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Abstract

We introduce a generalization of classical q-ary codes by allowing points
to cover other points that are Hamming distance 1 or 2 in a freely cho-
sen subset of all directions. More specifically, we generalize the notion
of 1-covering, 1-packing, and 2-packing in the case of q-ary codes. In
the covering case, we establish the analog of the sphere-packing bound
while for the packing case, we establish an analog of the singleton bound.
Given these bounds, in the covering case we establish that the sphere-
packing bound is asymptotically never tight except in trivial cases. This
is analogous to a seminal result of Rodemich regarding q-ary codes. We
then establish, in contrast, for 1-packing and 2-packing, that the analog
of the singleton bound is sharp in several possible cases and conjecture
that these bounds are sharp in general.

1 Introduction

Consider a set of n football matches which each end in either a win, a draw, or a
loss. How many bets are necessary for an individual to guarantee that they predict
at least n − 1 of the outcomes of the games correctly? What about having at least
n− k outcomes correct?

The above problem is the classical Football Pool Problem that has been extremely
well studied for small specific values of n, as well as generalizations allowing for
more possible outcomes [1, 2, 5–11]. In particular, consider Hn,k, the k-dimensional
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Figure 1: a3,3,2 = 7, b3,3,2 = 10, c3,3,2 = 4

hypercube with side length n−1. Now Hn,k can be placed with the lattice {0, . . . , n−
1}k, and define the distance between two points in Hn,k to be the Hamming distance
between their coordinate representations. The Hamming distance between two points
is the number of coordinates on which they differ. Following [11], an R-covering is
defined as a set of points S such that every point in the hypercube is within distance
R of a point in S. In the literature, the minimum possible size of an R-covering
has been the primary subject of interest, in particular when R = 1. Similarly a set
T is an R′-packing if no two points of T are within distance R′ of each other [11].
In this case the primary object of study is the largest possible R′-packing. For the
remainder of this paper, we will focus on generalizations of the well studied cases
where R = 1 and R′ = 1, 2.

Given the extensive research in the case where points can cover all directions
parallel to the axes, we instead consider the generalization where each point can
cover in only a subset of these directions. Define an �-rook to be a rook which can
cover in � directions. More precisely, an �-rook is a point in Z

k along with a selection
of � out of k coordinates and this point covers exactly the points which differ in one
of the � chosen coordinates. For example a 2-rook in two dimensional space is a
regular planar rook. Given this close relation with the chessboard piece, we use the
terms “attack” and “cover” interchangeably. With this notion, we can now define
the primary objects of study for this paper.

Definition 1.1. Let n, k, � be positive integers with k ≥ �. Define an,k,� to be the
minimum number of �-rooks that can cover Hn,k, define bn,k,� to be the maximum
number of �-rooks in Hn,k with no rooks attacking another, and define cn,k,� to be
the maximum number of �-rooks that can be placed in Hn,k so that no two rooks
attack the same point. In each of these three cases we do not allow multiple rooks
at a single point. Furthermore in each case a rook attacks its own square.

For concreteness, the three grids in Figure 1 demonstrate an optimal constructions
for an,k,�, bn,k,�, and cn,k,� in the case (n, k, �) = (3, 3, 2).

Previous research studies the case when k = �, that is when a rook can “attack”
in the full set of dimensions. In particular, an,k,k corresponds to a 1-covering while
bn,k,k and cn,k,k correspond to a 1-packing and 2-packing, respectively. Furthermore
cq,k,k corresponds to generalized q-ary Hamming-distance-3 subsets of Hq,k, which are
useful for error correcting codes. The most classical bound in the case of coverings is
the sphere-packing bound and we prove an analog of this bound with a proof closely
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related to the classical one. This determines an,k,� to within a constant depending
on �.

Theorem 1.2. We have

nk

� (n− 1) + 1
≤ an,k,� ≤ nk−1.

Proof. Since each rook covers at most � (n− 1)+1 points, and every point is covered,
it follows that |S| (� (n− 1) + 1) ≥ nk points. This implies the lower bound. To prove
the upper bound, let S be the set of all points with first coordinate 0. Allow each
point in S to attack in the direction of the first coordinate, and arbitrarily choose the
other �−1 directions in which it may attack. These rooks collectively cover the cube,
proving the upper bound. Note in this construction that the last � − 1 dimensions
are essentially unused.

Since the above theorem holds for � = 1, it implies that an,k,1 = nk−1. Given the
relative simplicity of this case, we consider � ≥ 2 for the remainder of the paper. The
analogous lower bounds for bn,k,k and cn,k,k comes from the classical Singleton bound
[10]. The proof presented in the classical case can be adapted to this situation as
well, however we rely on a more geometrical argument.

Theorem 1.3. For all positive integers n, k, and � with k ≥ �, we have

bn,k,� ≤ knk−1

�
.

Furthermore, if k ≥ � ≥ 2 then

cn,k,� ≤
(
k
2

)
nk−2(
�
2

) .

Proof. For bn,k,�, consider all lines parallel to edges of the Hn,k containing n points
in Hn,k. Note that there are kn

k−1 such lines by choosing a direction and letting the
remaining coordinates vary over all possibilities within the cube. Furthermore, no
two �-rooks can cover the same axis. Since each �-rook covers � lines, it follows that
bn,k,� ≤ knk−1

�
. Similarly, for cn,k,� consider all planes passing through Hn,k, parallel

to one of the faces. Note there are
(
k
2

)
nk−2 of these faces and each �-rook intersects(

�
2

)
planes. If two rooks have the same associated plane, then they cover a common

point, and it follows that cn,k,� ≤ (k2)n
k−2

(�2)
for � ≥ 2. (If � = 1 note the �-rook does

not determine a plane and therefore the proof does not follow.)

Remark. Note that trivially bn,k,� ≥ bn,k,k and cn,k,� ≥ cn,k,k. Theorems 4.3 and 4.4
will complement these upper bounds and prove that they are the correct order of
growth in n.
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Note that cn,k,1 ≤ nk−1 as each 1-rook covers n points and the points these rooks
cover are distinct. This can be achieved by putting a 1-rook on all points with the
first coordinate 0 and having all rooks point in the direction of the first coordinate.
Given this difference in behavior between � ≥ 2 and � = 1 for cn,k,�, we assume that
� ≥ 2 for the remainder of the paper in this case.

In the remainder of the paper, we focus on the asymptotic growth rates of an,k,�,
bn,k,�, and cn,k,� when k and � are fixed and n increases.

Definition 1.4. Let ak,� = lim
n→∞

an,k,�
nk−1

, bk,� = lim
n→∞

bn,k,�
nk−1

, and ck,� = lim
n→∞

cn,k,�
nk−2

.

We now briefly summarize how the remainder of the paper is organized. Section
2 establishes the existence of the limits in Definition 1.4 for all k and � (with � ≥ 2 for
ck,�). Section 3 focuses on covering bounds and demonstrates that for � �= 1, the lower
sphere-packing bound in Theorem 1.2 is never asymptotically tight. Furthermore,
Section 3 proves that for fixed �, ak,� → 1

�
as k → ∞. Section 4 focuses on the

packing bounds and demonstrates that bk,� and ck,� achieve the bounds in Theorem
1.3 in several possible cases. Finally, Section 5 presents a series of open problems
regarding ak,�, bk,�, and ck,�.

