On independent triples and vertex-disjoint chorded cycles in graphs

Ronald J. Gould
Department of Mathematics
Emory University, Atlanta, GA 30322
U.S.A,
rg@emory.edu
Kazuhide Hirohata
Department of Industrial Engineering, Computer Science
National Institute of Technology
Ibaraki College, Hitachinaka, 312-8508
Japan
hirohata@ece.ibaraki-ct.ac.jp
Ariel Keller Rorabaugh
Department of Electrical Engineering and Computer Science
University of Tennessee
Knoxville, 37996
U.S.A.
ariel.keller@gmail.com

Abstract

Let G be a graph, and let $\sigma_{3}(G)$ be the minimum degree sum of three independent vertices of G. We prove that if G is a graph of order at least $8 k+5$ and $\sigma_{3}(G) \geq 9 k-2$ with $k \geq 1$, then G contains k vertex-disjoint chorded cycles. We also show that the degree sum condition on $\sigma_{3}(G)$ is sharp.

1 Introduction

The study of cycles in graphs is a rich and important area. One question of particular interest is to find conditions that guarantee the existence of k vertex-disjoint cycles. In 1963, Corrádi and Hajnal [3] proved that if $|G| \geq 3 k$ and the minimum degree
$\delta(G) \geq 2 k$, then G contains k vertex-disjoint cycles. For an integer $t \geq 1$, let

$$
\sigma_{t}(G)=\min \left\{\sum_{v \in X} d_{G}(v) \mid X \text { is an independent vertex set of } G \text { with }|X|=t\right\}
$$

and $\sigma_{t}(G)=\infty$ when the independence number $\alpha(G)<t$. Enomoto [4] and Wang [11] independently extended the Corrádi and Hajnal result showing that, if $|G| \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k vertex-disjoint cycles. Fujita et al. [6] proved that if $|G| \geq 3 k+2$ and $\sigma_{3}(G) \geq 6 k-2$, then G contains k vertex-disjoint cycles, and in [9], this result was extended to $\sigma_{4}(G) \geq 8 k-3$.

A chord of a cycle is an edge between two non-adjacent vertices of the cycle, and a chorded cycle is a cycle with at least one chord. In 2008, Finkel improved Corrádi and Hajnal's result for chorded cycles.

Theorem 1.1. (Finkel [5]) Let $k \geq 1$ be an integer. If G is a graph of order at least $4 k$ and $\delta(G) \geq 3 k$, then G contains k vertex-disjoint chorded cycles.

In 2010, Chiba et al. proved Theorem 1.2 which is a stronger result than Theorem 1.1, since $\sigma_{2}(G) \geq 2 \delta(G)$.

Theorem 1.2. (Chiba, Fujita, Gao, Li [1]) Let $k \geq 1$ be an integer. If G is a graph of order at least $4 k$ and $\sigma_{2}(G) \geq 6 k-1$, then G contains k vertex-disjoint chorded cycles.

In this paper, we consider a similar extension for chorded cycles, as Fujita et al. [6] proved the existence of k vertex-disjoint cycles under the condition $\sigma_{3}(G)$. In particular, we first show the following.

Theorem 1.3. If G is a graph of order at least 7 and $\sigma_{3}(G) \geq 7$, then G contains a chorded cycle.

Remark 1. We define the following graphs: $G_{1}=K_{2} \cup K_{2}, G_{2}=K_{2} \cup K_{3}$, and $G_{3}=K_{3} \cup K_{3}$, where $H_{1} \cup H_{2}$ denotes the union of two disjoint graphs H_{1} and H_{2}. Then for each $1 \leq i \leq 3, G_{i}$ satisfies the $\sigma_{3}(G)$ condition of Theorem 1.3, since the independence number $\alpha\left(G_{i}\right)=2$. However, G_{i} for each $1 \leq i \leq 3$ does not contain a chorded cycle. Thus $|G| \geq 7$ is necessary.

Our main result is the following theorem.
Theorem 1.4. Let $k \geq 1$ be an integer. If G is a graph of order at least $8 k+5$ and $\sigma_{3}(G) \geq 9 k-2$, then G contains k vertex-disjoint chorded cycles.

Remark 2. Theorem 1.4 is sharp with respect to the degree sum condition. Consider the complete bipartite graph $G=K_{3 k-1, n-3 k+1}$, where large $n=|G|$. Then $\sigma_{3}(G)=$ $3(3 k-1)=9 k-3$. However, G does not contain k vertex-disjoint chorded cycles, since any chorded cycle must contain at least 3 vertices from each partite set. Thus $\sigma_{3}(G) \geq 9 k-2$ is necessary. Also, since $\sigma_{3}(G) \geq 3 \sigma_{2}(G) / 2$, when the order of G is sufficiently large, Theorem 1.4 is a stronger result than Theorem 1.2.

For other related results on vertex-disjoint chorded cycles in graphs and bipartite graphs, we refer the reader to see $[2,7,10]$.

In this paper, all graphs are simple. Let G be a graph, H a subgraph of G and $X \subseteq V(G)$. For $u \in V(G)$, the set of neighbors of u in G is denoted by $N_{G}(u)$, and we denote $d_{G}(u)=\left|N_{G}(u)\right|$. For $u \in V(G)$, we denote $N_{H}(u)=N_{G}(u) \cap V(H)$ and $d_{H}(u)=\left|N_{H}(u)\right|$. Also we denote $d_{H}(X)=\sum_{u \in X} d_{H}(u)$. If $H=G$, then $d_{G}(X)=$ $d_{H}(X)$. The subgraph of G induced by X is denoted by $\langle X\rangle$. Let $G-X=\langle V(G)-X\rangle$ and $G-H=\langle V(G)-V(H)\rangle$. If $X=\{x\}$, then we write $G-x$ for $G-X$. If there is no fear of confusion, then we use the same symbol for a graph and its vertex set. For a graph $G, \operatorname{comp}(G)$ is the number of components of G. If G is one vertex, that is, $V(G)=\{x\}$, then we simply write x instead of G. For an integer $r \geq 1$ and two vertex-disjoint subgraphs A, B of G, we denote by $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$ a degree sequence from A to B such that $d_{B}\left(v_{i}\right) \geq d_{i}$ and $v_{i} \in V(A)$ for each $1 \leq i \leq r$. In this paper, since it is sufficient to consider the case of equality in the above inequality, when we write $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$, we assume $d_{B}\left(v_{i}\right)=d_{i}$ for each $1 \leq i \leq r$. For two disjoint $X, Y \subseteq V(G), E(X, Y)$ denotes the set of edges of G connecting a vertex in X and a vertex in Y. Let Q be a path or a cycle with a given orientation and $x \in V(Q)$. Then x^{+}denotes the first successor of x on Q and x^{-}denotes the first predecessor of x on Q. If $x, y \in V(Q)$, then $Q[x, y]$ denotes the path of Q from x to y (including x and y) in the given direction. The reverse sequence of $Q[x, y]$ is denoted by $Q^{-}[y, x]$. We also write $Q(x, y]=Q\left[x^{+}, y\right], Q[x, y)=Q\left[x, y^{-}\right]$and $Q(x, y)=Q\left[x^{+}, y^{-}\right]$. If Q is a path (or a cycle), say $Q=x_{1}, x_{2}, \ldots, x_{t}\left(, x_{1}\right)$, then we assume an orientation of Q is given from x_{1} to x_{t}. If P is a path connecting x and y of $V(G)$, then we denote the path P as $P[x, y]$. A cycle of length ℓ is called a ℓ-cycle. For terminology and notation not defined here, see [8].

