Difference sets and power residues

GÁbor Hegedűs
Óbuda University
Bécsi út 96/B, Budapest, H-1037
Hungary
hegedus.gabor@nik.uni-obuda.hu

Abstract

Let $q \geq 3$ be a fixed prime power and $n \geq 1$ be an integer. Let $K \subseteq \mathbb{F}_{q}$ denote a fixed subset with $0 \in K$. Let $A \subseteq\left(\mathbb{F}_{q}\right)^{n}$ be an arbitrary subset such that $\{\mathbf{a}-\mathbf{b}: \mathbf{a}, \mathbf{b} \in A, \mathbf{a} \neq \mathbf{b}\} \cap K^{n}=\emptyset$. We prove the exponential upper bound $|A| \leq(q-|K|+1)^{n}$. We use the linear algebra bound method in our proof.

1 Introduction

Let p denote a prime with $p \equiv 1(\bmod 4)$. The Paley graph of order p is a graph $G(p)$ on p vertices (here we associate each vertex with an element of \mathbb{F}_{p}), where (i, j) is an edge if $i-j$ is a quadratic residue modulo p. Let $\omega(p)$ denote the clique number of the Paley graph of order p. It is a challenging open problem to determine $\omega(p)$.

Until now the best known upper bound is $\omega(p) \leq \sqrt{p}-1$ for infinitely many primes p (see [2] Theorem 2.1).

It is well-known that the Paley graph is a self-complementary graph; hence $\alpha(G(p))=\omega(p)$. Here we denote by $\alpha(G)$ the independence number of the graph G.

We can consider the following reformulation of this problem: Let $Q(2)$ denote the set of quadratic residues in \mathbb{F}_{p}. How large can a set $A \subseteq \mathbb{F}_{p}$ be, given that

$$
\{a-b: a, b \in A, a \neq b\} \subseteq \mathbb{F}_{p} \backslash Q(2) ?
$$

We investigate here the following generalization of this problem to elementary p groups. Let $p \geq 3$ be a prime, $k \geq 2$ be a fixed integer and let $Q(k)$ denote the set of k th power residues modulo p (i.e. $Q(k)=\left\{b \in \mathbb{F}_{p}\right.$: there exists $x \in \mathbb{F}_{p}$ with $x^{k} \equiv b$ $(\bmod p)\}$. Clearly $0 \in Q(k)$. Let $n \geq 1$ be a fixed integer. How large can a set $A \subseteq\left(\mathbb{F}_{p}\right)^{n}$ be given that

$$
\{\mathbf{a}-\mathbf{b}: \mathbf{a}, \mathbf{b} \in A, \mathbf{a} \neq \mathbf{b}\} \subseteq\left(\mathbb{F}_{p}\right)^{n} \backslash(Q(k))^{n} ?
$$

Matolcsi and Ruzsa investigated the following version of this question in [3]:
Let G denote a finite abelian group and let $B \subseteq G$ be a fixed standard set (i.e. $B=-B$ and $0 \in B)$. Consider the number

$$
\Delta(B):=\max \{|A|: A \subseteq G,(A-A) \cap B=\{0\}\}
$$

How large can $\Delta(B)$ be for a fixed symmetric set?
We state here our main results.
Theorem 1.1 Let $q \geq 3$ be a fixed prime power and let $n \geq 1$ be a fixed integer. Let $K \subseteq \mathbb{F}_{q}$ be a fixed subset with $0 \in K$. Define $t:=|K|$. Suppose that $A \subseteq\left(\mathbb{F}_{q}\right)^{n}$ is a subset such that

$$
|A|>(q-t+1)^{n} .
$$

Then there exist $\mathbf{a}_{1}, \mathbf{a}_{2} \in A, \mathbf{a}_{1} \neq \mathbf{a}_{2}$, such that $\mathbf{a}_{1}-\mathbf{a}_{2} \in K^{n}$.
Remark. We think the bound $(q-t+1)^{n}$ is not optimal in general. The only obvious case, when our bound is sharp, is the following: Let $K:=\mathbb{F}_{q}$. Then $t=q$ and clearly if $A \subseteq\left(\mathbb{F}_{q}\right)^{n}$ is an arbitrary subset with $|A|>1$, then there exist $\mathbf{a}_{1}, \mathbf{a}_{2} \in A$, $\mathbf{a}_{1} \neq \mathbf{a}_{2}$ such that $\mathbf{a}_{1}-\mathbf{a}_{2} \in K^{n}=\left(\mathbb{F}_{q}\right)^{n}$.

On the other hand let $n=1, q$ be a prime and consider the subset $K:=\{0,1\}$. Then it is easy to verify that if $A \subseteq \mathbb{F}_{q}$ is an arbitrary subset with $|A|>\left\lceil\frac{q}{2}\right\rceil$, then there exist $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$, such that $a_{1}-a_{2} \in K=\{0,1\}$.

Our proof technique is the usual linear algebra bound method (see [1] Chapter 2). Finally we point out an important special case of Theorem 1.1.

Corollary 1.2 Let $q \geq 3$ be a prime, $k \geq 2$ be a fixed integer and let $Q(k) \subseteq \mathbb{F}_{q}$ denote the set of k th power residues modulo q. Let $n \geq 1$ be a fixed integer. Define $d:=\operatorname{gcd}(k, q-1)$. Suppose that $A \subseteq\left(\mathbb{F}_{q}\right)^{n}$ is a subset such that

$$
\begin{equation*}
|A|>\left(\frac{(q-1)(d-1)}{d}+1\right)^{n} \tag{1}
\end{equation*}
$$

Then there exist $\mathbf{a}_{1}, \mathbf{a}_{2} \in A, \mathbf{a}_{1} \neq \mathbf{a}_{2}$, such that $\mathbf{a}_{1}-\mathbf{a}_{2} \in(Q(k))^{n}$.