2 Limit Existence Results

The general procedure for proofs in this section is to demonstrate that anm,k,� ≤
mk−1an,k,� for all positive integers m and then show that adjacent terms are suffi-
ciently close. (The inequality is reversed for bn,k,�, and an analogous inequality holds
for cn,k,� but only when m is a prime number.) These two facts, combined with ar-
guments closely related to the proof of Fekete’s lemma, establish that the necessary
limit exists. For an,k,� and bn,k,�, we make use of a construction of Blokhuis and Lam
[1] whereas for cn,k,� we rely on a different construction in order to establish the first
inequality.

Theorem 2.1. For positive integers k and � with k ≥ �, the limits

ak,� = lim
n→∞

an,k,�
nk−1

,

bk,� = lim
n→∞

bn,k,�
nk−1

exist.

Proof. We first consider ak,�. For � = 1, an,k,1 = nk−1 and the result is trivial.
Therefore it suffices to assume that � ≥ 2. Using Theorem 1.2, it follows that

1

�
≤ lim inf

n→∞
an,k,�
nk−1

≤ lim sup
n→∞

an,k,�
nk−1

≤ 1.
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Now suppose that L = lim infn→∞
an,k,�

nk−1 . Then for every ε > 0, there exists an integer
m such that

am,k,�

mk−1 ≤ L+ ε
2
. Now consider the points (x1, . . . , xk) in {0, 1, . . . , n−1}k

such that
x1 + · · ·+ xk ≡ 0 mod n.

(This is the construction presented in Blokhuis and Lam [1].) Note that if a k-rook is
placed at every point in this construction, all points are covered and every point of
an outer face of the hypercube has an axis “protruding” out of it. Therefore we can
essentially blowup every point in Hm,k to a copy of Hn,k to create an Hmn,k, mark
all the corresponding Hn,k in Hmn,k that correspond to rooks from the construction
of am,k,�, and place �-rooks within the Hn,k corresponding to the points from the
Blokhuis and Lam construction. Note that the � axes for each of these �-rooks in
this construction match the orientation for the �-rook in the original construction
am,k,� �-rooks in Hm,k. This construction can easily be seen to give a covering for
Hmn,k, and therefore it follows that anm,k,� ≤ nk−1am,k,�.

Now consider an+1,k,� and an,k,�. If we let Hn,k = {0, . . . , n − 1}k and Hn+1,k =
{0, . . . , n}k then we place the construction for an,k,� in {1, . . . , n}k. In order to cover
the rest of the cube, place �-rooks at every point with at least two coordinates being
0 and choose the directions of the points arbitrarily. For the remaining k (n− 1)k−1

points with exactly one 0, we break into cases of the form (a1, . . . , ai−1, 0, ai+1, . . . , ak).
In order to cover these point we take all such points with ai = 0 and place one axis
of the � possible in the direction of (i+ 1)st coordinate where indices are taken
mod n. These points together cover Hn+1,k and we have added at most knk−2 +∑k

i=2

(
k
i

)
nk−i ≤ ∑k

i=1

(
k
i

)
nk−2 ≤ 2knk−2 additional points. Therefore it follows that

an+1,k,� ≤ 2knk−2 + an,k,� and

an+1,k,�

(n+ 1)k−1
≤ 2knk−2 + an,k,�

(n + 1)k−1
≤ 2knk−2 + an,k,�

nk−1
=

2k

n
+

an,k,�
nk−1

.

Taking n sufficiently large, the following inequality holds:

mn+m−1∑
i=mn

2k

i
<

ε

2
.

Thus for i ≥ mn it follows that
ai,k,�
ik−1 ≤ L+ ε. Therefore

lim sup
n→∞

an,k,�
nk−1

≤ L+ ε

and since ε was an arbitrary constant greater than 0, the result follows.

For bk,�, an identical procedure demonstrates that
bmn,k,�

(mn)k−1 ≥ bn,k,�

nk−1 for all positive

integers m and n. Furthermore, the sequence
bn,k,�

nk−1 is bounded due to Theorem 1.3
and note that

bn+1,k,�

(n + 1)k−1
≥ bn,k,�

(n+ 1)k−1
=

nk−1

(n+ 1)k−1

(
bn,k,�
nk−1

)
.
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Thus taking L = lim supn→∞
bn,k,�

nk−1 and choosing ε > 0 arbitrarily there exists an m

such that
bm,k,�

mk−1 > L− ε
2
. Since n is fixed, we can choose m such that

(
mn

mn+n−1

)k−1
>

L−ε
L−ε/2

. Then for all i ≥ mn it follows that
bi,k,�
ik−1 > L− ε. Therefore,

lim inf
n→∞

bn,k,�
nk−1

≥ L− ε

and since ε > 0 was arbitrary the result follows.

For the existence of ck,�, we follow a similar strategy except that we rely on a
different construction for the initial inequality that allows only for prime “blowup”
factors. This construction is motivated by the construction of general q-ary codes.

Theorem 2.2. For positive integers k ≥ � ≥ 2, the limit

ck,� = lim
n→∞

cn,k,�
nk−2

exists.

Proof. Suppose p is prime and p ≥ k. Consider the set S of points (x1, . . . , xk) in Hp,k

that satisfy xk−1 ≡ x1+ · · ·+xk−2 mod p and xk ≡ x1+2x2+3x3+ · · ·+(k − 2)xk−2

mod p. We will show that in this construction no two points are less than distance
3 apart. Suppose for sake of contradiction that there are two points A = (a1, . . . , ak)
and B = (b1, . . . , bk) such that the distance between A and B is at most 2. If ai = bi
for all t with 1 ≤ t ≤ k − 2, then A = B. If at = bt for 1 ≤ t ≤ k − 2 except for
i ∈ {1, . . . , k − 2} where ai �= bi, then ak−1 �= bk−1 and ak �= bk. Finally, we consider
the case where at = bt for 1 ≤ t ≤ k− 2 except for i, j ∈ {1, . . . , k− 2} where ai �= bi
and aj �= bj . If both of the last two digits match then ai + aj ≡ bi + bj mod p
and iai + jaj ≡ ibi + jbj mod p. Subtracting i times the first equation from the
second yields (j − i) aj ≡ (j − i) bj mod p or aj ≡ bj mod p, which is impossible.
Thus each pair of points in S differ on at least 3 coordinates. Hence, we can place
�-rooks at the points in S ⊂ Hp,k, and no pair of rooks will attack a common point.
Furthermore note the set S has exactly pk−2 points.

Now given a construction for cn,k,l in Hn,k, we can blow up each point to a copy
of Hp,k (for p > k and p prime). Then place the construction given above into each
Hp,k corresponding to marked points in the original set. Orienting the set of points
in each Hp,k to match the original orientation of the corresponding points in Hn,k, it
follows that

cnp,k,�

(np)k−2 ≥ cn,k,�

nk−2 for all primes greater than k. Furthermore, note that

cn+1,k,�

(n+ 1)k−2
≥ cn,k,�

(n+ 1)k−2
=

nk−2

(n+ 1)k−2

(
cn,k,�
nk−2

)
.

