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Abstract

Let x, y be two distinct vertices in a digraph. We call the pair {x, y}
dominating if x and y have a common out-neighbour. In this paper we
prove that a strong balanced bipartite digraph of order 2a contains a
hamiltonian cycle if for every dominating pair of vertices {x, y}, either
d(x) ≥ 2a − k, d(y) ≥ a + k or d(x) ≥ a + k, d(y) ≥ 2a − k, where
max{1, a

4
} < k ≤ a

2
.

1 Introduction

In this paper, we consider finite digraphs without loops and multiple arcs. The
cycle problems for digraphs are among the central problems in graph theory and its
applications [6]. A digraph D is called hamiltonian if it contains a hamiltonian cycle,
i.e., a cycle that includes every vertex of D. There are many degree or degree sum
conditions for hamiltonicity [1, 3, 4, 5, 7, 8, 9]. The following result of Meyniel on
the existence of hamiltonian cycles in digraphs is basic and famous.

Theorem 1.1. [8] Let D be a strong digraph on n vertices, where n ≥ 3. If d(x) +
d(y) ≥ 2n−1 for all pairs of non-adjacent vertices x, y in D, then D is hamiltonian.

In [7], Bang-Jensen, Gutin and Li described a type of sufficient condition for a
digraph to be hamiltonian. Conditions of this type combine local structure of the
digraph with conditions on the degrees of non-adjacent vertices. Let D be a digraph
and x, y be distinct vertices in D. If there is an arc from x to y, then we say that x
dominates y and write x → y. Now, {x, y} is dominated by a vertex z if z → x and
z → y; in this case, we call the pair {x, y} dominated. Likewise, {x, y} dominates a
vertex z if x → z and y → z; in this case, we call the pair {x, y} dominating.
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Theorem 1.2. [7] Let D be a strong digraph of order n ≥ 2. Suppose that, for every
dominated pair of non-adjacent vertices {x, y}, either d(x) ≥ n, d(y) ≥ n − 1 or
d(x) ≥ n− 1, d(y) ≥ n. Then D is hamiltonian.

In [7], Bang-Jensen, Gutin and Li raised the following two conjectures.

Conjecture 1.3. [7] Let D be a strong digraph of order n ≥ 2. Suppose that d(x) +
d(y) ≥ 2n − 1 for every dominating pair of non-adjacent and every dominated pair
of non-adjacent vertices {x, y}. Then D is hamiltonian.

Conjecture 1.4. [7] Let D be a strong digraph of order n ≥ 2. Suppose that d(x) +
d(y) ≥ 2n − 1 for every dominated pair of non-adjacent vertices {x, y}. Then D is
hamiltonian.

Bang-Jensen, Guo and Yeo [5] proved that, if we replaced the degree condition
d(x)+d(y) ≥ 2n−1 with d(x)+d(y) ≥ 5

2
n−4 in Conjecture 1.3, thenD is hamiltonian.

They also proved additional support for Conjecture 1.3 by showing that every digraph
satisfying the condition of Conjecture 1.3 has a cycle factor. Conjecture 1.3 is still
open and seems quite difficult. Conjecture 1.4 has been disproved recently in [10].

In [4], Adamus, Adamus and Yeo gave a Meyniel-type sufficient condition for
hamiltonicity of a balanced bipartite digraph.

Theorem 1.5. [4] Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 3. If d(x) + d(y) ≥ 3a for every pair of non-adjacent vertices x, y in D, then D
is hamiltonian.

In [1], Adamus proved a bipartite analogue of Conjecture 1.3.

Theorem 1.6. [1] Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 3. If d(x)+d(y) ≥ 3a for every dominating pair of vertices and every dominated
pair of vertices {x, y} in D, then D is hamiltonian.

In [9], the first author of this paper gave a dominating pair sufficient condition
for hamiltonicity of a balanced bipartite digraph, which is a bipartite analogue of
Theorem 1.2 (Theorem 1.7 below).

Theorem 1.7. [9] Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 2. If, for every dominating pair of vertices {x, y}, either d(x) ≥ 2a− 1, d(y) ≥
a + 1 or d(x) ≥ a+ 1, d(y) ≥ 2a− 1, then D is hamiltonian.

