A dominating pair condition for a balanced bipartite digraph to be hamiltonian*

Ruixia Wang ${ }^{\dagger}$ Linxin Wu
School of Mathematical Sciences, Shanxi University
Taiyuan, Shanxi, 030006
P.R. China

Abstract

Let x, y be two distinct vertices in a digraph. We call the pair $\{x, y\}$ dominating if x and y have a common out-neighbour. In this paper we prove that a strong balanced bipartite digraph of order $2 a$ contains a hamiltonian cycle if for every dominating pair of vertices $\{x, y\}$, either $d(x) \geq 2 a-k, d(y) \geq a+k$ or $d(x) \geq a+k, d(y) \geq 2 a-k$, where $\max \left\{1, \frac{a}{4}\right\}<k \leq \frac{a}{2}$.

1 Introduction

In this paper, we consider finite digraphs without loops and multiple arcs. The cycle problems for digraphs are among the central problems in graph theory and its applications [6]. A digraph D is called hamiltonian if it contains a hamiltonian cycle, i.e., a cycle that includes every vertex of D. There are many degree or degree sum conditions for hamiltonicity $[1,3,4,5,7,8,9]$. The following result of Meyniel on the existence of hamiltonian cycles in digraphs is basic and famous.

Theorem 1.1. [8] Let D be a strong digraph on n vertices, where $n \geq 3$. If $d(x)+$ $d(y) \geq 2 n-1$ for all pairs of non-adjacent vertices x, y in D, then D is hamiltonian.

In [7], Bang-Jensen, Gutin and Li described a type of sufficient condition for a digraph to be hamiltonian. Conditions of this type combine local structure of the digraph with conditions on the degrees of non-adjacent vertices. Let D be a digraph and x, y be distinct vertices in D. If there is an arc from x to y, then we say that x dominates y and write $x \rightarrow y$. Now, $\{x, y\}$ is dominated by a vertex z if $z \rightarrow x$ and $z \rightarrow y$; in this case, we call the pair $\{x, y\}$ dominated. Likewise, $\{x, y\}$ dominates a vertex z if $x \rightarrow z$ and $y \rightarrow z$; in this case, we call the pair $\{x, y\}$ dominating.

[^0]Theorem 1.2. [7] Let D be a strong digraph of order $n \geq 2$. Suppose that, for every dominated pair of non-adjacent vertices $\{x, y\}$, either $d(x) \geq n, d(y) \geq n-1$ or $d(x) \geq n-1, d(y) \geq n$. Then D is hamiltonian.

In [7], Bang-Jensen, Gutin and Li raised the following two conjectures.
Conjecture 1.3. [7] Let D be a strong digraph of order $n \geq 2$. Suppose that $d(x)+$ $d(y) \geq 2 n-1$ for every dominating pair of non-adjacent and every dominated pair of non-adjacent vertices $\{x, y\}$. Then D is hamiltonian.

Conjecture 1.4. [7] Let D be a strong digraph of order $n \geq 2$. Suppose that $d(x)+$ $d(y) \geq 2 n-1$ for every dominated pair of non-adjacent vertices $\{x, y\}$. Then D is hamiltonian.

Bang-Jensen, Guo and Yeo [5] proved that, if we replaced the degree condition $d(x)+d(y) \geq 2 n-1$ with $d(x)+d(y) \geq \frac{5}{2} n-4$ in Conjecture 1.3 , then D is hamiltonian. They also proved additional support for Conjecture 1.3 by showing that every digraph satisfying the condition of Conjecture 1.3 has a cycle factor. Conjecture 1.3 is still open and seems quite difficult. Conjecture 1.4 has been disproved recently in [10].

In [4], Adamus, Adamus and Yeo gave a Meyniel-type sufficient condition for hamiltonicity of a balanced bipartite digraph.

Theorem 1.5. [4] Let D be a strong balanced bipartite digraph of order $2 a$, where $a \geq 3$. If $d(x)+d(y) \geq 3 a$ for every pair of non-adjacent vertices x, y in D, then D is hamiltonian.