Now
cn,k,l

nk−2 is bounded above due to Theorem 1.3 and bounded below as it is nonneg-
ative. Let L = lim supn→∞

cn,k,�

nk−2 and thus for every ε > 0 there is an m such that
cm,k,�

mk−2 > L − ε
2
. Now order the primes 2 = p1 < p2 < · · · . Since limi→∞

pi+1

pi
= 1 it
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follows that there exists j such that for i ≥ j, pi+1

pi
<
(

L− ε
2

L−ε

) 1
k−2

. For every integer

t > pjn it follows that there exists i ≥ j such that t ∈ [pin, pi+1n− 1] and therefore
ct,k,�
tk−2 >

(
pin
t

)k−2 cpin,k,�

(pin)
k−2 > L− ε. Therefore lim infn→∞

cn,k,�

nk−2 > L− ε, and since ε was

arbitrary the result follows.

Given these limit existence results we now turn our attention to establishing a
variety of bounds on these values and begin by analyzing an,k,�.

3 Bounds for Covering

Given the initial bounds from Theorem 1.2, it follows that 1
�
≤ ak,� ≤ 1. In this

section we demonstrate that ak,� �= 1
�
, except for the trivial case ak,1 = 1. To do

this it is necessary to “amortize” a result of Rodemich [9] which is equivalent to

an,k,k ≥ nk−1

k−1
. However, the original proof given by Rodemich can be adapted for

this situation, and we provide a complete proof below for the reader’s convenience.

Theorem 3.1. Suppose that N ≤ nk−1. Then N k-rooks on a Hn,k cover at most

kNn− (k−1)N2

nk−2 points.

Proof. The bound is clear when k = 1. For k = 2, note that N 2-rooks cover at most
n2−(n−N)2 = 2Nn−N2 points since at least n−N rows and columns are uncovered.

Therefore it suffices to consider k ≥ 3. Furthermore, when N ∈ [n
k−1

k−1
, nk−1], we have

kNn− (k−1)N2

nk−2 ≥ nk so the bound holds trivially in these cases. Hence, it suffices to

consider N ≤ nk−1

k−1
.

Now consider any set S of k-rooks with N k-rooks. For any point P ∈ Hn,k define
cj (P ) to be the number of times that the point P is attacked in the jth direction.
Furthermore define q (P ) to be the number of directions that P is attacked in and
define

m (P ) =
∑

1≤j≤k

cj (P ) = q (P ) +
∑

cj(P )>0

(cj (P )− 1) .

Next, define ei,j (P ) to be 1 if P is covered in the i and j directions and 0 otherwise.
Then note that

∑
1≤i<j≤k

ei,j (P ) =
q (P ) (q (P )− 1)

2
≤ k (q (P )− 1)

2

for points P that are attacked and therefore

q (P ) ≥ 1 +
2

k

∑
1≤i<j≤k

ei,j (P ).
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Finally define nj (P ) = cj (P )− 1 if cj (P ) is positive and 0 otherwise. Therefore

m (P ) = q (P ) +
∑

1≤j≤k

nj (P )

≥ 1 +
∑

1≤j≤k

nj (P ) +
2

k

∑
1≤i<j≤k

ei,j (P )

for points P that are attacked and suppose that S attacks the points T ⊂ Hn,k.
Summing over P ∈ T yields

kNn ≥ |T |+
∑

1≤j≤k

∑
P∈T

nj (P ) +
2

k

∑
1≤i<j≤k

∑
P∈T

ei,j (P )

= |T |+
∑

1≤j≤k

nj +
2

k

∑
1≤i<j≤k

ei,j

where we have defined
nj =

∑
P∈T

nj (P )

and
ei,j =

∑
P∈T

ei,j (P ) .

Now we arbitrarily order the nk−2 planes in the (i, j) direction. For rth plane suppose
there are ar rows in the ith direction with a point of S in them, br rows in the jth

direction with a point of S in them, and dr total points in this plane. Furthermore,
for convenience define αr = dr − ar and βr = dr − br and note by definition that
αr, βr ≥ 0. Then it follows that

ei,j =
∑

1≤r≤nk−2

arbr

=
∑

1≤r≤nk−2

(dr − αr) (dr − βr)

=
∑

1≤r≤nk−2

((
dr − αr + βr

2

)2

−
(
αr − βr

2

)2)

Using the Cauchy-Schwarz inequality in the form
∑n

i=1 x
2
i ≥ 1

n
(
∑n

i=1 xi)
2
along with

the trivial inequality that |αr − βr| ≤ n it follows that

ei,j ≥ 1

nk−2

( ∑
1≤r≤nk−2

(
dr − αr + βr

2

))2

− n

2

∑
1≤r≤nk−2

|αr − βr|
2

≥ 1

nk−2

( ∑
1≤r≤nk−2

(
dr − αr + βr

2

))2

− n

2

∑
1≤r≤nk−2

αr + βr

2

=
1

nk−2

(
N − ni + nj

2n

)2

− ni + nj

4
.
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Here we have used the fact that

n
∑

1≤r≤nk−2

(
αr + βr

)
= ni + nj ,

which follows from counting the number of points covered multiple times in the i-th
and j-th directions. Summing over all i, j it follows that

∑
1≤i<j≤k

ei,j ≥ k (k − 1)N2

2nk−2
− i

(k − 1)N

nk−1

∑
1≤j≤k

nj − k−1

4

∑
1≤j≤k

nj +
1

4nk

∑
1≤i<j≤k

(ni + nj)
2 .

Applying this inequality it follows that

kNn ≥ |T |+
∑

1≤j≤k

nj +
2

k

∑
1≤i<j≤k

ei,j

≥ |T |+
(
1− 2 (k − 1)N

knk−1
− k − 1

2k

) ∑
1≤j≤k

nj +
(k − 1)N2

nk−2

+
1

2knk

∑
1≤i<j≤k

(ni + nj)
2

≥ |T |+
(
1− 2 (k − 1)N

knk−1
− k − 1

2k

) ∑
1≤j≤k

nj +
(k − 1)N2

nk−2
.

Using N ≤ nk−1

k−1
it then follows that

kNn ≥ |T |+
(
1− 2

k
− k − 1

2k

) ∑
1≤j≤k

nj +
(k − 1)N2

nk−2

= |T |+
(
k − 3

2k

) ∑
1≤j≤k

nj +
(k − 1)N2

nk−2

≥ |T |+ (k − 1)N2

nk−2

and therefore it follows that

|T | ≤ kNn− (k − 1)N2

nk−2

as desired.

Note that Theorem 3.1 in general cannot be improved. In particular for N =
nk−1/ (k − 1) and k being a prime power the result is sharp due to the existence of
perfect codes [1]. Using this amortized version of Rodemich’s result, we now prove a
better lower bound for ak,�. Note that the � = k case of Theorem 3.2 is established
by the Rodemich result that ak,k ≥ 1

k−1
[9].
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Theorem 3.2. For every pair of positive integers (�, k) with � ≤ k, we have

ak,� ≥ 2

�

(
1 +

√
1− 4(�−1)

�2(k�)

) .

Proof. Note that when � = 1 the above follows from Theorem 1.2, therefore for the
remainder of the proof we consider � > 1. Suppose we have a configuration of N
�-rooks that covers Hn,k. Since

(
k
�

) ≥ 1, it follows that

2

�

(
1 +

√
1− 4(�−1)

�2(k�)

) ≤ 2

�

(
1 +

√
1− 4(�−1)

�2

) =
1

�− 1
.