2 Preliminaries

Definition 2.1. Suppose C_{1}, \ldots, C_{r} are r vertex-disjoint chorded cycles in a graph G. We say $\left\{C_{1}, \ldots, C_{r}\right\}$ is minimal if G does not contain r vertex-disjoint chorded cycles $C_{1}^{\prime}, \ldots, C_{r}^{\prime}$ such that $\left|\cup_{i=1}^{r} V\left(C_{i}^{\prime}\right)\right|<\left|\cup_{i=1}^{r} V\left(C_{i}\right)\right|$.
Definition 2.2. Let $C=v_{1}, \ldots, v_{t}, v_{1}$ be a cycle with chord $v_{i} v_{j}, i<j$. We say a chord $v v^{\prime} \neq v_{i} v_{j}$ is parallel to $v_{i} v_{j}$ if either $v, v^{\prime} \in C\left[v_{i}, v_{j}\right]$ or $v, v^{\prime} \in C\left[v_{j}, v_{i}\right]$. Note if two distinct chords share an endpoint, then they are parallel. We say two distinct chords are crossing if they are not parallel.
Definition 2.3. Let $u_{i} v_{j}$ and $u_{\ell} v_{m}$ be two distinct edges between two vertex-disjoint paths $P_{1}=u_{1}, \ldots, u_{s}$ and $P_{2}=v_{1}, \ldots, v_{t}$. We say $u_{i} v_{j}$ and $u_{\ell} v_{m}$ are parallel if either $i \leq \ell$ and $j \leq m$, or $\ell \leq i$ and $m \leq j$. Note if two distinct edges between P_{1} and P_{2} share an endpoint, then they are parallel. We say two distinct edges between two vertex-disjoint paths are crossing if they are not parallel.

Definition 2.4. Let $v_{i} v_{j}$ and $v_{\ell} v_{m}$ be two distinct edges between vertices of a path $P=v_{1}, \ldots, v_{t}$, with $j \geq i+2$ and $m \geq \ell+2$. We say $v_{i} v_{j}$ and $v_{\ell} v_{m}$ are nested if either $i \leq \ell<m \leq j$ or $\ell \leq i<j \leq m$.

Definition 2.5. Let $P=v_{1}, \ldots, v_{t}$ be a path. We say a vertex v_{i} on P has a left edge if there exists an edge $v_{i} v_{j}$ for some $j<i-1$. We also say v_{i} has a right edge if there exists an edge $v_{i} v_{j}$ for some $j>i+1$.

3 Lemmas

Lemma 3.1. Let $r \geq 1$ be an integer, and let $\mathscr{C}=\left\{C_{1}, \ldots, C_{r}\right\}$ be a minimal set of r vertex-disjoint chorded cycles in a graph G. For any $1 \leq i \leq r, C_{i}$ cannot have two or more parallel chords.

Proof. This follows easily from the minimality of \mathscr{C}.
Lemma 3.2. Let $r \geq 1$ be an integer, and let $\mathscr{C}=\left\{C_{1}, \ldots, C_{r}\right\}$ be a minimal set of r vertex-disjoint chorded cycles in a graph G. If $\left|C_{i}\right| \geq 7$ for some $1 \leq i \leq r$, then C_{i} has at most two chords. Furthermore, if C_{i} has two chords, then these chords must be crossing.

Proof. Let $\left|C_{i}\right| \geq 7$ for some $1 \leq i \leq r$. Suppose C_{i} contains at least three chords. By Lemma 3.1, no two of them can be parallel. Thus they are all mutually crossing. Label the endpoints of these three chords $v_{1}, v_{2}, \ldots, v_{6}$ in that order on C_{i}. Since the chords are mutually crossing, the three chords are given by $v_{1} v_{4}, v_{2} v_{5}, v_{3} v_{6}$. These six endpoints partition C_{i} into six intervals $C_{i}\left[v_{j}, v_{j+1}\right), 1 \leq j \leq 6$, where $v_{7}=v_{1}$. Since $\left|C_{i}\right| \geq 7$, some interval contains at least one vertex of C_{i} which is not an endpoint of the three chords. Without loss of generality, we may assume $C_{i}\left[v_{1}, v_{2}\right)$ contains some vertex of C_{i} other than v_{1}. Then $C_{i}\left[v_{2}, v_{4}\right], v_{1}, C_{i}^{-}\left[v_{1}, v_{5}\right], v_{2}$ is a shorter cycle with chord $v_{3} v_{6}$. Thus C_{i} has at most two chords. If the C_{i} has two chords, then these chords must be crossing by Lemma 3.1.

Lemma 3.3. Let $r \geq 1$ be an integer, and let $\mathscr{C}=\left\{C_{1}, \ldots, C_{r}\right\}$ be a minimal set of r vertex-disjoint chorded cycles in a graph G. Then $d_{C_{i}}(x) \leq 4$ for any $1 \leq i \leq r$ and any $x \in V(G)-\cup_{i=1}^{r} V\left(C_{i}\right)$. Furthermore, for some $C \in \mathscr{C}$ and some $x \in$ $V(G)-\cup_{i=1}^{r} V\left(C_{i}\right)$, if $d_{C}(x)=4$, then $|C|=4$, and if $d_{C}(x)=3$, then $|C| \leq 6$.

