0,7), (5,1, 3), (5, 2, 8), (5, 8, 2), (6,0,3), (6,1, 8), (6, 2, 4),
(6, 3, 0), (7, 1, 4), (7, 2, 0), (7, 3, 5), (7, 4, 1), (8, 2, 5), (8, 3, 1), (8, 4, 6), (8, 5, 2)}.

When colouring a column, we should as well avoid assigning a non-bad triplet
(α, β, γ) of colours such that, for a particular fixed signature, all 2-edge-coloured
2-combs with that signature, joining α, β, γ in C(9, {2, 4}), have a bad spine, i.e., a
spine α′β ′γ′ such that (α′, β ′, γ′) is bad. We call such a triplet dangerous. Once again,
the dangerous triplets of C(9, {2, 4}) can easily be generated using a computer, and,
hence, characterized (again, refer to the full list above for an exhaustive checking of
this result).

Observation 5.7. A non-bad triplet (α, β, γ) of C(9, {2, 4}) is dangerous if and only
if:

• (β, γ) ∈ {(α+ 2, α+ 5), (α− 2, α− 5), (α+2, α+6), (α− 2, α− 6), (α+ 3, α+
5), (α− 3, α− 5), (α+ 4, α + 6), (α− 4, α− 6)}, or

• (β, α) ∈ {(γ + 2, γ + 5), (γ − 2, γ − 5), (γ + 2, γ + 6), (γ − 2, γ − 6), (γ + 3, γ +
5), (γ − 3, γ − 5), (γ + 4, γ + 6), (γ − 4, γ − 6)},

where the operations are understood modulo 9. In other words, (α, β, γ) is danger-
ous if and only if (α, β, γ) ∈ {(0, 3, 5), (0, 3, 7), (0, 4, 6), (0, 4, 7), (0, 5, 2), (0, 5, 3),
(0, 6, 2), (0, 6, 4), (1, 4, 6), (1, 4, 8), (1, 5, 7), (1, 5, 8), (1, 6, 3), (1, 6, 4), (1, 7, 3),
(1, 7, 5), (2, 5, 0), (2, 5, 7), (2, 6, 0), (2, 6, 8), (2, 7, 4), (2, 7, 5), (2, 8, 4), (2, 8, 6),
(3, 0, 5), (3, 0, 7), (3, 6, 1), (3, 6, 8), (3, 7, 0), (3, 7, 1), (3, 8, 5), (3, 8, 6), (4, 0, 6),
(4, 0, 7), (4, 1, 6), (4, 1, 8), (4, 7, 0), (4, 7, 2), (4, 8, 1), (4, 8, 2), (5, 0, 2), (5, 0, 3),
(5, 1, 7), (5, 1, 8), (5, 2, 0), (5, 2, 7), (5, 8, 1), (5, 8, 3), (6, 0, 2), (6, 0, 4), (6, 1, 3),
(6, 1, 4), (6, 2, 0), (6, 2, 8), (6, 3, 1), (6, 3, 8), (7, 1, 3), (7, 1, 5), (7, 2, 4), (7, 2, 5),
(7, 3, 0), (7, 3, 1), (7, 4, 0), (7, 4, 2), (8, 2, 4), (8, 2, 6), (8, 3, 5), (8, 3, 6), (8, 4, 1),
(8, 4, 2), (8, 5, 1), (8, 5, 3)}.
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One should of course be cautious with non-bad and non-dangerous triplets
(α, β, γ) of colours such that, for some signature, all 2-edge-coloured 2-combs with
that signature, joining α, β, γ in C(9, {2, 4}), have a bad or dangerous spine. How-
ever, it can be checked that every non-bad and non-dangerous triplet (α, β, γ) is
good, in the sense that, in C(9, {2, 4}), for every signature there is a 2-edge-coloured
2-comb with that signature, joining α, β, γ, and with a good spine, i.e., a spine α′β ′γ′

such that (α′, β ′, γ′) is good. For certificates, see the online file http://jbensmai.
fr/code/signed-grids/C924-good-triplets.txt.

Observation 5.8. Every non-bad and non-dangerous triplet is good.

We are now ready to improve the bound in Theorem 5.5.

Theorem 5.9. For every n ≥ 1, we have χ2(G(3, n)) ≤ 9.