Therefore, it suffices to consider the case N ≤ nk−1

�−1
. We first prove the following

lemma:

Lemma 3.3. Suppose that a1, . . . , ank−� are nonnegative reals that satisfy

nk−�∑
i=1

ai =

A ≤ nk−1

�− 1
. Then

∑
i: ai≤n�−1

�−1

(
�nai − �− 1

n�−2
a2i

)
+

∑
i: ai>

n�−1

�−1

n� ≤ �nA− �− 1

nk−2
A2.

Proof. Consider the piecewise function g (x) defined by

g (x) =

{
�nx− �−1

n�−2x
2 x ≤ n�−1

�−1
;

n� x > n�−1

�−1
.

Then g (x) is continuous and concave on the region [0, A]. It follows that for A =∑nk−�

i=1 ai fixed, the left-hand side achieves its maximum when the ai are all equal to
A

nk−� . Since
A

nk−� ≤ n�−1

�−1
, it follows that

∑
i,ai≤n�−1

�−1

(
�nai − �− 1

n�−2
a2i

)
+

∑
i,ai>

n�−1

�−1

n� =
∑
i

f (ai)

≤ nk−�g

(
A

nk−�

)
= �nA− �− 1

nk−2
A2

as required.

Now we proceed with the proof of Theorem 3.2. We consider the
(
k
�

)
possible

choices of directions for the �-points separately. Label these directions 1, 2, . . . ,
(
k
�

)
arbitrarily. Note that each direction spans some dimension-� hypercube. Each choice
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of direction corresponds to a choice of � out of k coordinates, so there are nk−� distinct
dimension-� hypercubes for each direction, and these collectively form a partition of
the full Hn,k. Order these �-dimensional hypercubes arbitrarily and let ai,j denote
the number of �-points in the jth hypercube of the ith direction which attack in that

direction. Furthermore let Ai =
∑nk−�

j=1 ai,j. Since the
(
k
�

)
directions contain all rooks

exactly once between them,
∑(kl)

i=1Ai = N . Also, since N ≤ nk−1

�−1
, we have Ai ≤ nk−1

�−1

for each i. Now invoking Theorem 3.1, the total number of points covered is bounded
above by

(k�)∑
i=1

⎛
⎜⎝ ∑

j: ai,j≤n�−1

�−1

(
�nai,j − �− 1

n�−2
a2i,j

)
+

∑
j: ai,j>

n�−1

�−1

n�

⎞
⎟⎠ .

It follows that

nk ≤
(k�)∑
i=1

⎛
⎜⎝ ∑

j: ai,j≤n�−1

�−1

(
�nai,j − �− 1

n�−2
a2i,j

)
+

∑
j: ai,j>

n�−1

�−1

n�

⎞
⎟⎠

≤
(k�)∑
i=1

(
�nAi − �− 1

nk−2
A2

i

)

= �nN − �− 1

nk−2

(k�)∑
i=1

A2
i

≤ �nN − �− 1(
k
�

)
nk−2

N2

where we have used Lemma 3.3 and then the Cauchy-Schwarz inequality. Dividing
through by nk and rearranging gives

(�− 1)

(
N

nk−1

)2

−
(
k

�

)(
�N

nk−1
− 1

)
≤ 0.

Specializing to when N = an,k,�, we have that

(�− 1)

(
an,k,�
nk−1

)2

−
(
k

�

)(
�an,k,�
nk−1

− 1

)
≤ 0.

It follows that for all n,

an,k,� ≥ 2nk−1

�

(
1 +

√
1− 4(�−1)

�2(k�)

) ,

and the result follows.
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Corollary 3.4. For k ≥ � ≥ 2, ak,� �= 1
�
. Therefore, in the limit, an,k,� never achieves

the lower bound of the sphere-packing bound.

However, despite the fact that ak,� �= 1
�
for � ≥ 2, we can show that as k gets

large ak,� in fact approaches 1
�
. In particular the portion of forced “overlapping” of

the attacking rooks goes to 0. For convenience, define f (k) to be the largest prime
power less than or equal to k.

Theorem 3.5. For every pair of positive integers (k, �), with k ≥ 2 and f (k) ≥ �,

ak,� ≤ 1

f (k)− 1

⌈
f (k)

�

⌉
.

Proof. The idea is to use the existence of a q-ary covering code for q = f (k), and

consider large blowups of this code. Take an integer n1 > f(k)
�
. We first construct

a size-n1, dimension-k block from
⌈
f(k)
�

⌉
�-rooks. In particular, consider the points

that satisfy x1+x2+ · · ·+xk ≡ i mod n1 for 0 ≤ i ≤ 
f(k)
�
�−1 and then choose the

(i�+ 1)st through ((i+ 1) �)th directions to attack for the points whose coordinate
sum is equivalent to i where we take the specified direction mod n. Note that this
block has an attacking line in every possible axis.

Since perfect q-ary covering codes exist for prime powers q (see [11] for example)
and f (k) ≤ k, we have ak,k ≤ af(k),f(k) =

1
f(k)−1

. Now we note that, using the size n1

scaled blocks in place of points for a construction of an2,k,k, an Hn1n2,k can be tiled
with at most (⌈

f (k)

�

⌉
nk−1
1

)
(an2,k,k)

�-rooks, and the result follows from limn→∞
an,k,k

nk−1 = ak,k.

Corollary 3.6. For every positive integer �, limk→∞ ak,� =
1
�
.

The rest of this section is devoted to the specific case a3,2 that demonstrates that
the bounds in the previous two theorems are not tight in general. Furthermore, this
case corresponds to asymptotically understanding the number of chess rooks needed
so that every square in an n by n by n grid is attacked and therefore is of particular
interest.

Theorem 3.7. The following holds:

a3,2 ≤ 1√
2
.

Note that this bound is less than 1, the bound achieved by Theorem 3.5.

Proof. Let (a, b) be any pair of positive integers that satisfies 2 < a
b
<

√
2+1, so that

4ab
2a−2b

≥ a+b. Consider a construction on H2a+2b,3. For 0 ≤ i ≤ 2a−1, 0 ≤ j ≤ 2b−1

we place a 2-rook at
(
i, j,  2bi+j

2a−2b
�) that covers along the second and third coordinates
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and place a 2-rook at
(
2a+ 2b− j − 1, 2a+ 2b− i− 1, 2a+ 2b− 1−  2bi+j

2a−2b
�) which

attacks along the first and third coordinates. We note that the points between these
groups are distinct since the first coordinates between them never coincide.

Now we claim that the uncovered squares in the plane z = k are contained in the
union of 2b columns and 2b rows. Indeed, in each plane of this form, either 2a− 2b
rooks of the first type are covering in the second coordinate, or 2a − 2b rooks of
the second type are covering the third direction. Since the corresponding rooks are
in distinct rows, the remaining plane can be covered via at most 2b 2-rooks, so this
construction yields a covering of H2a+2b,3 with at most 8ab+2b (2a+ 2b) = 4b2+12ab

2-rooks. This yields an upper bound a3,2 ≤ 4b2+12ab
4(a+b)2

= 1+3t
(1+t)2

where t = a
b
as the proof

of Theorem 2.1 implies
an,3,2

n2 ≥ a3,2. Taking t = a
b
to be an arbitrarily precise rational

approximation of
√
2 + 1 from below, we obtain

a3,2 ≤ 4 + 3
√
2(

2 +
√
2
)2 =

1√
2

as required.

Theorem 3.8. The following holds:

a3,2 ≥ α,

where α ≈ 0.583567 is

min
0≤c≤1

1− c+ 2c2 + c3 − c4

1 + 2c− c2
.