Proof. Suppose $d_{C}(x) \geq 5$ for some $C \in \mathscr{C}$ and some $x \in V(G)-\cup_{i=1}^{r} V\left(C_{i}\right)$. Let $v_{j} \in N_{C}(x)$ with $1 \leq j \leq 5$, and let $v_{1}, v_{2}, \ldots, v_{5}$ be in that order on C. Then $x, C\left[v_{1}, v_{3}\right], x$ is a shorter cycle with chord $x v_{2}$, contradicting the minimality of \mathscr{C}. Thus $d_{C_{i}}(x) \leq 4$ for any $1 \leq i \leq r$ and any $x \in V(G)-\cup_{i=1}^{r} V\left(C_{i}\right)$.

Next suppose $d_{C}(x)=4$ for some $C \in \mathscr{C}$ and some $x \in V(G)-\cup_{i=1}^{r} V\left(C_{i}\right)$. Let $v_{i} \in N_{C}(x)$ with $1 \leq i \leq 4$, and let $v_{1}, v_{2}, v_{3}, v_{4}$ be in that order on C. Let $X=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. These neighbors define four intervals $C\left[v_{i}, v_{i+1}\right), 1 \leq i \leq 4$, where $v_{5}=v_{1}$. Assume $|C| \geq 5$. Then a vertex of $C-X$ lies in one of the intervals. Without loss of generality, we may assume there exists a vertex of $C-X$ in $C\left[v_{1}, v_{2}\right)$. Then $x, C\left[v_{2}, v_{4}\right], x$ is a shorter cycle with chord $x v_{3}$, contradicting the minimality of \mathscr{C}. Thus $|C|=4$.

Finally, suppose $d_{C}(x)=3$ for some $C \in \mathscr{C}$ and some $x \in V(G)-\cup_{i=1}^{r} V\left(C_{i}\right)$. Let $v_{i} \in N_{C}(x)$ with $1 \leq i \leq 3$, and let v_{1}, v_{2}, v_{3} be in that order on C. Let $X=\left\{v_{1}, v_{2}, v_{3}\right\}$. These neighbors define three intervals $C\left[v_{i}, v_{i+1}\right), 1 \leq i \leq 3$, where $v_{4}=v_{1}$. If $|C| \geq 7$, then some interval contains at least two vertices of $C-X$. Without loss of generality, we may assume $C\left[v_{1}, v_{2}\right)$ contains them. Then $x, C\left[v_{2}, v_{1}\right], x$ is a shorter cycle with chord $x v_{3}$, contradicting the minimality of \mathscr{C}. Thus $|C| \leq 6$.

Lemma 3.4. Suppose there exist at least five edges connecting two vertex-disjoint paths P_{1} and P_{2}. Then there exist at least three mutually parallel edges or at least three mutually crossing edges.

Proof. Let $x_{i} y_{i} \in E\left(P_{1}, P_{2}\right)$ for each $1 \leq i \leq 5$. Without loss of generality, let $x_{1}, x_{2}, \ldots, x_{5}$ appear in that order on P_{1}. Also we may assume that y_{1}, y_{5} are in that order on P_{2}, otherwise, we consider the reverse orientation of P_{2}. Let $P_{2}=$ $u_{1}, u_{2}, \ldots, u_{s}(s \geq 1)$. If $s=1$, then all the edges connecting P_{1} and P_{2} are mutually parallel. Thus we may assume that $s \geq 2$. Now we claim that $y_{1} \neq u_{1}$. Suppose not. Then there exist at least two parallel edges in $\left\{x_{i} y_{i} \mid 2 \leq i \leq 5\right\}$, otherwise, the lemma holds. Let $x_{i_{1}} y_{i_{1}}, x_{i_{2}} y_{i_{2}}$ for $2 \leq i_{1}<i_{2} \leq 5$ be the parallel edges. Then $x_{1} y_{1}, x_{i_{1}} y_{i_{1}}, x_{i_{2}} y_{i_{2}}$ are three mutually parallel edges. Thus the claim holds. By symmetry, $y_{5} \neq u_{s}$. If $y_{i} \in P_{2}\left[y_{1}, y_{5}\right]$ for some $2 \leq i \leq 4$, then $x_{1} y_{1}, x_{i} y_{i}, x_{5} y_{5}$ are three mutually parallel edges. Thus $y_{i} \notin P_{2}\left[y_{1}, y_{5}\right]$ for each $2 \leq i \leq 4$. Then $\left|P_{2}\left[u_{1}, y_{1}\right) \cap\left\{y_{2}, y_{3}, y_{4}\right\}\right| \geq 2$ or $\left|P_{2}\left(y_{5}, u_{s}\right] \cap\left\{y_{2}, y_{3}, y_{4}\right\}\right| \geq 2$. By symmetry, we may assume that $\left|P_{2}\left[u_{1}, y_{1}\right) \cap\left\{y_{2}, y_{3}, y_{4}\right\}\right| \geq 2$. Let i_{1}, i_{2} be integers such that $2 \leq i_{1}<$ $i_{2} \leq 4$ and $y_{i_{1}}, y_{i_{2}} \in P_{2}\left[u_{1}, y_{1}\right)$. If $y_{i_{1}}, y_{i_{2}}$ are in that order on P_{2}, then $x_{i_{1}} y_{i_{1}}, x_{i_{2}} y_{i_{2}}$ are parallel edges, and $x_{i_{1}} y_{i_{1}}, x_{i_{2}} y_{i_{2}}, x_{5} y_{5}$ are three mutually parallel edges. On the other hand, if $y_{i_{2}}, y_{i_{1}}$ are in that order on P_{2}, then $x_{i_{1}} y_{i_{1}}, x_{i_{2}} y_{i_{2}}$ are crossing edges, and $x_{1} y_{1}, x_{i_{1}} y_{i_{1}}, x_{i_{2}} y_{i_{2}}$ are three mutually crossing edges. Thus the lemma holds.

Lemma 3.5. Suppose there exist at least three mutually parallel edges or at least three mutually crossing edges connecting two vertex-disjoint paths P_{1} and P_{2}. Then there exists a chorded cycle in $\left\langle P_{1} \cup P_{2}\right\rangle$.

Proof. If there exist at least three mutually crossing edges connecting the paths P_{1} and P_{2}, then we consider the reverse orientation of P_{2}. Then the edges are all mutually parallel. Thus we have only to consider the case where all the edges are mutually parallel. Now let $x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}$ be the edges. Without loss of generality, let x_{1}, x_{2}, x_{3} appear in that order on P_{1}. Note that the endpoints y_{1}, y_{2}, y_{3} appear in that order on P_{2}. Then $P_{1}\left[x_{1}, x_{3}\right], y_{3}, P_{2}^{-}\left[y_{3}, y_{1}\right], x_{1}$ is a cycle with chord $x_{2} y_{2}$.