In [1], Adamus proved a bipartite analogue of Conjecture 1.3.
Theorem 1.6. [1] Let D be a strong balanced bipartite digraph of order $2 a$, where $a \geq 3$. If $d(x)+d(y) \geq 3 a$ for every dominating pair of vertices and every dominated pair of vertices $\{x, y\}$ in D, then D is hamiltonian.

In [9], the first author of this paper gave a dominating pair sufficient condition for hamiltonicity of a balanced bipartite digraph, which is a bipartite analogue of Theorem 1.2 (Theorem 1.7 below).

Theorem 1.7. [9] Let D be a strong balanced bipartite digraph of order $2 a$, where $a \geq 2$. If, for every dominating pair of vertices $\{x, y\}$, either $d(x) \geq 2 a-1, d(y) \geq$ $a+1$ or $d(x) \geq a+1, d(y) \geq 2 a-1$, then D is hamiltonian.

Definition 1.8. Consider a balanced bipartite digraph D of order $2 a$, where $a \geq 2$. For an integer $k \geq 0$, we will say that D satisfies the condition B_{k} when

$$
d(x) \geq 2 a-k, d(y) \geq a+k \text { or } d(x) \geq a+k, d(y) \geq 2 a-k,
$$

for any dominating pair of vertices $\{x, y\}$ in D.
It is natural to propose the following problem.

Problem 1.9. [9] Consider a strong balanced bipartite digraph D of order 2a. Suppose that D satisfies the condition B_{k} with $2 \leq k \leq \frac{a}{2}$. Is D hamiltonian?

In Section 3, we will prove that if D satisfies the condition of Problem 1.9, then D contains a cycle factor. In Section 4, we will prove that if $\max \left\{1, \frac{a}{4}\right\}<k \leq \frac{a}{2}$ in Problem 1.9, then D is hamiltonian (Theorem 1.10 below).

Theorem 1.10. Let D be a strong balanced bipartite digraph of order $2 a$. If D satisfies the condition B_{k} with $\max \left\{1, \frac{a}{4}\right\}<k \leq \frac{a}{2}$, then D is hamiltonian.

The proof of Theorem 1.10 is based on the arguments of [1, 4].

2 Terminology

We will assume that the reader is familiar with the standard terminology on digraphs and refer the reader to [6] for terminology not defined here. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$.

For a vertex set $S \subset V(D)$, we denote by $N^{+}(S)$ the set of vertices in $V(D)$ dominated by the vertices of S; i.e. $N^{+}(S)=\{u \in V(D): v u \in A(D)$ for some $v \in$ $S\}$. Similarly, $N^{-}(S)$ denotes the set of vertices of $V(D)$ dominating vertices of S; i.e. $N^{-}(S)=\{u \in V(D): u v \in A(D)$ for some $v \in S\}$. If $S=\{v\}$ is a single vertex, the cardinality of $N^{+}(v)$ (resp. $N^{-}(v)$), denoted by $d^{+}(v)$ (resp. $d^{-}(v)$) is called the out-degree (resp. in-degree) of v in D. The degree of v is $d(v)=d^{+}(v)+d^{-}(v)$. For a pair of vertex sets X, Y of D, define $(X, Y)=\{x y \in A(D): x \in X, y \in Y\}$. For $S \subseteq V(D)$, we denote by $D[S]$ the subdigraph of D induced by the vertex set S.

A digraph D is said to be strongly connected or just strong, if for every pair of vertices x, y of D, there is an (x, y)-path. A cycle factor in D is a collection of vertex-disjoint cycles $C_{1}, C_{2}, \ldots, C_{t}$ such that $V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup \cdots \cup V\left(C_{t}\right)=V(D)$.

A digraph D is bipartite when $V(D)$ is a disjoint union of independent sets V_{1} and V_{2}. It is called balanced if $\left|V_{1}\right|=\left|V_{2}\right|$. A matching from V_{1} to V_{2} is an independent set of arcs with origin in V_{1} and terminus in $V_{2}\left(u_{1} u_{2}\right.$ and $v_{1} v_{2}$ are independent arcs when $u_{1} \neq v_{1}$ and $u_{2} \neq v_{2}$). If D is balanced, one says that such a matching is perfect if it consists of precisely $\left|V_{1}\right|$ arcs. If for every pair of vertices x, y from distinct partite sets, $x y$ and $y x$ are in D, then D is called complete bipartite.