Remark. The optimal value of c in the above statement is the root of 2c5−7c4+6c2+
6c− 3 near .378235.

Proof. In order to prove this lower bound, we first prove the following crucial alge-
braic lemma.

Lemma 3.9. Suppose that ci, xi are nonnegative reals with ci ∈ [0, n], xi ∈ [0, 2n] for
1 ≤ i ≤ n. Let C =

∑n
i=1 ci and X =

∑n
i=1 xi, and (n− ci − xi) (n− ci) ≤ X for

each i. Further suppose that
∑n

i=1 (X − (n− ci − xi) (n− ci)) ≥ X2

2n−X
n

. Then

C +X ≥ αn2 − o
(
n2
)
.

where α ≈ 0.583567 is

min
0≤c≤1

1− c+ 2c2 + c3 − c4

1 + 2c− c2
.

Remark. Here o (n2) denotes a function g (n) such that limn→∞
g(n)
n2 = 0 and we will

similarly use h (n) = O (g (n)) to mean that there exist absolute constant C such
that h (n) ≤ Cg (n) for all positive integers n. Since we use a compactness argument
the function o (n2) in theory is not quantitative but with additional work can be
shown to be O (n).
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Proof. Let t = X
n2 , and define Si = (n− ci) (n− xi − ci). If t ≥ 1 then the conclusion

is immediate and hence we assume that t ≤ 1.

Let y (x1, c1, . . . , xn, cn) = C +X , and z (x1, c1, . . . , xn, cn) =
∑n

i=1 Si. The con-
ditions describe a closed and bounded subset of R2n, which is hence compact. Since
y, z are continuous, it follows that the pair (y, z) achieves its lexicographical min-
imum if this domain is nonempty. That is, there is an assignment of xi, ci which
yields a pair (y0, z0), for which any other achievable (y, z) satisfies either y0 < y, or
y0 = y, z0 ≤ z. To prove this note that the set of values which achieve the minimum
for y (x1, c1, . . . , xn, cn) in this domain is once again a compact subset. Using that a
continuous function achieves a minimum on compact subsets for z (x1, c1, . . . , xn, cn)
we have proved that a lexicographical minimum is achieved. Since we wish to find a
lower bound for C+X, it suffices to consider an assignment of (xi, ci) which achieves
the lexicographical minimum.

We now deduce a number of properties regarding this optimal value through
a number of smoothing procedures which demonstrate that the optimum exhibits
certain characteristics.

Suppose there exist distinct indices i, j with 0 < xi < 2n, 0 < xj < 2n, Si <
X, Sj < X , and ci ≥ cj. Let ε be the smallest positive real such that the replacement
xi → xi − ε and xj → xj + ε hits one of these six boundaries (referring to 0 ≤ xi,
xi ≤ 2n, 0 ≤ xj , xj ≤ 2n, Si ≤ X, Sj ≤ X), and make that replacement.

Each application of this procedure keeps y (x1, c1, . . . , xn, cn) constant and we
claim that it does not increase z. Indeed, the change in Si+Sj is ε (cj − ci) ≤ 0. The
procedure also clearly preserves all of the conditions necessary in order to maintain
that we are within the desired domain. Furthermore, each application results in an
additional index k for which xk = 0, xk = 2n, or Sk = X . Hence, after finitely many
applications, all but possibly one index is in one of these three categories, and (y, z)
achieves its lexicographical minimum. Let A be the set of indices for which xk = 0,
let B be the set of indices for which xk = 2n, and let D be the set of indices for
which Sk = X and xk �= 0. Let E denote the set of remaining indices, which has size
at most one currently.

We furthermore claim that all indices k ∈ D, except for possibly one, must satisfy
(xk, ck) = (n−X/n, 0). Indeed, suppose otherwise; then there is a pair of indices
i, j ∈ D with ci > 0, cj > 0, 0 < xi ≤ xj < n− X

n
. Let

g (t) =
2n− t−√

t2 + 4X

2
.

Then the condition Sk = X implies that ck = g (xk) for k ∈ D. In particular,
ci = g (xi) and cj = g (xj). Since xi, xj > 0, we have X > 0, which means that the
function g (t) is strictly concave. This is immediate as

g′′ (t) = −2X
(
t2 + 4X

)−3/2
< 0

for all of t ∈ R. Given this we can pick 0 < ε < min{xi, n − X
n
− xj}, and replace

(xi, ci) , (xj , cj) with (xi − ε, g (xi − ε)) , (xj + ε, g (xj + ε)). By the strict concavity
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of g, we have g (xi) + g (xj) > g (xi − ε) + g (xj + ε), which means this operation
would strictly decrease y. This violates the assumption that our assignment attains
the lexicographical minimum of (y, z). Hence there is at most one k ∈ D with
(xk, ck) �= (n−X/n, 0). If that extraneous k does exist, move it to E and note that
E has size at most 2.

Finally we claim that ci = cj for all i, j ∈ A. Indeed, suppose otherwise. Then we

may replace (0, ci) and (0, cj) with two copies of
(
0,

ci+cj
2

)
. Since a2 + b2 > 2

(
a+b
2

)2
for a �= b, this transformation would strictly decrease z (and hold y constant), which
contradicts (y, z) being at a lexographical minimum. The same argument shows that
ci = cj for i, j ∈ B. Let ci = cA for i ∈ A, and ci = cB for i ∈ B. If either set is
empty, define the respective constant to be 0.

We now define the special setting to be where all but at most two indices are
either of the form xi = nd, ci = 0, d ∈ [0, 2], or xi = 0, ci = nc, c ∈ [0, 1]. We now
take two cases based on whether D is empty and reduce each of the cases to this
special scenario.

Case 1: D is empty. If B is empty, then only at most two indices k can satisfy
xk > 0; namely, k ∈ E. Then X ≤ 4n. For the ≥ n−2 indices k satisfying xk = 0, we
then have (n− ck)

2 ≤ 4n, which means ck = n− o (n). In particular, C = n2− o (n2)
and the result follows in this case. If A is empty, then xk = 2n for all but at most
one k, which means X = 2n2 − o (n) and this case is also immediate. Hence, it
suffices to consider A,B nonempty. We claim cA = n or cB = 0. Otherwise we can
replace a pair of indices (2n, cB) , (0, cA) with (2n, cB − ε) , (0, cA + ε), which strictly
decreases z and holds y constant while preserving all conditions which contradicts
being at a lexicographical minimum. (For ε small the change is ε (−2cB + 2cA − 2n)
and note that (−2cA + 2cB − 2n) < 0 by assumption.) In the case when cA = n, we
have ck + xk ≥ n for all but at most two indices k, so C +X ≥ n2 + o (n2). Finally
in the case where we have cB = 0, we are in the special setting with (c, d) =

(
cA
n
, 2
)
.

Case 2: D is nonempty. IfB is empty, then we are again in the special setting men-
tioned previously. Otherwise, we claim cB = 0. Indeed, else, for a pair of indices we
may swap (n−X/n, 0) , (2n, cB) with (n−X/n, cB) , (2n, 0), which would hold y the
same, preserve the given conditions, and strictly decrease z. Note that (n−X/n, cB)
satisfies the constraint as (n− ci − xi) (n− ci) = (X/n− cB) (n− cB) ≤ X and
to see that z strictly decreases, note the change can explicitly be computed to be
cBn+ cB (X/n). Therefore we have reduced to the case cB = 0. Then we may merge
groups B and D and average together all of the x coordinates. Sk is linear as a
function in xk for fixed ck, so this operation preserves the conditions as well as the
values y, z. This averaging also lands us into the special setting, since everything in
the merged group is of the form (dn, 0) , d ∈ [0, 2], and everything in A is of the form
(0, cn) , c ∈ [0, 1].