Lemma 3.6. Suppose there exist at least five edges connecting two vertex-disjoint paths P_{1} and P_{2} with $\left|P_{1} \cup P_{2}\right| \geq 7$. Then there exists a chorded cycle in $\left\langle P_{1} \cup P_{2}\right\rangle$ not containing at least one vertex of $\left\langle P_{1} \cup P_{2}\right\rangle$.

Proof. By Lemma 3.4, there must be at least three mutually parallel edges or at least three mutually crossing edges. Then by Lemma 3.5, there exists a chorded
cycle C in $\left\langle P_{1} \cup P_{2}\right\rangle$. If $V(C) \neq V\left(P_{1} \cup P_{2}\right)$, then the lemma holds. Thus suppose $V(C)=V\left(P_{1} \cup P_{2}\right)$. Let C^{\prime} be a cycle obtained from C by removing all chords. Since $\left|E\left(\left\langle P_{1} \cup P_{2}\right\rangle\right)-E\left(C^{\prime}\right)\right| \geq 3, C$ has at least three chords. By $|C|=\left|P_{1} \cup P_{2}\right| \geq 7$, a shorter chorded cycle exists in $\left\langle P_{1} \cup P_{2}\right\rangle$ as in the proof of Lemma 3.2. Thus the lemma holds.

Lemma 3.7. Let P_{1}, P_{2} be two vertex-disjoint paths, and let $u_{1}, u_{2}\left(u_{1} \neq u_{2}\right)$ be in that order on P_{1}. Suppose $d_{P_{2}}\left(u_{i}\right) \geq 2$ for each $i \in\{1,2\}$. Then there exists a chorded cycle in $\left\langle P_{1}\left[u_{1}, u_{2}\right] \cup P_{2}\right\rangle$.

Proof. Let $P_{2}=v_{1}, \ldots, v_{t}$, and let $v_{i}, v_{j} \in N_{P_{2}}\left(u_{1}\right)$ with $i<j$. If u_{2} has a neighbor that lies in $P_{2}\left[v_{1}, v_{i}\right]$ or $P_{2}\left[v_{j}, v_{t}\right]$, then we can easily form a chorded cycle in $\left\langle P_{1}\left[u_{1}, u_{2}\right] \cup P_{2}\right\rangle$. Thus both of u_{2} 's neighbors in P_{2} must lie in $P_{2}\left(v_{i}, v_{j}\right)$, call them $v_{\ell}, v_{\ell^{\prime}}$ with $\ell<\ell^{\prime}$. Then $P_{1}\left[u_{1}, u_{2}\right], v_{\ell^{\prime}}, P_{2}^{-}\left[v_{\ell^{\prime}}, v_{i}\right], u_{1}$ is a cycle with chord $u_{2} v_{\ell}$.

Lemma 3.8. Let H be a connected graph of order at least 4. Suppose H contains neither a chorded cycle nor a Hamiltonian path. Let $P_{1}=u_{1}, \ldots, u_{s}(s \geq 3)$ be a longest path in H, and let $P_{2}=v_{1}, \ldots, v_{t}(t \geq 1)$ be a longest path in $H-P_{1}$. Then the following statements hold.
(i) $N_{H-P_{1}}\left(u_{i}\right)=\emptyset$ for each $i \in\{1, s\}$.
(ii) $d_{H}\left(u_{i}\right)=d_{P_{1}}\left(u_{i}\right) \leq 2$ for each $i \in\{1, s\}$.
(iii) $N_{H-\left(P_{1} \cup P_{2}\right)}\left(v_{j}\right)=\emptyset$ for each $j \in\{1, t\}$.
(iv) $d_{P_{2}}\left(v_{j}\right) \leq 2$ for each $j \in\{1, t\}$.
(v) $u_{1} u_{s} \notin E(H)$.
(vi) If $d_{H}\left(v_{1}\right) \leq d_{H}\left(v_{t}\right)$, then $d_{H}\left(\left\{u_{1}, u_{s}, v_{1}\right\}\right) \leq 6$.

Proof. Since P_{1} is a longest path, clearly, (i) holds. By (i), $d_{H}\left(u_{i}\right)=d_{P_{1}}\left(u_{i}\right)$ for each $i \in\{1, s\}$. Since H does not contain a chorded cycle, $d_{P_{1}}\left(u_{i}\right) \leq 2$ for each $i \in\{1, s\}$. Thus (ii) holds. Since P_{2} is a longest path in $H-P_{1}$, clearly, (iii) holds. Also, since H does not contain a chorded cycle, (iv) holds. Furthermore, since H is connected and P_{1} is a longest path in $H, u_{1} u_{s} \notin E(H)$. Thus (v) holds.

Finally, we prove (vi). Let $X=\left\{u_{1}, u_{s}, v_{1}\right\}$. By (ii), $d_{H}\left(u_{i}\right) \leq 2$ for each $i \in\{1, s\}$. If $d_{H}\left(v_{1}\right) \leq 2$, then $d_{H}(X) \leq 6$, and (vi) holds. Thus we may assume $d_{H}\left(v_{1}\right) \geq 3$. Then $d_{H}\left(v_{t}\right) \geq 3$ by the assumption. If $t=1$, then $d_{P_{1}}\left(v_{1}\right) \geq 3$. Thus there exists a chorded cycle in $\left\langle v_{1} \cup P_{1}\right\rangle$, a contradiction. If $t=2$, then $d_{P_{1}}\left(v_{1}\right) \geq 2$ and $d_{P_{1}}\left(v_{2}\right) \geq 2$ by (iii), and so by Lemma 3.7, there exists a chorded cycle in $\left\langle P_{1} \cup P_{2}\right\rangle$, a contradiction. Thus we may assume $t \geq 3$. By Lemma 3.7, $d_{P_{1}}\left(v_{j}\right) \leq 1$ for some $j \in\{1, t\}$. Suppose $j=1$, that is, $d_{P_{1}}\left(v_{1}\right) \leq 1$. By (iii) and (iv), $d_{P_{2}}\left(v_{1}\right)=2$. Since $N_{P_{1}}\left(v_{\ell}\right) \neq \emptyset$ for each $\ell \in\{1, t\}$ by (iii) and (iv), there exists a cycle with chord adjacent to v_{1} in $\left\langle P_{1} \cup P_{2}\right\rangle$, a contradiction. If $j=t$, that is, $d_{P_{1}}\left(v_{t}\right) \leq 1$, then we get a contradiction as in the case where $j=1$. Thus (vi) holds.