Definition 1.8. Consider a balanced bipartite digraph D of order 2a, where a ≥ 2.
For an integer k ≥ 0, we will say that D satisfies the condition Bk when

d(x) ≥ 2a− k, d(y) ≥ a+ k or d(x) ≥ a+ k, d(y) ≥ 2a− k,

for any dominating pair of vertices {x, y} in D.

It is natural to propose the following problem.
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Problem 1.9. [9] Consider a strong balanced bipartite digraph D of order 2a. Sup-
pose that D satisfies the condition Bk with 2 ≤ k ≤ a

2
. Is D hamiltonian?

In Section 3, we will prove that if D satisfies the condition of Problem 1.9, then
D contains a cycle factor. In Section 4, we will prove that if max{1, a

4
} < k ≤ a

2
in

Problem 1.9, then D is hamiltonian (Theorem 1.10 below).

Theorem 1.10. Let D be a strong balanced bipartite digraph of order 2a. If D
satisfies the condition Bk with max{1, a

4
} < k ≤ a

2
, then D is hamiltonian.

The proof of Theorem 1.10 is based on the arguments of [1, 4].

2 Terminology

We will assume that the reader is familiar with the standard terminology on digraphs
and refer the reader to [6] for terminology not defined here. Let D be a digraph with
vertex set V (D) and arc set A(D).

For a vertex set S ⊂ V (D), we denote by N+(S) the set of vertices in V (D)
dominated by the vertices of S; i.e. N+(S) = {u ∈ V (D) : vu ∈ A(D) for some v ∈
S}. Similarly, N−(S) denotes the set of vertices of V (D) dominating vertices of S;
i.e. N−(S) = {u ∈ V (D) : uv ∈ A(D) for some v ∈ S}. If S = {v} is a single vertex,
the cardinality of N+(v) (resp. N−(v)), denoted by d+(v) (resp. d−(v)) is called the
out-degree (resp. in-degree) of v in D. The degree of v is d(v) = d+(v) + d−(v). For
a pair of vertex sets X, Y of D, define (X, Y ) = {xy ∈ A(D) : x ∈ X, y ∈ Y }. For
S ⊆ V (D), we denote by D[S] the subdigraph of D induced by the vertex set S.

A digraph D is said to be strongly connected or just strong, if for every pair
of vertices x, y of D, there is an (x, y)-path. A cycle factor in D is a collection of
vertex-disjoint cycles C1, C2, . . . , Ct such that V (C1) ∪ V (C2) ∪ · · · ∪ V (Ct) = V (D).

A digraph D is bipartite when V (D) is a disjoint union of independent sets V1 and
V2. It is called balanced if |V1| = |V2|. A matching from V1 to V2 is an independent
set of arcs with origin in V1 and terminus in V2 (u1u2 and v1v2 are independent
arcs when u1 
= v1 and u2 
= v2). If D is balanced, one says that such a matching
is perfect if it consists of precisely |V1| arcs. If for every pair of vertices x, y from
distinct partite sets, xy and yx are in D, then D is called complete bipartite.

3 Lemmas

The proof of Theorem 1.10 will be based on the following four lemmas.

Lemma 3.1. Let D be a strong balanced bipartite digraph of order 2a. Suppose that
D satisfies the condition Bk for some 2 ≤ k ≤ a

2
and D is non-hamiltonian. Then for

every vertex u ∈ V (D) there exists v ∈ V (D) \ {u} such that {u, v} is a dominating
pair of vertices. Moreover, the degree of every vertex in D is larger than or equal to
a + k in D.
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Proof. Suppose that there exists a vertex u′ ∈ V (D) such that u′ has no common
out-neighbour with any other vertex in D.