3 Lemmas

The proof of Theorem 1.10 will be based on the following four lemmas.
Lemma 3.1. Let D be a strong balanced bipartite digraph of order $2 a$. Suppose that D satisfies the condition B_{k} for some $2 \leq k \leq \frac{a}{2}$ and D is non-hamiltonian. Then for every vertex $u \in V(D)$ there exists $v \in V(D) \backslash\{u\}$ such that $\{u, v\}$ is a dominating pair of vertices. Moreover, the degree of every vertex in D is larger than or equal to $a+k$ in D.

Proof. Suppose that there exists a vertex $u^{\prime} \in V(D)$ such that u^{\prime} has no common out-neighbour with any other vertex in D.

We claim that no vertex has a common out-neighbour with any other vertex. In fact, since D is strong, for any $z \in V(D) \backslash\left\{u^{\prime}\right\}$, there exists a $\left(u^{\prime}, z\right)$-path. Denote it by $P=u_{1} u_{2} \ldots u_{p}$, where $u_{1}=u^{\prime}, u_{p}=z$. Since u_{1} has no common out-neighbour with any other vertex in D, we have $d^{-}\left(u_{2}\right)=1$. Then $d\left(u_{2}\right) \leq a+1$. As $2 \leq k \leq \frac{a}{2}$, $2 a-k \geq a+k \geq a+2$. By assumption, for any dominating pair of vertices $\{x, y\}$, $d(x) \geq a+2$ and $d(y) \geq a+2$. Hence u_{2} has no common out-neighbour with any other vertex in D. By repeating the above argument, one can show that every vertex of $\left\{u_{3}, \ldots, u_{p}\right\}$ has no common out-neighbour with any other vertex. By the arbitrariness of z, no vertex has a common out-neighbour with any other vertex.

Thus, for any $w \in V(D), d^{-}(w) \leq 1$. Since D is strong, $d^{-}(w) \geq 1$ and so $d^{-}(w)=1$. Clearly, D is a directed cycle of length $2 a$, a contradiction. Therefore, for every vertex $u \in V(D)$ there exists $v \in V(D) \backslash\{u\}$ such that $\{u, v\}$ is a dominating pair of vertices. As $k \leq \frac{a}{2}, 2 a-k \geq a+k$. By the hypothesis of this lemma, $d(u) \geq a+k$. Since u is arbitrary, the degree of every vertex is larger than or equal to $a+k$.

Lemma 3.2. Let D be a strong balanced bipartite digraph of order $2 a$. If D satisfies the condition B_{k} with $2 \leq k \leq \frac{a}{2}$, then D contains a cycle factor.

Proof. If D is hamiltonian, there is nothing to prove. Now assume that D is nonhamiltonian. By Lemma 3.1, the degree of every vertex is larger than or equal to $a+k$. Let V_{1} and V_{2} denote the two partite sets of D. Observe that D contains a cycle factor if and only if there exist both a perfect matching from V_{1} to V_{2} and a prefect matching from V_{2} to V_{1}. In order to prove that D contains a perfect matching from V_{1} to V_{2} and a prefect matching from V_{2} to V_{1}, by the König-Hall theorem, it suffices to show that $\left|N^{+}(S)\right| \geq|S|$ for every $S \subset V_{1}$ and $\left|N^{+}(T)\right| \geq|T|$ for every $T \subset V_{2}$.

Suppose that a non-empty set $S \subset V_{1}$ is such that $\left|N^{+}(S)\right|<|S|$. Then $V_{2} \backslash$ $N^{+}(S) \neq \emptyset$. If $|S|=1$, write $S=\{x\}$, then $\left|N^{+}(S)\right|<|S|$ implies that $d^{+}(x)=0$. It is impossible in a strong digraph. Thus $|S| \geq 2$. Then $\left|N^{+}(S)\right|<|S|$ implies that there exist $x_{1}, x_{2} \in S$ and $y \in N^{+}(S)$ such that $\left\{x_{1}, x_{2}\right\} \rightarrow y$. Thus, $\left\{x_{1}, x_{2}\right\}$ is a dominating pair of vertices. By the hypothesis of this lemma, we assume, without loss of generality, that $d\left(x_{1}\right) \geq 2 a-k$ and $d\left(x_{2}\right) \geq a+k$.