Lemma 3.9. Let H be a graph containing a path P. If there exist nested edges between vertices of P, then H contains a chorded cycle.

Proof. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be in that order on P. Suppose $v_{1} v_{4}$ and $v_{2} v_{3}$ are nested edges. Then $P\left[v_{1}, v_{4}\right], v_{1}$ is a cycle with chord $v_{2} v_{3}$.

Lemma 3.10. Let H be a graph containing a path $P=v_{1}, v_{2}, \ldots, v_{t}(t \geq 4)$. For any $2 \leq i \leq t-2$, if v_{i} has a right edge and v_{i+1} has a left edge, then H contains a chorded cycle.

Proof. Let $v_{i} v_{j} \in E(H)$ with $i+2 \leq j \leq t$ and $v_{i+1} v_{\ell} \in E(H)$ with $1 \leq \ell \leq i-1$. Then $P\left[v_{\ell}, v_{i}\right], v_{j}, P^{-}\left[v_{j}, v_{i+1}\right], v_{\ell}$ is a cycle with chord $v_{i} v_{i+1}$.

Lemma 3.11. Let H be a graph containing a path $P=v_{1}, \ldots, v_{t}(t \geq 3)$, and not containing a chorded cycle. If $v_{1} v_{i} \in E(H)$ for some $i \geq 3$, then $d_{P}\left(v_{j}\right) \leq 3$ for any $j \leq i-1$ and in particular, $d_{P}\left(v_{i-1}\right)=2$. And if $v_{t} v_{i} \in E(H)$ for some $i \leq t-2$, then $d_{P}\left(v_{j}\right) \leq 3$ for any $j \geq i+1$ and in particular, $d_{P}\left(v_{i+1}\right)=2$.

Proof. Suppose $v_{1} v_{i} \in E(H)$ for some $i \geq 3$. No vertex v_{j} with $j \leq i-1$ has a left edge, otherwise the edge nests with $v_{1} v_{i}$, and by Lemma 3.9, H contains a chorded cycle, a contradiction. Also, no vertex v_{j} with $j \leq i-1$ has two or more right edges, otherwise the edges nest, and again H contains a chorded cycle, a contradiction. Thus $d_{P}\left(v_{j}\right) \leq 3$ for any $j \leq i-1$. Furthermore, v_{i-1} cannot have a right edge by Lemma 3.10. Thus $d_{P}\left(v_{i-1}\right)=2$. By symmetry, the same proof shows that if $v_{t} v_{i} \in E(H)$ for some $i \leq t-2$, then $d_{P}\left(v_{j}\right) \leq 3$ for any $j \geq i+1$ and $d_{P}\left(v_{i+1}\right)=2$.

Lemma 3.12. Let H be a graph containing a path $P=v_{1}, \ldots, v_{t}(t \geq 6)$, and not containing a chorded cycle. If $d_{P}\left(v_{1}\right)=1$, then $d_{P}\left(v_{i}\right)=2$ for some $3 \leq i \leq 5$, or if $v_{1} v_{3} \in E(H)$, then $d_{P}\left(v_{i}\right)=2$ for some $4 \leq i \leq 6$.

Proof. Suppose either $d_{P}\left(v_{1}\right)=1$ or $v_{1} v_{3} \in E(H)$. If $d_{P}\left(v_{1}\right)=1$, then we let $i=3$, and if $v_{1} v_{3} \in E(H)$, then we let $i=4$. Vertex v_{i} cannot have a left edge, otherwise in the first case, we have $d_{P}\left(v_{1}\right)=2$, and in the second case, we get a chorded cycle by Lemmas 3.9 and 3.10. Thus we have a contradiction in either case. If $d_{P}\left(v_{i}\right)=2$, then the lemma holds. Thus suppose $d_{P}\left(v_{i}\right) \geq 3$. Then v_{i} must have a right edge, say $v_{i} v_{j}$ with $j \geq i+2$. If $j=i+2$, then $d_{P}\left(v_{i+1}\right)=2$, otherwise we get a contradiction by Lemma 3.10. Thus $j>i+2$. By Lemma 3.10, v_{i+1} cannot have a left edge. If $d_{P}\left(v_{i+1}\right)=2$, then the lemma holds. Thus $d_{P}\left(v_{i+1}\right) \geq 3$, and v_{i+1} has a right edge, say $v_{i+1} v_{\ell}$ for some $\ell \geq i+3$. If $\ell \leq j$, then we have nested edges and a chorded cycle by Lemma 3.9, a contradiction. Thus $\ell>j$. By the same arguments as for v_{i+1}, either $d_{P}\left(v_{i+2}\right)=2$, or v_{i+2} has a right edge $v_{i+2} v_{\ell^{\prime}}$ for some $\ell^{\prime}>\ell$. In the later case, $P\left[v_{i}, v_{i+2}\right], v_{\ell^{\prime}}, P^{-}\left[v_{\ell^{\prime}}, v_{j}\right], v_{i}$ is a cycle with chord $v_{i+1} v_{\ell}$, a contradiction. Thus $d_{P}\left(v_{i+2}\right)=2$, and the lemma holds.

Lemma 3.13. Let H be a graph containing a path $P=v_{1}, \ldots, v_{t}(t \geq 6)$, and not containing a chorded cycle. If $d_{P}\left(v_{t}\right)=1$, then $d_{P}\left(v_{i}\right)=2$ for some $t-4 \leq i \leq t-2$, or if $v_{t} v_{t-2} \in E(H)$, then $d_{P}\left(v_{i}\right)=2$ for some $t-5 \leq i \leq t-3$.

Proof. The lemma follows from the proof of Lemma 3.12 by symmetry.
Lemma 3.14. Let H be a graph of order at least 13. Suppose H does not contain a chorded cycle. If H contains a Hamiltonian path, then there exists an independent set X of four vertices in H such that $d_{H}(X) \leq 8$.

Remark 3. We consider the following graph H of order 12. (See Fig. 1.) Then H satisfies all the conditions except for the order in Lemma 3.14. However, H does not contain an independent set X of four vertices such that $d_{H}(X) \leq 8$. Thus $|H| \geq 13$ is necessary.

Fig. 1. The graph H of order 12. The white vertex (\circ) shows degree 2 , and the black vertex (\bullet) shows degree 3 .