Proof. We actually prove, by induction on n, that every signature G of G(3, n) can
be coloured by C(9, {2, 4}), implying the result. The colouring strategy we use is
again the column-to-column strategy that we have been using so far, but restricted
to good triplets of colours. More precisely, we show that the columns of G can be
coloured one after another, in such a way that the triplets of colours, assigned by
the colouring φ, are all good.

As a base case, assume n = 1. In case a1b1 and b1c1 are both positive, we can
set e.g. φ(a1) = 0, φ(b1) = 4, φ(c1) = 0. If a1b1 and b1c1 are both negative, then we
can here set e.g. φ(a1) = 0, φ(b1) = 1, φ(c1) = 0. Finally, if, say, a1b1 is positive
while b1c1 is negative, then we can set e.g. φ(a1) = 0, φ(b1) = 2, φ(c1) = 1. In every
case, we get that (φ(a1), φ(b1), φ(c1)) is a good triplet, according to Observation 5.8,
which concludes this case.

Assume now that the claim is true for every n up to some value i − 1, and
consider the next step n = i. By the induction hypothesis, we can colour the i − 1
first columns of G, as they form a signature of G(3, n − 1), in such a way that
all triplets of colours are good. Let φ be such a colouring. We now extend φ to
the ith column of G, namely to its vertices ai, bi, ci, in a good way. To that aim,
consider, in G, the 2-edge-coloured comb C joining ai−1, bi−1, ci−1 with spine aibici.
According to the definition of a good triplet, and because (φ(ai−1), φ(bi−1), φ(ci−1))
is good, there has to be, in C(9, {2, 4}), a 2-edge-coloured comb with the same
edge signs as C, joining (φ(ai−1), φ(bi−1), φ(ci−1)), and with a good spine αiβiγi,
i.e., (αi, βi, γi) is a good triplet. So we can extend φ to ai, bi, ci by just setting
φ(ai) = αi, φ(bi) = βi, φ(ci) = γi. This proves the inductive step, and, hence, the
claim.

6 2-edge-coloured grids with more rows

In this section, we extend, to grids with more rows, the principles described in
Section 5 for verifying Theorem 5.2. From these, we deduce that there exist 2-edge-
coloured 5-rows grids with 2-edge-coloured chromatic number at least 8.

Theorem 6.1. There exists n0 such that for every n ≥ n0, we have χ2(G(5, n)) ≥ 8.
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The existence of such a grid G = G(5, n) with χ2(G) ≥ 8 can be attested following
the method described at the end of Section 5.1. Namely, we consider every signature
A of K7 (there are 522 such, recall the arguments given earlier), and our task is
to construct a 2-edge-coloured grid GA with at most five rows that cannot be A-
coloured. If such a GA can be constructed for every A, then a possible G will be any
2-edge-coloured 5-row grid containing all GA’s.

For each A, an example of a such GA can be constructed as follows. For some
i ∈ {2, . . . , 4}, we start from GA being an i-path a1b1c1 . . . signed in a particular
way, and we then compute L1 the set of the possible tuples (α1, β1, γ1, . . . ) of colours
that can be assigned to a1, b1, c1, . . . in an A-colouring of GA. If L1 = ∅, then
we are done. Otherwise, we add a new column a2b2c2 . . . to GA by adding the
edges a1a2, b1b2, c1c2, . . . . We sign the resulting 2i− 1 new edges in such a way that
the set L2 of the possible tuples (α2, β2, γ2, . . . ) of colours that can be assigned to
a2, b2, c2, . . . in an A-colouring of GA is as small as possible. We repeat this process
until hopefully reaching an Lk that is empty, meaning that the 2-edge-coloured grid
GA constructed so far cannot be A-coloured.

In the online file http://jbensmai.fr/code/signed-grids/lower-bound-8.
txt, we prove that such a GA does exist for every signature A of K7. More precisely,
for each GA we describe its signature, as well as the corresponding sets L1,L2, . . .
(which can be deduced successively). In most cases, we get that such GA’s with only
three rows exist. In a few more cases, grids with four rows must be considered. For
a very particular signature of K7, we have to consider a grid with five rows.

