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Abstract

Let q ≥ 3 be a fixed prime power and n ≥ 1 be an integer. Let K ⊆ Fq

denote a fixed subset with 0 ∈ K. Let A ⊆ (Fq)
n be an arbitrary subset

such that {a−b : a,b ∈ A, a �= b}∩Kn = ∅. We prove the exponential
upper bound |A| ≤ (q − |K| + 1)n. We use the linear algebra bound
method in our proof.

1 Introduction

Let p denote a prime with p ≡ 1 (mod 4). The Paley graph of order p is a graph
G(p) on p vertices (here we associate each vertex with an element of Fp), where (i, j)
is an edge if i−j is a quadratic residue modulo p. Let ω(p) denote the clique number
of the Paley graph of order p. It is a challenging open problem to determine ω(p).

Until now the best known upper bound is ω(p) ≤ √
p − 1 for infinitely many

primes p (see [2] Theorem 2.1).
It is well-known that the Paley graph is a self-complementary graph; hence

α(G(p)) = ω(p). Here we denote by α(G) the independence number of the graph G.
We can consider the following reformulation of this problem: Let Q(2) denote

the set of quadratic residues in Fp. How large can a set A ⊆ Fp be, given that

{a− b : a, b ∈ A, a �= b} ⊆ Fp \Q(2) ?

We investigate here the following generalization of this problem to elementary p-
groups. Let p ≥ 3 be a prime, k ≥ 2 be a fixed integer and let Q(k) denote the set of
kth power residues modulo p (i.e. Q(k) = {b ∈ Fp : there exists x ∈ Fp with xk ≡ b
(mod p)}. Clearly 0 ∈ Q(k). Let n ≥ 1 be a fixed integer. How large can a set
A ⊆ (Fp)

n be given that

{a− b : a,b ∈ A, a �= b} ⊆ (Fp)
n \ (Q(k))n?

Matolcsi and Ruzsa investigated the following version of this question in [3]:
Let G denote a finite abelian group and let B ⊆ G be a fixed standard set (i.e.

B = −B and 0 ∈ B). Consider the number

Δ(B) := max{|A| : A ⊆ G, (A−A) ∩ B = {0}}.
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G. HEGEDŰS /AUSTRALAS. J. COMBIN. 77 (2) (2020), 180–183 181

How large can Δ(B) be for a fixed symmetric set?

We state here our main results.

Theorem 1.1 Let q ≥ 3 be a fixed prime power and let n ≥ 1 be a fixed integer. Let
K ⊆ Fq be a fixed subset with 0 ∈ K. Define t := |K|. Suppose that A ⊆ (Fq)

n is a
subset such that

|A| > (q − t + 1)n.

Then there exist a1, a2 ∈ A, a1 �= a2, such that a1 − a2 ∈ Kn.

Remark. We think the bound (q − t + 1)n is not optimal in general. The only
obvious case, when our bound is sharp, is the following: LetK := Fq. Then t = q and
clearly if A ⊆ (Fq)

n is an arbitrary subset with |A| > 1, then there exist a1, a2 ∈ A,
a1 �= a2 such that a1 − a2 ∈ Kn = (Fq)

n.
On the other hand let n = 1, q be a prime and consider the subset K := {0, 1}.

Then it is easy to verify that if A ⊆ Fq is an arbitrary subset with |A| > � q
2
�, then

there exist a1, a2 ∈ A, a1 �= a2, such that a1 − a2 ∈ K = {0, 1}.
Our proof technique is the usual linear algebra bound method (see [1] Chapter

2). Finally we point out an important special case of Theorem 1.1.

Corollary 1.2 Let q ≥ 3 be a prime, k ≥ 2 be a fixed integer and let Q(k) ⊆ Fq

denote the set of kth power residues modulo q. Let n ≥ 1 be a fixed integer. Define
d := gcd(k, q − 1). Suppose that A ⊆ (Fq)

n is a subset such that

|A| >
((q − 1)(d− 1)

d
+ 1

)n

. (1)

Then there exist a1, a2 ∈ A, a1 �= a2, such that a1 − a2 ∈ (Q(k))n.

2 Proof

We can prove our main result using the linear algebra bound method and the Deter-
minant Criterion (see [1] Proposition 2.7). We recall here for the reader’s convenience
the Determinant Criterion.

Proposition 2.1 (Determinant Criterion) Let F denote an arbitrary field. Let fi :
Ω → F be functions and vj ∈ Ω elements for each 1 ≤ i, j ≤ m such that the m×m
matrix B = (fi(vj))

m
i,j=1 is non-singular. Then f1, . . . , fm are linearly independent

functions of the space F
Ω.

Proof. We use an indirect argument. Suppose that B = (fi(vj))
m
i,j=1 is a non-

singular matrix, but there exists a nontrivial linear combination
∑m

i=1 λifi between
the functions fi. If we substitute vj for each j, then we obtain a nontrivial linear
combination between the rows of B (with the same coefficients λi). This contradicts
the non-singularity of B.
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Proof of Theorem 1.1:
Indirectly, suppose that there exists a subset A ⊆ (Fq)

n such that

|A| > (q − t+ 1)n

and
{a− b : a,b ∈ A, a �= b} ⊆ (Fq)

n \Kn. (2)

Define N := Fq \K. Then |N | = q − t.
Consider the polynomial

Q(x1, . . . , xn) :=
∏

1≤i≤n

∏
α∈N

(xi − α) ∈ Fq[x1, . . . , xn].

Then clearly
deg(Q) = n|N | = n(q − t).

If we expand

Q =
∑

α∈Nn,cα �=0

cαx
α,

as a linear combination of monomials xα (here xα denotes the monomial xα1
1 . . . xαn

n ,
where α = (α1, . . . , αn) ∈ N

n ), then it follows from the definition of Q that 0 ≤
αi ≤ |N | = q − t for each i.

On the other hand Q(0) =
∏

1≤i≤n

∏
α∈N(−α) �= 0, because 0 /∈ N . But it follows

from the inclusion (2) that Q(a1 − a2) = 0 for each a1, a2 ∈ A, a1 �= a2: namely if
a1, a2 ∈ A, a1 �= a2, then it follows from the inclusion (2) that a1 − a2 ∈ (Fq)

n \Kn

and consequently there exists an index 1 ≤ i ≤ n such that (a1 − a2)i /∈ K. Hence
(a1 − a2)i ∈ N and the definition of Q implies that Q(a1 − a2) = 0.

Consider the polynomials

Pa(x) := Q(a− x) ∈ Fq[x]

for each a ∈ A. Then it follows from Proposition 2.1 that {Pa : a ∈ A} are lin-
early independent polynomials. Namely, the matrix B := (Pa(b))a,b∈A is a diagonal
matrix, where each diagonal entry is nonzero.

On the other hand, if we expand Pa as a linear combination of monomials, then all
monomials appearing in this linear combination are contained in the set of monomials

{xα1
1 . . . xαn

n : 0 ≤ αi ≤ |N | for each i}.

Consequently
|A| ≤ (|N |+ 1)n = (q − t+ 1)n,

a contradiction.
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