We claim that no vertex has a common out-neighbour with any other vertex. In
fact, since D is strong, for any z ∈ V (D) \ {u′}, there exists a (u′, z)-path. Denote
it by P = u1u2 . . . up, where u1 = u′, up = z. Since u1 has no common out-neighbour
with any other vertex in D, we have d−(u2) = 1. Then d(u2) ≤ a+1. As 2 ≤ k ≤ a

2
,

2a− k ≥ a + k ≥ a + 2. By assumption, for any dominating pair of vertices {x, y},
d(x) ≥ a + 2 and d(y) ≥ a + 2. Hence u2 has no common out-neighbour with
any other vertex in D. By repeating the above argument, one can show that every
vertex of {u3, . . . , up} has no common out-neighbour with any other vertex. By the
arbitrariness of z, no vertex has a common out-neighbour with any other vertex.

Thus, for any w ∈ V (D), d−(w) ≤ 1. Since D is strong, d−(w) ≥ 1 and so
d−(w) = 1. Clearly, D is a directed cycle of length 2a, a contradiction. Therefore, for
every vertex u ∈ V (D) there exists v ∈ V (D) \ {u} such that {u, v} is a dominating
pair of vertices. As k ≤ a

2
, 2a − k ≥ a + k. By the hypothesis of this lemma,

d(u) ≥ a+ k. Since u is arbitrary, the degree of every vertex is larger than or equal
to a+ k.

Lemma 3.2. Let D be a strong balanced bipartite digraph of order 2a. If D satisfies
the condition Bk with 2 ≤ k ≤ a

2
, then D contains a cycle factor.

Proof. If D is hamiltonian, there is nothing to prove. Now assume that D is non-
hamiltonian. By Lemma 3.1, the degree of every vertex is larger than or equal to
a + k. Let V1 and V2 denote the two partite sets of D. Observe that D contains a
cycle factor if and only if there exist both a perfect matching from V1 to V2 and a
prefect matching from V2 to V1. In order to prove that D contains a perfect matching
from V1 to V2 and a prefect matching from V2 to V1, by the König-Hall theorem, it
suffices to show that |N+(S)| ≥ |S| for every S ⊂ V1 and |N+(T )| ≥ |T | for every
T ⊂ V2.

Suppose that a non-empty set S ⊂ V1 is such that |N+(S)| < |S|. Then V2 \
N+(S) 
= ∅. If |S| = 1, write S = {x}, then |N+(S)| < |S| implies that d+(x) = 0.
It is impossible in a strong digraph. Thus |S| ≥ 2. Then |N+(S)| < |S| implies that
there exist x1, x2 ∈ S and y ∈ N+(S) such that {x1, x2} → y. Thus, {x1, x2} is a
dominating pair of vertices. By the hypothesis of this lemma, we assume, without
loss of generality, that d(x1) ≥ 2a− k and d(x2) ≥ a+ k.

If |S| ≤ a − k, then |N+(S)| < |S| implies |N+(S)| ≤ a − k − 1. Then d(x1) ≤
a+ |N+(S)| ≤ 2a− k − 1, which contradicts d(x1) ≥ 2a− k. Thus, |S| ≥ a− k + 1.
Since there is no arc from S to V2\N+(S), for any w ∈ V2\N+(S), d(w) ≤ 2a−|S| ≤
2a − (a − k + 1) = a + k − 1, which contradicts the fact that the degree of every
vertex is larger than or equal to a+ k.

This completes the proof of the existence of a perfect matching from V1 to V2.
The proof for a perfect matching in the opposite direction is analogous. Hence D
contains a cycle factor.
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Lemma 3.3. [4] Let D be a balanced bipartite digraph. Suppose that D contains a
cycle factor and D is non-hamiltonian. Let C1, C2, . . . , Cs be a cycle factor with min-
imal number of elements. Then |(V (Ci), V (Cj))| + |(V (Cj), V (Ci))| ≤ |V (Ci)|·|V (Cj )|

2
,

for all i 
= j.

The next lemma shows two simple results. For convenience, we give the proof.

Lemma 3.4. Let a1, a2, . . . , at be non-negative integers with a1 ≤ a2 ≤ · · · ≤ at and
let A be a positive integer. If a1 + a2 + · · ·+ at ≤ A, then the following hold.