We now analyze the special setting with indices in set L which are (nd, 0) and
indices in the set M which are (0, nc). Let L have �n indices. Since E has size less
than 2, M has (1− �)n+O (1) indices. Furthermore it follows that X/n2 = (� · d)+
O (1/n) = t as |xi| ≤ 2n for the at most two coordinates in E. The constraint that
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(n− xi − ci) (n− ci) ≤ X for all indices in M and L become (1− c)2 ≤ t + O (1/n)
and (1− d) ≤ t+O (1/n). Finally the constraint that

n∑
i=1

(X − (n− ci − xi) (n− ci)) ≥ X2

2n− X
n

becomes
t− (�) (1− d)− (1− �) (1− c)2 ≥ t2/ (2− t)−O (1/n) .

Note that nc ∈ [0, n] becomes c ∈ [0, 1] and nd ∈ [0, 2n] becomes d ∈ [0, 2] and that
� ∈ [0, 1]. Finally we may assume that t ∈ [0, 1] due to the first reduction in the
proof. The objective now translates to C+X = �dn2+(1− �) cn2+O (n) and thus to
determine α in the theorem statement it suffices to solve the following optimization
problem:

min (�d+ (1− �) c)

subject to the constraints

• t ∈ [0, 1]

• c ∈ [0, 1]

• d ∈ [0, 2]

• � ∈ [0, 1]

• t− (�) (1− d)− (1− �) (1− c)2 ≥ t2/ (2− t)

• (1− c)2 ≤ t

• (1− d) ≤ t

• t = � · d

and this is addressed precisely by Lemma 5.5 in the appendix to give the theorem’s
statement.

Note here we are using the real analysis that the optimum value of a continuous
function over a set of nesting compact domains approaches the obvious limit. In
particular let Di be a set of compact domains such that D1 ⊇ D2 ⊇ . . ., D = ∩∞

i=1Di,
and Opti be the optimum over a continous function h defined on D1 and hence all
Di. Then we have that Opti approaches the optimum value of h over the domain
D. The proof is simply to take a convergent subsequence of the sequence of optima.
Note that the limit must lie in Dk for all k and hence in D itself. In our case,
Di is the compact set obtained when all of the conditions above are relaxed by an
additive lower order O

(
1
n

)
term, and D is exactly the compact set given by the above

conditions.
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Lemma 3.10. Suppose that 0 < X ≤ n2 squares are marked in an n×n grid, and in
each marked square is written either the number of marked squares in the same row,
or the number of marked squares in the same column. Then the sum of the written
numbers is at least X2

2n−X
n

.

Proof. We claim that the sum of the reciprocal of the written numbers is at most
2n − X

n
. Indeed, for a marked square mi, let ci, ni denote the number of marked

squares in the chosen and not chosen direction of mi respectively. Then:

X∑
i=1

1

ci
=

X∑
i=1

(
1

ci
+

1

ni

)
−

X∑
i=1

1

ni

≤ 2n−
X∑
i=1

1

ni

≤ 2n− X

n

Here, we have used estimate
∑X

i=1

(
1
ci
+ 1

ni

)
≤ 2n, which is true since the sum of

the column-directional terms along any column is at most 1, and similarly for row-
directional terms.

Then the result follows from the Cauchy-Schwarz inequality, since(
X∑
i=1

1

ci

)(
X∑
i=1

ci

)
≥ X2.

Now we proceed to the proof of the lower bound in Theorem 3.8. Suppose that
there is a configuration of 2-rooks which covers an Hn,3 situated at 1 ≤ x, y, z ≤ n in
coordinate space. We first claim that this configuration may be transformed into one
in which no two rooks cover each other; equivalently, no two rooks share the same
axis. Indeed, consider some instance of this, with rooks R1 and R2, covering axis A
jointly. Let B be the other axis covered by R2. Then there are two cases. If every
other space on B is covered by another rook already, then removing R2 entirely will
still result in a valid covering. Otherwise, moving B to the uncovered space results
in a valid covering, and decreases the number of pairs of rooks which share an axis.
So, after finitely many iterations of this, we may assume no two rooks share an axis.

We call rooks cross rooks if they cover in the x and y directions, and all other
rooks axis rooks. We call the set of axes covered by axis rooks the strong axes.

For each i, 1 ≤ i ≤ n, we denote by xi the number of axis rooks which lie
in the plane z = i, and by ci the number of cross rooks which lie in this plane.
Let C =

∑n
i=1 ci, X =

∑n
i=1 xi. Note that we may assume ci ≤ n since n cross

rooks can already cover a plane. We claim that, in the i-th plane, at most n2 −
(n− ci) (n− ci − xi) points are covered by rooks in that plane. Indeed, suppose that
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hi of the xi axis rooks choose to cover a row in z = i, and vi choose to cover a column,
so that vi + hi = xi. Then at most ci + vi rows are covered by the rooks in plane i,
and at most ci + hi columns are covered. Hence in total, at most:

n2 − (n− ci − hi) (n− ci − vi) = n2 − (n− ci) (n− ci − xi)− hivi

≤ n2 − (n− ci) (n− ci − xi)

points in plane i are covered by rooks in that plane, as required. It follows that the
remaining points in plane i must be covered by axis rooks from other planes, so that
in particular X ≥ (n− ci) (n− ci − xi) for every i.

Let Pi denote the number of strong axes covered by axis rooks in the ith plane,
and let Ci denote the number of total points covered by rooks outside the plane, so
that X ≥ Ci +Pi for each i. Note that Ci ≥ (n− ci) (n− ci − xi) + hivi from before.

We translate to the setting of Lemma 3.10. Project all of the axis rooks onto the
xy plane. By assumption, no two axis rooks will project to the same coordinate. For
each axis rook, write in its square the number of strong axes covered by that rook
in its corresponding plane. Then according to Lemma 3.10, the sum of the written
number will be at least X2

2n−X
n

. On the other hand, consider only those axis rooks

in the ith plane. The sum of these numbers is Pi plus the number of strong axes
covered twice in the ith plane. Note that no axis can be covered more than twice
in a plane, since no pair of rooks cover each other by assumption. The number of
strong axes which are in both the row and column of some rook in the ith plane is
at most vihi, since that is the number of points in the ith plane which are covered
twice by axis rooks in that plane. Hence

n∑
i=1

(Pi + vihi) ≥ X2

2n− X
n

.

Combining this with previous estimates gives

n∑
i=1

(X − (n− ci) (n− ci − xi)) ≥
n∑

i=1

(X − Ci + vihi) ≥
n∑

i=1

(Pi + vihi) ≥ X2

2n− X
n

.

Therefore, the xi, ci satisfy the conditions given in Lemma 3.9, so it follows that the
total number of rooks used is

C +X ≥ αn2 − o
(
n2
)

Hence a3,2 ≥ α as required.