2 Proof

We can prove our main result using the linear algebra bound method and the Determinant Criterion (see [1] Proposition 2.7). We recall here for the reader's convenience the Determinant Criterion.

Proposition 2.1 (Determinant Criterion) Let \mathbb{F} denote an arbitrary field. Let f_{i} : $\Omega \rightarrow \mathbb{F}$ be functions and $\mathbf{v}_{j} \in \Omega$ elements for each $1 \leq i, j \leq m$ such that the $m \times m$ matrix $B=\left(f_{i}\left(\mathbf{v}_{j}\right)\right)_{i, j=1}^{m}$ is non-singular. Then f_{1}, \ldots, f_{m} are linearly independent functions of the space \mathbb{F}^{Ω}.

Proof. We use an indirect argument. Suppose that $B=\left(f_{i}\left(\mathbf{v}_{j}\right)\right)_{i, j=1}^{m}$ is a nonsingular matrix, but there exists a nontrivial linear combination $\sum_{i=1}^{m} \lambda_{i} f_{i}$ between the functions f_{i}. If we substitute \mathbf{v}_{j} for each j, then we obtain a nontrivial linear combination between the rows of B (with the same coefficients λ_{i}). This contradicts the non-singularity of B.

Proof of Theorem 1.1:

Indirectly, suppose that there exists a subset $A \subseteq\left(\mathbb{F}_{q}\right)^{n}$ such that

$$
|A|>(q-t+1)^{n}
$$

and

$$
\begin{equation*}
\{\mathbf{a}-\mathbf{b}: \mathbf{a}, \mathbf{b} \in A, \mathbf{a} \neq \mathbf{b}\} \subseteq\left(\mathbb{F}_{q}\right)^{n} \backslash K^{n} . \tag{2}
\end{equation*}
$$

Define $N:=\mathbb{F}_{q} \backslash K$. Then $|N|=q-t$.
Consider the polynomial

$$
Q\left(x_{1}, \ldots, x_{n}\right):=\prod_{1 \leq i \leq n} \prod_{\alpha \in N}\left(x_{i}-\alpha\right) \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right] .
$$

Then clearly

$$
\operatorname{deg}(Q)=n|N|=n(q-t)
$$

If we expand

$$
Q=\sum_{\alpha \in \mathbb{N}^{n}, c_{\alpha} \neq 0} c_{\alpha} x^{\alpha},
$$

as a linear combination of monomials x^{α} (here x^{α} denotes the monomial $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$, where $\left.\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right)$, then it follows from the definition of Q that $0 \leq$ $\alpha_{i} \leq|N|=q-t$ for each i.

On the other hand $Q(\mathbf{0})=\prod_{1 \leq i \leq n} \prod_{\alpha \in N}(-\alpha) \neq 0$, because $0 \notin N$. But it follows from the inclusion (2) that $Q\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)=0$ for each $\mathbf{a}_{1}, \mathbf{a}_{2} \in A, \mathbf{a}_{1} \neq \mathbf{a}_{2}$: namely if $\mathbf{a}_{1}, \mathbf{a}_{2} \in A, \mathbf{a}_{1} \neq \mathbf{a}_{2}$, then it follows from the inclusion (2) that $\mathbf{a}_{1}-\mathbf{a}_{2} \in\left(\mathbb{F}_{q}\right)^{n} \backslash K^{n}$ and consequently there exists an index $1 \leq i \leq n$ such that $\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)_{i} \notin K$. Hence $\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)_{i} \in N$ and the definition of Q implies that $Q\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)=0$.

Consider the polynomials

$$
P_{\mathbf{a}}(\mathbf{x}):=Q(\mathbf{a}-\mathbf{x}) \in \mathbb{F}_{q}[\mathbf{x}]
$$

for each $\mathbf{a} \in A$. Then it follows from Proposition 2.1 that $\left\{P_{\mathbf{a}}: \mathbf{a} \in A\right\}$ are linearly independent polynomials. Namely, the matrix $B:=\left(P_{\mathbf{a}}(\mathbf{b})\right)_{\mathbf{a}, \mathbf{b} \in A}$ is a diagonal matrix, where each diagonal entry is nonzero.

On the other hand, if we expand $P_{\mathbf{a}}$ as a linear combination of monomials, then all monomials appearing in this linear combination are contained in the set of monomials

$$
\left\{x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}: 0 \leq \alpha_{i} \leq|N| \text { for each } i\right\}
$$

Consequently

$$
|A| \leq(|N|+1)^{n}=(q-t+1)^{n},
$$

a contradiction.

References

[1] L. Babai and P. Frankl, Linear algebra methods in combinatorics, University of Chicago, preprint September 1992.
[2] C. Bachoc, I. Z. Ruzsa and M. Matolcsi, Squares and difference sets in finite fields, Integers: Electr. J. Combin. Number Theory 13 (2013), 5pp.
[3] M. Matolcsi and I. Z. Ruzsa, Difference sets and positive exponential sums I. General properties, J. Fourier Anal. and Appl. 20(1) (2014), 17-41.