If $|S| \leq a-k$, then $\left|N^{+}(S)\right|<|S|$ implies $\left|N^{+}(S)\right| \leq a-k-1$. Then $d\left(x_{1}\right) \leq$ $a+\left|N^{+}(S)\right| \leq 2 a-k-1$, which contradicts $d\left(x_{1}\right) \geq 2 a-k$. Thus, $|S| \geq a-k+1$. Since there is no arc from S to $V_{2} \backslash N^{+}(S)$, for any $w \in V_{2} \backslash N^{+}(S), d(w) \leq 2 a-|S| \leq$ $2 a-(a-k+1)=a+k-1$, which contradicts the fact that the degree of every vertex is larger than or equal to $a+k$.

This completes the proof of the existence of a perfect matching from V_{1} to V_{2}. The proof for a perfect matching in the opposite direction is analogous. Hence D contains a cycle factor.

Lemma 3.3. [4] Let D be a balanced bipartite digraph. Suppose that D contains a cycle factor and D is non-hamiltonian. Let $C_{1}, C_{2}, \ldots, C_{s}$ be a cycle factor with minimal number of elements. Then $\left|\left(V\left(C_{i}\right), V\left(C_{j}\right)\right)\right|+\left|\left(V\left(C_{j}\right), V\left(C_{i}\right)\right)\right| \leq \frac{\left|V\left(C_{i}\right)\right| \cdot\left|V\left(C_{j}\right)\right|}{2}$, for all $i \neq j$.

The next lemma shows two simple results. For convenience, we give the proof.
Lemma 3.4. Let $a_{1}, a_{2}, \ldots, a_{t}$ be non-negative integers with $a_{1} \leq a_{2} \leq \cdots \leq a_{t}$ and let A be a positive integer. If $a_{1}+a_{2}+\cdots+a_{t} \leq A$, then the following hold.
(a) For any $l \in\{1,2, \ldots, t\}, a_{1}+a_{2}+\cdots+a_{l} \leq \frac{l A}{t}$;
(b) If $t \geq 3$ and $a_{1}+a_{2}=\frac{2 A}{t}$, then for any $i \in\{1,2, \ldots, t\}, a_{i}=\frac{A}{t}$ and $a_{1}+a_{2}+$ $\cdots+a_{t}=A$.

Proof. (a) Suppose that $a_{1}+a_{2}+\cdots+a_{l}>\frac{l A}{t}$. Then $a_{l}>\frac{A}{t}$, as otherwise $a_{1} \leq a_{2} \leq$ $\cdots \leq a_{l} \leq \frac{A}{t}$ implies $a_{1}+a_{2}+\cdots+a_{l} \leq \frac{l A}{t}$, a contradiction. Then $\frac{A}{t}<a_{l} \leq a_{l+1} \leq$ $\cdots \leq a_{t}$ implies $\frac{(t-l) A}{t}<a_{l+1}+\cdots+a_{t} \leq A-\left(a_{1}+a_{2}+\cdots+a_{l}\right)<A-\frac{l A}{t}=\frac{(t-l) A}{t}$, a contradiction. Hence $a_{1}+a_{2}+\cdots+a_{l} \leq \frac{l A}{t}$.
(b) If $a_{1}+a_{2}=\frac{2 A}{t}$, then $a_{1}=a_{2}=\frac{A}{t}$, otherwise $a_{2}>\frac{A}{t}$ implies $a_{i}>\frac{A}{t}$, for all $i \geq 3$. Then $\frac{(t-2) A}{t}<a_{3}+\cdots+a_{t} \leq A-\left(a_{1}+a_{2}\right)=\frac{(t-2) A}{t}$, a contradiction. So $a_{i} \geq \frac{A}{t}$, for all $i \geq 3$. Then $\frac{(t-2) A}{t} \leq a_{3}+\cdots+a_{t} \leq A-\left(a_{1}+a_{2}\right)=\frac{(t-2) A}{t}$. It follows that all equalities hold, that is to say, $a_{i}=\frac{A}{t}$ and $a_{1}+a_{2}+\cdots+a_{t}=A$.