4 Bounds for Packing

In this section we prove that bk,� =
k
�
and ck,� =

(k2)
(�2)

for certain special values of k

and �. We begin by demonstrating that this first equality holds when � divides k.
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Theorem 4.1. For positive integers k, t, we have bkt,t = k.

Proof. By Theorem 1.3, it follows that bkt,t ≤ k. Therefore, it suffices to demonstrate

that bkt,t ≥ k. We prove this by demonstrating that bn,kt,t ≥ knk(t−1) (n− 1)k−1

through explicit construction.

Consider points of the form (x1, . . . , xt, xt+1, . . . , x2t, . . . , xkt) with 0 ≤ xi ≤ n− 1
for 1 ≤ i ≤ kt. Define the Lj block of points as the set of points that satisfy

t−1∑
i=0

xjt−i ≡ 0 mod n

and satisfy for m ∈ {1, . . . , �} and m �= j,

t−1∑
i=0

xmt−i �≡ 0 mod n.

For each point in the Lj block, place an �-rook that attacks in the direction of the

((j − 1) t+ 1)th coordinate to the jtth coordinate. Note that

|Lj | = nt−1
(
nt−1 (n− 1)

)k−1
= nk(t−1) (n− 1)k−1

and thus taking the union of these rooks for 1 ≤ j ≤ k it follows that∣∣∣∣∣
k⋃

j=1

Lj

∣∣∣∣∣ = knk(t−1) (n− 1)k−1 .

Now we demonstrate that no rook attacks another in the above constructions. Sup-
pose for the sake of contradiction that R1 attacks R2 with R1 ∈ Li and R2 ∈ Lj . If
i �= j then note that R1 and R2 differ in at least one coordinate in x(i−1)t+1, . . . , xit

and at least one coordinate in x(j−1)t+1, . . . , xjt. Since attacking rooks differ by at
most 1 coordinate, such rooks R1 and R2 do not exist. Otherwise R1 and R2 both lie
in Li. If these rooks differ in the coordinates x(i−1)t+1, . . . , xit then they differ in at
least two positions and therefore they cannot attack each other. Otherwise R1 and
R2 differ outside of the coordinates x(i−1)t+1, . . . , xit, and since R1 and R2 attack in
these coordinates, R1 does not attack R2 and the result follows.

We can now establish a crude lower bound for bk,�.

Corollary 4.2. For positive integers k, �, we have bk,� ≥ k
�
�.

Proof. Note that nbn,k,� ≤ bn,k+1,� as we can stack n constructions of bn,k,� in the
(k + 1)st dimension. Therefore it follows that bk,� ≤ bk+1,� and that bk,� ≥ b��k

�
	,� = k

�
�

where we have used Theorem 4.1 in the final step.

The last bound we establish for bk,� is that in fact bk,2 =
k
2
for all integers k ≥ 2.
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Theorem 4.3. For integers k ≥ 2, we have bk = k
2
.

Proof. We will provide an inductive construction based on constructions in Section
2. In particular, we show the following:

Claim: For every integer k ≥ 2, there exists a nonnegative constant ck such that
bn,k,2 ≥ k

2
nk−1 − ckn

k−2.

For the base case k = 2, we may take c2 = 0, and place 2-rooks along the main
diagonal of Hn,2 which is a size-n square. Suppose the claim holds for all j ≤ k − 1
and that (k − 1)!2 divides n. Then there exists some set S of k−1

2
nk−2 − ck−1n

k−3

2-rooks that tiles Hn,k−1.

We now describe a way to pack

(k − 1)k
(

n
k−1

)
!(

n
k−1

− k + 1
)
!

labeled 1-rooks into a Hn,k−1 so that no two 1-rooks of the same label attack each
other. For this, we first group some of the nk−1 points in the hypercube into(

n
k−1

)
!(

n
k−1

− k + 1
)
!

buckets of size (k − 1)k−1. We do this by sending the point (x1, . . . , xk−1) to a bucket
labeled

( x1

k−1
�, . . . ,  xk

k−1
�) if and only if the  xi

k−1
� are distinct.

Notice that the points in each bucket form a Hk−1,k−1. Within each bucket, we

partition the points into k − 1 parts of the form
∑k−1

i=1 xi ≡ j mod k − 1, each of

which has (k − 1)k−2 points. We then label each point in the j-th part of such a
partition with the label  xj

k−1
�.

When this is done, there are

(k − 1)k
(

n
k−1

)
!

n
(

n
k−1

− k + 1
)
!

points of label i for each i ∈ {1, . . . , n
k−1

}. All points of label i have  xj

k−1
� = i for

exactly one index j. Therefore, assigning all points of label i to attack in the direction

corresponding to this direction yields a packing of
(k−1)k( n

k−1)!
( n
k−1

−k+1)!
labeled 1-rooks into a

Hn,k−1 so that no two 1-rooks of the same label attack each other, as required.

Now we combine this partition P with the set S. For 1 ≤ xk ≤ n
k−1

, we let the last
coordinate act as the label for P and have all of these rooks attack in the direction
of the last coordinate in addition to their normal direction. For n

k−1
+ 1 ≤ xk ≤ n,

we fill each layer corresponding to a fixed xk according to S. The number of points
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in the construction at this point is at least

(k − 1)k
(

n
k−1

)
!(

n
k−1

− k + 1
)
!
+

(
k − 2

k − 1
n

)(
k − 1

2
nk−1 − ckn

k−2

)

≥ k

2
nk−1 −

(
k − 2

k − 1
ck +

k (k − 1)2

2

)
nk−2.

Here we have used the estimate that(
n

k−1

)
!(

n
k−1

− k + 1
)
!
≥
(

n

k − 1

)k−1

− (k − 1) (k − 2)

2

(
n

k − 1

)k−2

.

For a proof of this estimate, see the appendix. At this point, the only pairs of 2-rooks
that attack other 2-rooks are the rooks from P that attack the rooks from S. But
there are at most k−1

2
nk−2 rooks in S and each rook in S lead to at most 1 offending

point in P . Therefore we may simply remove these rooks to obtain a configuration

of at least k
2
nk−1 −

(
k−2
k−1

ck +
k(k−1)2

2
+ k−1

2

)
nk−2 2-rooks, none of which attack each

other.

It follows that bk,2 = limt→∞ b(k−1)!2t,k,2 =
k
2
, as desired.

Transitioning, we now determine ck,2 and ck,k. The second constant is known
implicitly in the literature, but the proof is included in the following theorem.

Theorem 4.4. For all positive integers k, ck,k = 1 and for k ≥ 2, ck,2 =
(
k
2

)
.

Proof. We begin by proving that ck,k = 1. By Theorem 1.3, ck,k ≤ 1. The con-
struction that ck,k ≥ 1 is exactly the one given in Theorem 2.2 as this demonstrates
cp,k,k = pk−2 for primes p > k. The result follows.

For the second part of the proof, note that ck,2 ≤
(
k
2

)
by Theorem 1.3. Therefore,

it suffices to demonstrate that ck,2 ≥
(
k
2

)
. To demonstrate this we prove that cn,k,2 ≥(

k
2

) (
n− 2

(
k
2

))k−2
for n > 2

(
k
2

)
. In particular, for i < j, let Ai,j be the set of points

with i-th and j-th coordinates being 2i−2+(j − 1) (j − 2) and 2i−1+(j − 1) (j − 2)
respectively, and other coordinates varying in the range [k (k − 1) + 1, n− 1]. Note
that 2i − 2 + (j − 1) (j − 2) and 2i − 1 + (j − 1) (j − 2) lie between [0, k (k − 1)]
and take each value in this range exactly once. Now for each point in Ai,j, orient
the corresponding 2-rook to attack in the direction of the i-th and j-th axes. No
two rooks within a set attack each other as they differ outside the i-th and j-th
coordinates, and any pair of rooks from different sets differ in at least 3 coordinates
and therefore cannot attack each other. Thus, the result follows by taking all Ai,j

where the 2-rooks in Ai,j are directed to attack along the i-th and j-th dimension.