Proof. Let $P=v_{1}, \ldots, v_{t}(t \geq 13)$ be a Hamiltonian path in H. If $v_{1} v_{t} \in E(H)$, then $d_{H}(v)=2$ for any $v \in V(H)$, otherwise, a chorded cycle exists in H, a contradiction. Then $X=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ is an independent set of four vertices such that $d_{H}(X)=8$. Thus we may now assume $v_{1} v_{t} \notin E(H)$. Since P is a Hamiltonian path in H, note $d_{P}(v)=d_{H}(v)$ for any $v \in V(P)$. Also, $d_{H}\left(v_{1}\right) \leq 2$ and $d_{H}\left(v_{t}\right) \leq 2$ by Lemma 3.9.

Case 1. Suppose $d_{H}\left(v_{1}\right)=1$ and $d_{H}\left(v_{t}\right)=1$.
By Lemmas 3.12 and 3.13, $d_{H}\left(v_{i}\right)=2$ for some $3 \leq i \leq 5$ and $d_{H}\left(v_{j}\right)=2$ for some $t-4 \leq j \leq t-2$. Since $t \geq 13, v_{i} v_{j} \notin E(H)$. Thus $X=\left\{v_{1}, v_{i}, v_{j}, v_{t}\right\}$ is the desired set.

Case 2. Suppose $d_{H}\left(v_{1}\right)=1$ and $d_{H}\left(v_{t}\right)=2$, or $d_{H}\left(v_{1}\right)=2$ and $d_{H}\left(v_{t}\right)=1$.
In this case, we may assume $d_{H}\left(v_{1}\right)=1$ and $d_{H}\left(v_{t}\right)=2$, otherwise, we consider the reverse orientation of P. Let $v_{t} v_{j} \in E(H)$ for some $2 \leq j \leq t-2$. Suppose $2 \leq j \leq t-5$. Since $d_{H}\left(v_{t}\right)=2, v_{j+1} v_{t} \notin E(H)$ and $v_{j+3} v_{t} \notin E(H)$. By Lemma 3.11, $d_{H}\left(v_{j+1}\right)=2$ and $d_{H}\left(v_{j+3}\right) \leq 3$. Then $X=\left\{v_{1}, v_{j+1}, v_{j+3}, v_{t}\right\}$ is the desired set. Thus $t-4 \leq j \leq t-2$. By Lemma 3.12, $d_{H}\left(v_{i}\right)=2$ for some $3 \leq i \leq 5$. If $j \in\{t-4, t-3\}$, then v_{j+1} is still non-adjacent to v_{t} and $d_{H}\left(v_{j+1}\right)=2$ by Lemma 3.11. Since $t \geq 13, v_{i} v_{j+1} \notin E(H)$. Then $X=\left\{v_{1}, v_{i}, v_{j+1}, v_{t}\right\}$ is the desired set. Thus $j=t-2$. By Lemma 3.13, $d_{H}\left(v_{\ell}\right)=2$ for some $t-5 \leq \ell \leq t-3$. Since $t \geq 13$, $v_{i} v_{\ell} \notin E(H)$. Then $X=\left\{v_{1}, v_{i}, v_{\ell}, v_{t}\right\}$ is the desired set.

Case 3. Suppose $d_{H}\left(v_{1}\right)=2$ and $d_{H}\left(v_{t}\right)=2$.
Suppose $v_{1} v_{3} \in E(H)$ or $v_{t} v_{t-2} \in E(H)$. Then we may assume $v_{1} v_{3} \in E(H)$, otherwise, we consider the reverse orientation of P. By Lemma 3.12, $d_{H}\left(v_{i}\right)=2$ for some $4 \leq i \leq 6$. If $v_{t} v_{t-2} \in E(H)$, then $d_{H}\left(v_{j}\right)=2$ for some $t-5 \leq j \leq t-3$ by Lemma 3.13. As before, since $t \geq 13, v_{i} v_{j} \notin E(H)$. Then $X=\left\{v_{1}, v_{i}, v_{j}, v_{t}\right\}$ is the desired set. Thus $v_{t} v_{t-2} \notin E(H)$. Then $v_{t} v_{s} \in E(H)$ for some $s \leq t-3$. By Lemma 3.11, $d_{H}\left(v_{s+1}\right)=2$. Note $s \geq 3$ since $v_{1} v_{3} \in E(H)$. If $v_{s+1} \notin\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$, then $X=\left\{v_{1}, v_{i}, v_{s+1}, v_{t}\right\}$ is the desired set. Thus $v_{s+1} \in\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$. This implies that $v_{s} \in\left\{v_{i-2}, v_{i-1}, v_{i}\right\}$. Note $v_{s} \neq v_{i}$ since $v_{t} v_{s} \in E(H)$ and $d_{H}\left(v_{i}\right)=2$.

Thus $v_{s} \in\left\{v_{i-2}, v_{i-1}\right\}$. Since $v_{i} \in\left\{v_{4}, v_{5}, v_{6}\right\}$ and $s \geq 3, v_{s} \in\left\{v_{3}, v_{4}, v_{5}\right\}$. If $d_{H}(v)=2$ for some $v \in\left\{v_{s+4}, v_{s+5}\right\}$, then $X=\left\{v_{1}, v_{i}, v, v_{t}\right\}$ is the desired set. Thus $d_{H}(v) \geq 3$ for each $v \in\left\{v_{s+4}, v_{s+5}\right\}$. Furthermore, neither v_{s+4} nor v_{s+5} has a right edge, otherwise, this edge nests with $v_{s} v_{t}$, and H contains a chorded cycle by Lemma 3.9, a contradiction. Thus both v_{s+4} and v_{s+5} have left edges. It follows that $v_{s+4} v_{\ell}, v_{s+5} v_{\ell^{\prime}} \in E(H)$, and then $\ell<\ell^{\prime}<s$, otherwise, we have nested edges and a chorded cycle by Lemma 3.9, a contradiction. Then $P\left[v_{\ell}, v_{s}\right], v_{t}, P^{-}\left[v_{t}, v_{s+4}\right], v_{\ell}$ is a cycle with chord $v_{\ell^{\prime}} v_{s+5}$, a contradiction.