4 Proof of the main result

The proof of Theorem 1.10 .

Proof. Let V_{1}, V_{2} denote the two partite sets of D. By Lemma 3.2, D contains a cycle factor $C_{1}, C_{2}, \ldots, C_{s}$. Assume that s is minimum possible and $s \geq 2$. Without loss of generality, assume that $\left|V\left(C_{1}\right)\right| \leq\left|V\left(C_{2}\right)\right| \leq \cdots \leq\left|V\left(C_{s}\right)\right|$. Clearly, $\left|V\left(C_{1}\right)\right| \leq a$. Denote $\left|V\left(C_{1}\right)\right|=2 t, V\left(C_{1}\right) \cap V_{1}=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}, V\left(C_{1}\right) \cap V_{2}=\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$ and $\bar{C}_{1}=D-V\left(C_{1}\right)$.

By Lemma 3.3, the following holds:

$$
\begin{equation*}
\sum_{i=1}^{t} d_{\bar{C}_{1}}\left(x_{i}\right)+\sum_{i=1}^{t} d_{\bar{C}_{1}}\left(y_{i}\right) \leq \frac{\left|V\left(C_{1}\right)\right|\left(2 a-\left|V\left(C_{1}\right)\right|\right)}{2}=2 t(a-t) \tag{1}
\end{equation*}
$$

Without loss of generality, we may assume

$$
\begin{equation*}
d_{\bar{C}_{1}}\left(x_{1}\right)+\cdots+d_{\bar{C}_{1}}\left(x_{t}\right) \leq t(a-t) \tag{2}
\end{equation*}
$$

as otherwise

$$
\begin{equation*}
d_{\bar{C}_{1}}\left(y_{1}\right)+\cdots+d_{\bar{C}_{1}}\left(y_{t}\right) \leq t(a-t) \tag{3}
\end{equation*}
$$

By renaming the vertices if necessary, we may assume that $d_{\bar{C}_{1}}\left(x_{1}\right) \leq d_{\bar{C}_{1}}\left(x_{2}\right) \leq$ $\cdots \leq d_{\bar{C}_{1}}\left(x_{t}\right)$. By Lemma 3.4(a), $d_{\bar{C}_{1}}\left(x_{1}\right) \leq a-t$. From this and Lemma 3.1, we get that

$$
a+2 \leq a+k \leq d\left(x_{1}\right)=d_{C_{1}}\left(x_{1}\right)+d_{\bar{C}_{1}}\left(x_{1}\right) \leq 2 t+a-t=a+t
$$

It follows that $t \geq 2$. According to (2) and Lemma 3.4(a), we have $d_{\bar{C}_{1}}\left(x_{1}\right)+$ $d_{\bar{C}_{1}}\left(x_{2}\right) \leq 2(a-t)$. To complete the proof, we first proof a claim.
Claim A. Let $u, v \in V\left(C_{1}\right)$ such that $\{u, v\}$ is a dominating pair of vertices. If $d_{\bar{C}_{1}}(u)+d_{\bar{C}_{1}}(v) \leq 2(a-t)$, then $d_{C_{1}}(u)=d_{C_{1}}(v)=2 t, d_{\bar{C}_{1}}(u)+d_{\bar{C}_{1}}(v)=2(a-t)$ and $2 t=\left|V\left(C_{1}\right)\right|=a$.

Proof. Since $\{u, v\}$ is a dominating pair of vertices, by assumption and $2 t \leq a$,

$$
\begin{aligned}
3 a & \leq d(u)+d(v) \\
& =d_{\bar{C}_{1}}(u)+d_{\bar{C}_{1}}(v)+d_{C_{1}}(u)+d_{C_{1}}(v) \\
& \leq 2(a-t)+4 t=2 a+2 t \leq 3 a
\end{aligned}
$$

It follows that all equalities hold, that is, $d_{C_{1}}(u)=d_{C_{1}}(v)=2 t, d_{\bar{C}_{1}}(u)+d_{\bar{C}_{1}}(v)=$ $2(a-t)$ and $\left|V\left(C_{1}\right)\right|=a$. The proof of the claim is complete.