5 Conclusion and Open Questions

There are several natural questions and conjectures regarding the values of ak,�, bk,�,
and ck,�. The most surprising open question is the following.
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Conjecture 5.1. For integers k ≥ 2, ak,k =
1

k−1
.

Note that the above conjecture is known when k is one more than a power of a
prime [1], and the construction is essentially that of perfect codes. This construction
implies that the first open case of this conjecture is a7,7. The most natural case when
k �= � and that is not covered by our result is a3,2.

Question 5.2. What is the exact value of a3,2?

We end with a pair of conjectures based on the results of the previous section,
and in contrast to ak,� we conjecture exact values for bk,� and ck,� that are upper
bounds from Theorem 1.3.

Conjecture 5.3. For positive integers k ≥ �, bk,� =
k
�
.

Conjecture 5.4. For positive integers k ≥ � ≥ 2, ck,� =
(k2)
(�2)

.

Appendix

Lemma 5.5. The optimum for the optimization problem

min �d+ (1− �) c

subject to the constraints

• c ∈ [0, 1]

• d ∈ [0, 2]

• � ∈ [0, 1]

• t− (�) (1− d)− (1− �) (1− c)2 ≥ t2/ (2− t)

• (1− c)2 ≤ t

• (1− d) ≤ t

• t = � · d
is larger than the optimum for the optimization problem

min
0≤c≤1

1− c+ 2c2 − c3 + c4

1 + 2c− c2

Proof. We begin by dropping the constraints that (1− d) ≤ t and � ∈ [0, 1]. Further-
more the variable d can be entirely eliminated at the cost of dropping the constraint
d ∈ [0, 2], rewriting the objective as t + (1− �) c, and substituting into the fourth
constraint. In particular we have reduced to the optimization problem of

min (t + (1− �) c)

subject to the constraints
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• c ∈ [0, 1]

• t ∈ [0, 1]

• 2t− �− (1− �) (1− c)2 ≥ t2/ (2− t)

• (1− c)2 ≤ t

Now note that the second constraint can be rewritten as(
t (4− 3t)

2− t
− (1− c)2

)
≥ �

(
1− (1− c)2

)
.

Since the function we are optimizing is decreasing in � for c > 0, we find that we
may assume that

� =

(
t (4− 3t)

2− t
− (1− c)2

)
/
(
1− (1− c)2

)
.

The endpoint case that c = 0 is trivial as we are now simply minimizing t and
(1− c)2 ≤ t implies t ≥ 1. Note that

1− � =
(1− t) (2− 3t)

c (2− c) (2− t)

upon simplifying. Thus our optimization problem reduces to

min

(
t+

(1− t) (2− 3t)

(2− c) (2− t)

)

subject to the constraints

• c ∈ [0, 1]

• t ∈ [0, 1]

• (1− c)2 ≤ t

At this point we treat c as a constant and note that the endpoint t = 1 trivially gives
1. Now taking a derivative in t we find that

d

dt

(
t+

(1− t) (2− 3t)

(2− c) (2− t)

)
=

c (t− 2)2 + (t− 4) t

(c− 2) (t− 2)2
.

Setting equal to 0 the possible critical points are t =
2(1+c±√

1+c)
1+c

and only t =
2(1+c−√

1+c)
1+c

can ever lie in the interva l [(1− c)2 , 1] and for c ≤ 3 the value is always
≤ 1. Since the second derivative is

d2

dt2

(
t+

(1− t) (2− 3t)

(2− c) (2− t)

)
=

8

(2− c) (2− t)3
≥ 0
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it suffices to consider t = max{(1− c)2 ,
2(1+c−√

1+c)
1+c

}. At this point this is a numeri-

cal verification; note for 0 ≤ c ≤ 17/40 we have (1− c)2 ≥ 2(1+c−√
1+c)

1+c
. Thus we can

relax the optimization to the minimum of

min

(
t+

(1− t) (2− 3t)

(2− c) (2− t)

)

subject to the constraints

• c ∈ [17/40, 1]

• t = 2
(
1 + c−√

1 + c
)
/ (1 + c)

and

min

(
t+

(1− t) (2− 3t)

(2− c) (2− t)

)
subject to the constraints

• c ∈ [0, 1]

• t = (1− c)2

These are both explicit 1-variable optimization problems and in the first problem
substituting t = 2

(
1 + c−√

1 + c
)
/ (1 + c) we need to optimize

4
√
1 + c− 3− 2c

2− c
.

The derivative in c is
8 + 2c− 7

√
1 + c

(2− c)2
√
1 + c

≥ 0

for c ≤ 5/4 and thus it suffices to take c = 17/40 which gives a value of ≥ .587. The
second optimization, upon substituting, is equivalent to

min
0≤c≤1

1− c+ 2c2 + c3 − c4

1 + 2c− c2

and taking c = .378235 this is less than .587. This completes the proof. (Note that
this minimum is less than 1; this fact is used implicitly several times in the proof
when discarding cases.)

Lemma 5.6. Suppose that k ≥ 2, and (k − 1)2 |n. Then(
n

k−1

)
!(

n
k−1

− k + 1
)
!
≥
(

n

k − 1

)k−1

− k (k − 1)

2

(
n

k − 1

)k−2

.
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Proof. Let a = n
k−1

≥ k − 1. Then we calculate:

(
n

k−1

)
!(

n
k−1

− k + 1
)
!
= ak−1

k−2∏
i=0

(
1− i

a

)

≥ ak−1

(
1−

k−2∑
i=0

i

a

)

= ak−1 − (k − 1) (k − 2)

2
ak−2

as desired. Here we have used the classical inequality
∏n

i=0 (1− xi) ≥ 1 −∑n
i=0 xi

for n = k − 2 and xi =
i
a
∈ [0, 1].

Acknowledgements

This research was conducted at the University of Minnesota Duluth REU and was
supported by NSF grant 1659047. We would like to thank Ashwin Sah, Joe Gallian,
Colin Defant, and Ben Gunby for reading over the manuscript and providing valuable
comments. We would especially like to thank Ben Gunby for finding a critical error
in an earlier version of the paper. Finally we would like to thank the anonymous
referees who significantly improved the exposition of this paper.

References

[1] A. Blokhuis and C.W. Lam, More coverings by rook domains, J. Combin. The-
ory Ser. A 36 (1984), 240–244.

[2] H. Fernandes and E. Rechtschaffen, The football pool problem for 7 and 8
matches, J. Combin. Theory Ser. A 35 (1983), 109–114.

[3] W. Haas, Lower bounds for the football pool problem for 7 and 8 matches,
Electron. J. Combin. 14 (2007), #R27.

[4] W. Haas, J.-C. Schlage-Puchta and J. Quistorff, Lower bounds on covering codes
via partition matrices, J. Combin. Theory Ser. A 116 (2009), 478–484.
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