7 Conclusion

In this article, we have investigated the 2-edge-coloured chromatic number of grids,
our main goal being to compare how the oriented chromatic number and the 2-edge-
coloured chromatic number behave in these graphs. We have provided several bounds
for both general grids and 2-row or 3-row grids. In particular, we have shown that
the maximum 2-edge-coloured chromatic number of a grid lies between 8 and 11. For
2-row grids, we managed to completely determine their 2-edge-coloured chromatic
number, while, for 3-row grids, we have obtained partial results.

Concerning the relation between the oriented chromatic number and the 2-edge-
coloured chromatic number, our results show that these two parameters are, as ex-
pected, quite close for grids. This is mainly established by the matching lower and
upper bounds we know on the maximum value of these parameters for grids.

Some disparities, though, are worth mentioning. For 2-row grids, while the ori-
ented chromatic number is 6 in general, the 2-edge-coloured chromatic number is 5
in general. We still do not know whether 3-row grids with 2-edge-coloured chromatic
number 8 exist, but, if this were to hold, then that would be quite interesting as
these grids have oriented chromatic number at most 7. In that spirit, it could as
well be interesting considering 4-row grids, which have oriented chromatic number
at most 7 according to [8].
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Appendix: Exhaustive list of the 2-paths of A11

Type of path Candidates
0+?+ 1 6, 7
0+?+ 2 5, 6, 9
0+?+ 3 6, 9
0+?+ 4 7, 9
0+?+ 5 7
0+?+ 6 3, 9
0+?+ 7 5
0+?+ 8 3, 5, 9
0+?+ 9 3, 6
0+?+ 10 3, 5, 6
1+?+ 2 6, 10
1+?+ 3 6, 10
1+?+ 4 7
1+?+ 5 7, 10
1+?+ 6 10
1+?+ 7 4
1+?+ 8 4, 10
1+?+ 9 4, 6
1+?+ 10 6
2+?+ 3 6, 8, 9, 10
2+?+ 4 8, 9
2+?+ 5 8, 10
2+?+ 6 9, 10
2+?+ 7 5
2+?+ 8 5, 9, 10
2+?+ 9 6, 8
2+?+ 10 5, 6, 8
3+?+ 4 8, 9
3+?+ 5 0, 8, 10
3+?+ 6 0, 9, 10
3+?+ 7 0
3+?+ 8 9, 10
3+?+ 9 0, 6, 8
3+?+ 10 6, 8
4+?+ 5 7, 8
4+?+ 6 1, 9
4+?+ 7 1
4+?+ 8 9
4+?+ 9 8
4+?+ 10 1, 8
5+?+ 6 0, 2, 10
5+?+ 7 0
5+?+ 8 2, 10
5+?+ 9 0, 2, 8
5+?+ 10 2, 8
6+?+ 7 0, 1
6+?+ 8 2, 3, 9, 10
6+?+ 9 0, 2, 3
6+?+ 10 1, 2, 3
7+?+ 8 4, 5
7+?+ 9 0, 4
7+?+ 10 1, 5
8+?+ 9 2, 3, 4
8+?+ 10 2, 3, 5
9+?+ 10 2, 3, 6, 8