(a) For any l ∈ {1, 2, . . . , t}, a1 + a2 + · · ·+ al ≤ lA
t
;

(b) If t ≥ 3 and a1 + a2 =
2A
t
, then for any i ∈ {1, 2, . . . , t}, ai = A

t
and a1 + a2 +

· · ·+ at = A.

Proof. (a) Suppose that a1+a2+ · · ·+al >
lA
t
. Then al >

A
t
, as otherwise a1 ≤ a2 ≤

· · · ≤ al ≤ A
t
implies a1 + a2 + · · ·+ al ≤ lA

t
, a contradiction. Then A

t
< al ≤ al+1 ≤

· · · ≤ at implies (t−l)A
t

< al+1 + · · ·+ at ≤ A− (a1 + a2 + · · ·+ al) < A− lA
t
= (t−l)A

t
,

a contradiction. Hence a1 + a2 + · · ·+ al ≤ lA
t
.

(b) If a1 + a2 = 2A
t
, then a1 = a2 = A

t
, otherwise a2 > A

t
implies ai >

A
t
, for all

i ≥ 3. Then (t−2)A
t

< a3 + · · · + at ≤ A − (a1 + a2) = (t−2)A
t

, a contradiction. So

ai ≥ A
t
, for all i ≥ 3. Then (t−2)A

t
≤ a3 + · · ·+ at ≤ A− (a1 + a2) =

(t−2)A
t

. It follows
that all equalities hold, that is to say, ai =

A
t
and a1 + a2 + · · ·+ at = A.

4 Proof of the main result

The proof of Theorem 1.10.

Proof. Let V1, V2 denote the two partite sets of D. By Lemma 3.2, D contains a cycle
factor C1, C2, . . . , Cs. Assume that s is minimum possible and s ≥ 2. Without loss
of generality, assume that |V (C1)| ≤ |V (C2)| ≤ · · · ≤ |V (Cs)|. Clearly, |V (C1)| ≤ a.
Denote |V (C1)| = 2t, V (C1)∩V1 = {x1, x2, . . . , xt}, V (C1)∩V2 = {y1, y2, . . . , yt} and
C1 = D − V (C1).

By Lemma 3.3, the following holds:

t∑

i=1

dC1
(xi) +

t∑

i=1

dC1
(yi) ≤ |V (C1)|(2a− |V (C1)|)

2
= 2t(a− t). (1)

Without loss of generality, we may assume

dC1
(x1) + · · ·+ dC1

(xt) ≤ t(a− t), (2)

as otherwise
dC1

(y1) + · · ·+ dC1
(yt) ≤ t(a− t). (3)
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By renaming the vertices if necessary, we may assume that dC1
(x1) ≤ dC1

(x2) ≤
· · · ≤ dC1

(xt). By Lemma 3.4(a), dC1
(x1) ≤ a− t. From this and Lemma 3.1, we get

that
a+ 2 ≤ a+ k ≤ d(x1) = dC1(x1) + dC1

(x1) ≤ 2t+ a− t = a+ t.

It follows that t ≥ 2. According to (2) and Lemma 3.4(a), we have dC1
(x1) +

dC1
(x2) ≤ 2(a− t). To complete the proof, we first proof a claim.

Claim A. Let u, v ∈ V (C1) such that {u, v} is a dominating pair of vertices. If
dC1

(u) + dC1
(v) ≤ 2(a − t), then dC1(u) = dC1(v) = 2t, dC1

(u) + dC1
(v) = 2(a − t)

and 2t = |V (C1)| = a.

Proof. Since {u, v} is a dominating pair of vertices, by assumption and 2t ≤ a,

3a ≤ d(u) + d(v)
= dC1

(u) + dC1
(v) + dC1(u) + dC1(v)

≤ 2(a− t) + 4t = 2a+ 2t ≤ 3a.

It follows that all equalities hold, that is, dC1(u) = dC1(v) = 2t, dC1
(u) + dC1

(v) =
2(a− t) and |V (C1)| = a. The proof of the claim is complete.