Suppose $v_{1} v_{3} \notin E(H)$ and $v_{t} v_{t-2} \notin E(H)$. Then $v_{1} v_{i} \in E(H)$ for some $4 \leq$ $i \leq t-1$ and $v_{t} v_{j} \in E(H)$ for some $2 \leq j \leq t-3$. Note $i \neq j+1$, otherwise, H contains a cycle with chord $v_{j} v_{j+1}$, a contradiction. By Lemma 3.11, $d_{H}\left(v_{i-1}\right)=2$ and $d_{H}\left(v_{j+1}\right)=2$. If $i \notin\{j+2, j+3\}$, then $X=\left\{v_{1}, v_{i-1}, v_{j+1}, v_{t}\right\}$ is the desired set. Thus $i \in\{j+2, j+3\}$. Now we claim that $d_{H}\left(v_{\ell_{1}}\right)=2$ for some $\ell_{1} \in\{3,4\}$. If $j \in\{2,3\}$, then $d_{H}\left(v_{j+1}\right)=2$ by Lemma 3.11. Suppose $4 \leq j \leq t-3$. If $d_{H}\left(v_{3}\right) \geq 3$, then $v_{3} v_{i^{\prime}} \in E(H)$ for some $i^{\prime}>i$ by Lemma 3.9. Then $P\left[v_{1}, v_{j}\right], v_{t}, P^{-}\left[v_{t}, v_{i}\right], v_{1}$ is a cycle with chord $v_{3} v_{i^{\prime}}$, a contradiction. Thus $d_{H}\left(v_{3}\right)=2$. In all cases, the claim holds. By symmetry, $d_{H}\left(v_{\ell_{2}}\right)=2$ for some $\ell_{2} \in\{t-3, t-2\}$. Then $X=\left\{v_{1}, v_{\ell_{1}}, v_{\ell_{2}}, v_{t}\right\}$ is the desired set. Thus Lemma 3.14 holds.

Lemma 3.15. Let $k \geq 2$ be an integer, and let G be a graph. Suppose G does not contain k vertex-disjoint chorded cycles. Let $\left\{C_{1}, \ldots, C_{k-1}\right\}$ be a minimal set of $k-1$ vertex-disjoint chorded cycles in $G, H=G-\mathscr{C}$, where $\mathscr{C}=\cup_{i=1}^{k-1} C_{i}$, and $X \subseteq V(H)$ with $|X|=4$. Suppose H contains a Hamiltonian path. Then $d_{C_{i}}(X) \leq 12$ for each $1 \leq i \leq k-1$.

Proof. Suppose not, then $d_{C_{i}}(X) \geq 13$ for some $1 \leq i \leq k-1$. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. By Lemma 3.3, $d_{C_{i}}\left(x_{j}\right) \leq 4$ for each $1 \leq j \leq 4$. Now we consider degree sequences defined in Section 1 (Introduction) from four vertices of X to C_{i}. Recall that when we write $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$, we assume $d_{C_{i}}\left(x_{j}\right)=d_{j}$ for each $1 \leq j \leq 4$, since it is sufficient to consider the case of equality. Without loss of generality, we may assume $d_{C_{i}}\left(x_{1}\right) \geq d_{C_{i}}\left(x_{2}\right) \geq d_{C_{i}}\left(x_{3}\right) \geq d_{C_{i}}\left(x_{4}\right)$. Then the possible degree sequences from X to C_{i} are $(4,4,4,1),(4,4,3,2)$ or $(4,3,3,3)$. Since $d_{C_{i}}\left(x_{1}\right)=4,\left|C_{i}\right|=4$ by Lemma 3.3. Let $C_{i}=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. We show the existence of two vertex-disjoint chorded cycles in $\left\langle H \cup C_{i}\right\rangle$, and then G contains k vertex-disjoint chorded cycles, a contradiction. Now we consider the following three cases based on the degree sequences.

Case 1. The sequence is $(4,4,4,1)$.
Then $d_{C_{i}}\left(x_{j}\right)=4$ for each $1 \leq j \leq 3$ and $d_{C_{i}}\left(x_{4}\right)=1$. Without loss of generality, we may assume $x_{4} v_{1} \in E(G)$. Since H is connected, there exists a path from x_{4} to some other $x \in X$ not containing $X-\left\{x_{4}, x\right\}$. Without loss of generality, we may assume there exists a path P in H connecting x_{4} and x_{3}. Since $d_{C_{i}}\left(x_{3}\right)=4$, $v_{1}, v_{2} \in N_{C_{i}}\left(x_{3}\right)$. Then $x_{4}, v_{1}, v_{2}, x_{3}, P\left[x_{3}, x_{4}\right]$ is a cycle with chord $x_{3} v_{1}$. For each $j \in\{1,2\}$, since $d_{C_{i}}\left(x_{j}\right)=4, v_{3}, v_{4} \in N_{C_{i}}\left(x_{j}\right)$. Then $x_{1}, v_{3}, x_{2}, v_{4}, x_{1}$ is the other cycle with chord $v_{3} v_{4}$. Thus we have two vertex-disjoint chorded cycles in $\left\langle H \cup C_{i}\right\rangle$, a contradiction.

Case 2. The sequence is $(4,4,3,2)$.
Then $d_{C_{i}}\left(x_{1}\right)=d_{C_{i}}\left(x_{2}\right)=4, d_{C_{i}}\left(x_{3}\right)=3$, and $d_{C_{i}}\left(x_{4}\right)=2$. Since H is connected, there exists a path P from x_{4} to some other $x \in X$ not containing $X-\left\{x_{4}, x\right\}$.

First suppose $x=x_{3}$, that is, the path P connects x_{4} and x_{3}. Since $d_{C_{i}}\left(x_{3}\right)=3$, without loss of generality, we may assume $v_{j} \in N_{C_{i}}\left(x_{3}\right)$ for each $1 \leq j \leq 3$. Assume $v_{1} \in N_{C_{i}}\left(x_{4}\right)$. Then $P\left[x_{3}, x_{4}\right], v_{1}, v_{2}, x_{3}$ is a cycle with chord $x_{3} v_{1}$. For each $j \in$ $\{1,2\}$, since $d_{C_{i}}\left(x_{j}\right)=4, v_{3}, v_{4} \in N_{C_{i}}\left(x_{j}\right)$. Then $x_{1}, v_{3}, x_{2}, v_{4}, x_{1}$ is the other cycle with chord $v_{3} v_{4}$. Thus we have two vertex-disjoint chorded cycles in $\left\langle H \cup C_{i}\right\rangle$, a contradiction. Hence $v_{1} \notin N_{C_{i}}\left(x_{4}\right)$. Similarly, $v_{3} \notin N_{C_{i}}\left(x_{4}\right)$ by symmetry. Since $d_{C_{i}}\left(x_{4}\right)=2, v_{2} \in N_{C_{i}}\left(x_{4}\right)$. Then $P\left[x_{3}, x_{4}\right], v_{2}, v_{1}, x_{3}$ is a cycle with chord $x_{3} v_{2}$. Since $v_{3}, v_{4} \in N_{C_{i}}\left(x_{j}\right)$ for each $j \in\{1,2\}, x_{1}, v_{3}, x_{2}, v_{4}, x_{1}$ is the other cycle with chord $v_{3} v_{4}$. Thus we have two vertex-disjoint chorded cycles in $\left\langle H \cup C_{i}\right\rangle$, a contradiction.