Now we show that $\left\{x_{1}, x_{2}\right\}$ is a dominating pair of vertices. By Lemma 3.1, $d\left(x_{1}\right) \geq a+k$ and $d\left(x_{2}\right) \geq a+k$. Thus,

$$
\begin{aligned}
2(a+k) & \leq d\left(x_{1}\right)+d\left(x_{2}\right) \\
& \leq 2(a-t)+d_{C_{1}}\left(x_{1}\right)+d_{C_{1}}\left(x_{2}\right) \\
& \leq 2(a-t)+2 t+d_{C_{1}}^{+}\left(x_{1}\right)+d_{C_{1}}^{+}\left(x_{2}\right)
\end{aligned}
$$

From this and $k>\frac{a}{4}$, we get $d_{C_{1}}^{+}\left(x_{1}\right)+d_{C_{1}}^{+}\left(x_{2}\right) \geq 2 k>\frac{a}{2} \geq t$. Note that $d_{C_{1}}^{+}\left(x_{1}\right)+$ $d_{C_{1}}^{+}\left(x_{2}\right)>t$ means that x_{1}, x_{2} have a common out-neighbour in C_{1}. So $\left\{x_{1}, x_{2}\right\}$ is a dominating pair of vertices. By Claim A,

$$
\begin{gather*}
d_{\bar{C}_{1}}\left(x_{1}\right)+d_{\bar{C}_{1}}\left(x_{2}\right)=2(a-t), \tag{4}\\
d_{C_{1}}\left(x_{1}\right)=d_{C_{1}}\left(x_{2}\right)=2 t \text { and }\left|V\left(C_{1}\right)\right|=a . \tag{5}
\end{gather*}
$$

It follows from (4) and Lemma 3.4(b) that $d_{\bar{C}_{1}}\left(x_{1}\right)+\cdots+d_{\bar{C}_{1}}\left(x_{t}\right)=t(a-t)$. From this and (1), we get (3). Moreover, by (5), for any $y_{i}, y_{j} \in V\left(C_{1}\right) \cap V_{2},\left\{y_{i}, y_{j}\right\}$ is a dominating pair of vertices. Assume that $d_{\bar{C}_{1}}\left(y_{1}\right) \leq d_{\bar{C}_{1}}\left(y_{2}\right) \leq \cdots \leq d_{\bar{C}_{1}}\left(y_{t}\right)$. By (3) and Lemma 3.4(a), $d_{\bar{C}_{1}}\left(y_{1}\right)+d_{\bar{C}_{1}}\left(y_{2}\right) \leq 2(a-t)$. Using Claim A to y_{1} and y_{2}, we get that $d_{\bar{C}_{1}}\left(y_{1}\right)+d_{\bar{C}_{1}}\left(y_{2}\right)=2(a-t)$. This together with Lemma 3.4(b) and (3) implies that, for any distinct $y_{i}, y_{j} \in V\left(C_{1}\right) \cap V_{2}, d_{\bar{C}_{1}}\left(y_{i}\right)+d_{\bar{C}_{1}}\left(y_{j}\right)=2(a-t)$. Since $\left\{y_{i}, y_{j}\right\}$ is a dominating pair of vertices, by Claim A, $d_{C_{1}}\left(y_{i}\right)=d_{C_{1}}\left(y_{j}\right)=2 t$. Hence, $D\left[V\left(C_{1}\right)\right]$ is a complete bipartite digraph.

Now observe that, by the minimality of $\left|V\left(C_{1}\right)\right|$ and $\left|V\left(C_{1}\right)\right|=a$, we have $s=2$ and $\left|V\left(C_{2}\right)\right|=a$ as well. Consequently, we can swap C_{1} and C_{2} and repeat the argument to get that $D\left[V\left(C_{2}\right)\right]$ is also a complete bipartite digraph.