Now we show that {x1, x2} is a dominating pair of vertices. By Lemma 3.1,
d(x1) ≥ a+ k and d(x2) ≥ a+ k. Thus,

2(a+ k) ≤ d(x1) + d(x2)
≤ 2(a− t) + dC1(x1) + dC1(x2)
≤ 2(a− t) + 2t+ d+C1

(x1) + d+C1
(x2).

From this and k > a
4
, we get d+C1

(x1) + d+C1
(x2) ≥ 2k > a

2
≥ t. Note that d+C1

(x1) +
d+C1

(x2) > t means that x1, x2 have a common out-neighbour in C1. So {x1, x2} is a
dominating pair of vertices. By Claim A,

dC1
(x1) + dC1

(x2) = 2(a− t), (4)

dC1(x1) = dC1(x2) = 2t and |V (C1)| = a. (5)

It follows from (4) and Lemma 3.4(b) that dC1
(x1) + · · ·+ dC1

(xt) = t(a− t). From
this and (1), we get (3). Moreover, by (5), for any yi, yj ∈ V (C1) ∩ V2, {yi, yj} is
a dominating pair of vertices. Assume that dC1

(y1) ≤ dC1
(y2) ≤ · · · ≤ dC1

(yt). By
(3) and Lemma 3.4(a), dC1

(y1) + dC1
(y2) ≤ 2(a − t). Using Claim A to y1 and y2,

we get that dC1
(y1) + dC1

(y2) = 2(a− t). This together with Lemma 3.4(b) and (3)
implies that, for any distinct yi, yj ∈ V (C1) ∩ V2, dC1

(yi) + dC1
(yj) = 2(a− t). Since

{yi, yj} is a dominating pair of vertices, by Claim A, dC1(yi) = dC1(yj) = 2t. Hence,
D[V (C1)] is a complete bipartite digraph.

Now observe that, by the minimality of |V (C1)| and |V (C1)| = a, we have s = 2
and |V (C2)| = a as well. Consequently, we can swap C1 and C2 and repeat the
argument to get that D[V (C2)] is also a complete bipartite digraph.

Since D is strong, it is not difficult to obtain that (V (C1) ∩ V1, V (C2)) 
= ∅ and
(V (C2), V (C1) ∩ V2) 
= ∅, or (V (C1) ∩ V2, V (C2)) 
= ∅ and (V (C2), V (C1) ∩ V1) 
= ∅.
Note that in a complete bipartite digraph there exists a hamiltonian path between x
and y, where x and y belong to different partite sets. So D must be hamiltonian.
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5 Related problems

To conclude the paper, we mention four related problems.

Remark 1. According to Theorem 1.10, the remaining case of Problem 1.9 is
2 ≤ k ≤ a

4
.

Remark 2. A balanced bipartite digraph containing cycles of all even length is
called bipancyclic.

In [2], Adamus proved that the hypothesis of Theorem 1.6 implies bipancyclicity
of D, except for a single exceptional digraph (Theorem 5.1 below).

Theorem 5.1. [2] Let D be a strong balanced bipartite digraph of order 2a with
a ≥ 3. If d(x)+d(y) ≥ 3a for every dominating pair of vertices and every dominated
pair of vertices {x, y} in D, then D either is bipancyclic or is a directed cycle of
length 2a.

It is natural to ask whether the hypothesis of Theorem 1.10 also implies bipan-
cyclicity of D, except for some exceptional digraphs.

Remark 3. As another related problem, perhaps Theorem 1.6 can even be general-
ized to the following.

Conjecture 5.2. There is an integer k ≥ 0 such that every strong balanced bipartite
digraph of order 2a satisfying d(x) + d(y) ≥ 3a + k for every dominating pair of
vertices {x, y} is hamiltonian.

Remark 4. Perhaps we can also consider the following ordinary digraph analogue
of Theorem 1.10.

Conjecture 5.3. There is an integer k ≥ 1 such that every strong digraph of order
n satisfying either d(x) ≥ n+ k, d(y) ≥ n− 1− k or d(x) ≥ n− 1− k, d(y) ≥ n+ k
for every dominated pair of non-adjacent vertices {x, y} is hamiltonian.
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