Type of path Candidates
0−?− 1 2, 8
0−?− 2 1, 4
0−?− 3 1, 2, 4
0−?− 4 2, 10
0−?− 5 1, 4
0−?− 6 4, 8
0−?− 7 2, 8, 10
0−?− 8 1
0−?− 9 1, 10
0−?− 10 4
1−?− 2 0, 3
1−?− 3 2, 5
1−?− 4 0, 2, 3, 5
1−?− 5 3, 9
1−?− 6 5, 8
1−?− 7 2, 3, 8, 9
1−?− 8 0
1−?− 9 5
1−?− 10 0, 9
2−?− 3 1, 4, 7
2−?− 4 0, 3
2−?− 5 1, 3, 4
2−?− 6 4, 7
2−?− 7 3
2−?− 8 0, 1, 7
2−?− 9 1, 7
2−?− 10 0, 4, 7
3−?− 4 2, 5
3−?− 5 1, 4
3−?− 6 4, 5, 7
3−?− 7 2
3−?− 8 1, 7
3−?− 9 1, 5, 7
3−?− 10 4, 7
4−?− 5 3, 6
4−?− 6 5
4−?− 7 2, 3, 6, 10
4−?− 8 0, 6
4−?− 9 5, 10
4−?− 10 0
5−?− 6 4
5−?− 7 3, 6, 9
5−?− 8 1, 6
5−?− 9 1
5−?− 10 4, 9
6−?− 7 8
6−?− 8 7
6−?− 9 5, 7
6−?− 10 4, 7
7−?− 8 6
7−?− 9 10
7−?− 10 9
8−?− 9 1, 7
8−?− 10 0, 7
9−?− 10 7
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Type of path Candidates
0+?− 1 3, 5, 9
0+?− 2 3, 7
0+?− 3 5, 7
0+?− 4 3, 5, 6
0+?− 5 3, 6, 9
0+?− 6 5, 7
0+?− 7 3, 6, 9
0+?− 8 6, 7
0+?− 9 5, 7
0+?− 10 7, 9
1+?− 2 4, 7
1+?− 3 4, 7
1+?− 4 6, 10
1+?− 5 4, 6
1+?− 6 4, 7
1+?− 7 6, 10
1+?− 8 6, 7
1+?− 9 7, 10
1+?− 10 4, 7
2+?− 3 5
2+?− 4 5, 6, 10
2+?− 5 6, 9
2+?− 6 5, 8
2+?− 7 6, 8, 9, 10
2+?− 8 6
2+?− 9 5, 10
2+?− 10 9
3+?− 4 0, 6, 10
3+?− 5 6, 9
3+?− 6 8
3+?− 7 6, 8, 9, 10
3+?− 8 0, 6
3+?− 9 10
3+?− 10 0, 9
4+?− 5 1, 9
4+?− 6 7, 8
4+?− 7 8, 9
4+?− 8 1, 7
4+?− 9 1, 7
4+?− 10 7, 9
5+?− 6 7, 8
5+?− 7 2, 8, 10
5+?− 8 0, 7
5+?− 9 7, 10
5+?− 10 0, 7
6+?− 7 2, 3, 9, 10
6+?− 8 0, 1
6+?− 9 1, 10
6+?− 10 0, 9
7+?− 8 0, 1
7+?− 9 1, 5
7+?− 10 0, 4
8+?− 9 5, 10
8+?− 10 4, 9
9+?− 10 0, 4

Type of path Candidates
0−?+ 1 4, 10
0−?+ 2 8, 10
0−?+ 3 8, 10
0−?+ 4 1, 8
0−?+ 5 2, 8, 10
0−?+ 6 1, 2, 10
0−?+ 7 1, 4
0−?+ 8 2, 4, 10
0−?+ 9 2, 4, 8
0−?+ 10 1, 2, 8
1−?+ 2 5, 8, 9
1−?+ 3 0, 8, 9
1−?+ 4 8, 9
1−?+ 5 0, 2, 8
1−?+ 6 0, 2, 3, 9
1−?+ 7 0, 5
1−?+ 8 2, 3, 5, 9
1−?+ 9 0, 2, 3, 8
1−?+ 10 2, 3, 5, 8
2−?+ 3 0
2−?+ 4 1, 7
2−?+ 5 0, 7
2−?+ 6 0, 1, 3
2−?+ 7 0, 1, 4
2−?+ 8 3, 4
2−?+ 9 0, 3, 4
2−?+ 10 1, 3
3−?+ 4 1, 7
3−?+ 5 2, 7
3−?+ 6 1, 2
3−?+ 7 1, 4, 5
3−?+ 8 2, 4, 5
3−?+ 9 2, 4
3−?+ 10 1, 2, 5
4−?+ 5 0, 2, 10
4−?+ 6 0, 2, 3, 10
4−?+ 7 0, 5
4−?+ 8 2, 3, 5, 10
4−?+ 9 0, 2, 3, 6
4−?+ 10 2, 3, 5, 6
5−?+ 6 1, 3, 9
5−?+ 7 1, 4
5−?+ 8 3, 4, 9
5−?+ 9 3, 4, 6
5−?+ 10 1, 3, 6
6−?+ 7 4, 5
6−?+ 8 4, 5
6−?+ 9 4, 8
6−?+ 10 5, 8
7−?+ 8 2, 3, 9, 10
7−?+ 9 2, 3, 6, 8
7−?+ 10 2, 3, 6, 8
8−?+ 9 0, 6
8−?+ 10 1, 6
9−?+ 10 1, 5

Table 2: Exhaustive list of the ++-paths, −−-paths, +−-paths and −+-paths of
A11.
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