Since D is strong, it is not difficult to obtain that $\left(V\left(C_{1}\right) \cap V_{1}, V\left(C_{2}\right)\right) \neq \emptyset$ and $\left(V\left(C_{2}\right), V\left(C_{1}\right) \cap V_{2}\right) \neq \emptyset$, or $\left(V\left(C_{1}\right) \cap V_{2}, V\left(C_{2}\right)\right) \neq \emptyset$ and $\left(V\left(C_{2}\right), V\left(C_{1}\right) \cap V_{1}\right) \neq \emptyset$. Note that in a complete bipartite digraph there exists a hamiltonian path between x and y, where x and y belong to different partite sets. So D must be hamiltonian.

5 Related problems

To conclude the paper, we mention four related problems.
Remark 1. According to Theorem 1.10, the remaining case of Problem 1.9 is $2 \leq k \leq \frac{a}{4}$.
Remark 2. A balanced bipartite digraph containing cycles of all even length is called bipancyclic.

In [2], Adamus proved that the hypothesis of Theorem 1.6 implies bipancyclicity of D, except for a single exceptional digraph (Theorem 5.1 below).

Theorem 5.1. [2] Let D be a strong balanced bipartite digraph of order $2 a$ with $a \geq 3$. If $d(x)+d(y) \geq 3 a$ for every dominating pair of vertices and every dominated pair of vertices $\{x, y\}$ in D, then D either is bipancyclic or is a directed cycle of length $2 a$.

It is natural to ask whether the hypothesis of Theorem 1.10 also implies bipancyclicity of D, except for some exceptional digraphs.

Remark 3. As another related problem, perhaps Theorem 1.6 can even be generalized to the following.

Conjecture 5.2. There is an integer $k \geq 0$ such that every strong balanced bipartite digraph of order $2 a$ satisfying $d(x)+d(y) \geq 3 a+k$ for every dominating pair of vertices $\{x, y\}$ is hamiltonian.

Remark 4. Perhaps we can also consider the following ordinary digraph analogue of Theorem 1.10.

Conjecture 5.3. There is an integer $k \geq 1$ such that every strong digraph of order n satisfying either $d(x) \geq n+k, d(y) \geq n-1-k$ or $d(x) \geq n-1-k, d(y) \geq n+k$ for every dominated pair of non-adjacent vertices $\{x, y\}$ is hamiltonian.

References

[1] J. Adamus, A degree sum condition for hamiltonicity in balanced bipartite digraphs, Graphs Combin. 33 (2017), 43-51.
[2] J. Adamus, A Meyniel-Type condition for bipancyclicity in balanced bipartite digraphs, Graphs Combin. 34 (2018), 703-709.
[3] J. Adamus and L. Adamus, A degree condition for cycles of maximum length in bipartite digraphs, Discrete Math. 312 (2012), 1117-1122.
[4] J. Adamus, L. Adamus and A. Yeo, On the Meyniel condition for hamiltonicity in bipartite digraphs, Discrete Math. Theor. Comput. Sci. 16 (2014), 293-302.
[5] J. Bang-Jensen, Y. Guo and A. Yeo, A new sufficient condition for a digraph to be Hamiltonian, Discrete Appl. Math. 95 (1999), 61-72.
[6] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
[7] J. Bang-Jensen, G. Gutin and H. Li, Sufficient conditions for a digraph to be Hamiltonian, J. Graph Theory 22(2) (1996), 181-187.
[8] H. Meyniel, Une condition suffisante d'existence d'un circuit hamiltonien dans un graphe orienté, J. Combin. Theory Ser. B 14 (1973), 137-147.
[9] R. Wang, A sufficient condition for a balanced bipartite digraph to be hamiltonian, Discrete Math. Theor. Comput. Sci. 19(3) (2017), \#11.
[10] R. Wang, J. Chang and L. Wu, A dominated pair condition for a digraph to be hamiltonian, Discrete Math. 343(5) (2020), 111794. https://doi.org/10.1016/j.disc.2019.111794.

[^0]: * This work is supported by the Natural Science Foundation of Shanxi Province (201901D111022).
 \dagger Corresponding author: wangrx@sxu.edu.cn