Next suppose $x=x_{1}$ (or x_{2}), that is, the path P connects x_{4} and x_{1} (or x_{2}). Without loss of generality, we may assume P connects x_{4} and x_{1}. Since $d_{C_{i}}\left(x_{3}\right)=3$, without loss of generality, we may assume $v_{j} \in N_{C_{i}}\left(x_{3}\right)$ for each $1 \leq j \leq 3$. Assume $v_{1} \in N_{C_{i}}\left(x_{4}\right)$. Since $d_{C_{i}}\left(x_{1}\right)=4, v_{1}, v_{4} \in N_{C_{i}}\left(x_{1}\right)$. Then $P\left[x_{1}, x_{4}\right], v_{1}, v_{4}, x_{1}$ is a cycle with chord $x_{1} v_{1}$. Since $d_{C_{i}}\left(x_{2}\right)=4, v_{2}, v_{3} \in N_{C_{i}}\left(x_{2}\right)$. Then $x_{2}, v_{2}, x_{3}, v_{3}, x_{2}$ is the other cycle with chord $v_{2} v_{3}$. Thus we have two vertex-disjoint chorded cycles in $\left\langle H \cup C_{i}\right\rangle$, a contradiction. Hence $v_{1} \notin N_{C_{i}}\left(x_{4}\right)$. Similarly, $v_{3} \notin N_{C_{i}}\left(x_{4}\right)$ by symmetry. Since $d_{C_{i}}\left(x_{4}\right)=2, v_{4} \in N_{C_{i}}\left(x_{4}\right)$, and since $d_{C_{i}}\left(x_{1}\right)=4, v_{3}, v_{4} \in N_{C_{i}}\left(x_{1}\right)$. Then $P\left[x_{1}, x_{4}\right], v_{4}, v_{3}, x_{1}$ is a cycle with chord $x_{1} v_{4}$. Since $d_{C_{i}}\left(x_{2}\right)=4, v_{1}, v_{2} \in N_{C_{i}}\left(x_{2}\right)$. Then $x_{2}, v_{1}, x_{3}, v_{2}, x_{2}$ is the other cycle with chord $v_{1} v_{2}$. Thus we have two vertexdisjoint chorded cycles in $\left\langle H \cup C_{i}\right\rangle$, a contradiction.

Case 3. The sequence is $(4,3,3,3)$.
Then $d_{C_{i}}\left(x_{1}\right)=4$ and $d_{C_{i}}\left(x_{j}\right)=3$ for each $2 \leq j \leq 4$. Since H contains a Hamiltonian path by the assumption, we let P be the Hamiltonian path. We may assume the order of $x_{1}, x_{2}, x_{3}, x_{4}$ on P is either $x_{1}, x_{2}, x_{3}, x_{4}$ or $x_{2}, x_{1}, x_{3}, x_{4}$, otherwise we consider the reverse orientation of P. Since $d_{C_{i}}\left(x_{4}\right)=3$, the vertex x_{4} is adjacent to at least two consecutive vertices on C_{i}. Without loss of generality, we may assume $v_{1}, v_{2} \in N_{C_{i}}\left(x_{4}\right)$. Since $d_{C_{i}}\left(x_{3}\right)=3$, without loss of generality, we may assume $v_{1} \in N_{C_{i}}\left(x_{3}\right)$. Then $P\left[x_{3}, x_{4}\right], v_{2}, v_{1}, x_{3}$ is a cycle with chord $x_{4} v_{1}$.

Next we prove that if x_{1}, x_{2} (resp. x_{2}, x_{1}) are in that order on P, then there exists the other chorded cycle in $\left\langle P\left[x_{1}, x_{2}\right] \cup\left\{v_{3}, v_{4}\right\}\right\rangle$ (resp. $\left\langle P\left[x_{2}, x_{1}\right] \cup\left\{v_{3}, v_{4}\right\}\right\rangle$). Suppose that x_{1}, x_{2} are in that order on P. (If x_{2}, x_{1} are in that order on P, then we consider the reverse orientation of $P\left[x_{2}, x_{1}\right]$.) Since $d_{C_{i}}\left(x_{1}\right)=4, v_{3}, v_{4} \in$ $N_{C_{i}}\left(x_{1}\right)$, and since $d_{C_{i}}\left(x_{2}\right)=3, v_{\ell} \in N_{C_{i}}\left(x_{2}\right)$ for some $\ell \in\{3,4\}$. If $v_{3} \in N_{C_{i}}\left(x_{2}\right)$, then $P\left[x_{1}, x_{2}\right], v_{3}, v_{4}, x_{1}$ is the other cycle with chord $x_{1} v_{3}$. If $v_{4} \in N_{C_{i}}\left(x_{2}\right)$, then $P\left[x_{1}, x_{2}\right], v_{4}, v_{3}, x_{1}$ is the other cycle with chord $x_{1} v_{4}$. Thus we have two vertexdisjoint chorded cycles in $\left\langle H \cup C_{i}\right\rangle$, a contradiction.

4 Proof of Theorem 1.3

Suppose G does not contain a chorded cycle.
Claim 4.1. G is connected.
Proof. Suppose not, then $\operatorname{comp}(G) \geq 2$. Let $G_{1}, G_{2}, \ldots, G_{\text {comp }(G)}$ be the components of G. First suppose $\operatorname{comp}(G) \geq 3$. By Theorem 1.1, there exists $x_{i} \in V\left(G_{i}\right)$ for each $1 \leq i \leq 3$ such that $d_{G_{i}}\left(x_{i}\right) \leq 2$. Then $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ is an independent set and $d_{G}(X) \leq 6$. This contradicts the $\sigma_{3}(G)$ condition. Next suppose $\operatorname{comp}(G)=2$. Without loss of generality, we may assume $\left|G_{1}\right| \geq\left|G_{2}\right|$. Since $|G| \geq 7,\left|G_{1}\right| \geq 4$. If G_{1} is complete, then G_{1} contains a chorded cycle. Thus G_{1} is not complete. By Theorem 1.2, there exist non-adjacent $x_{0}, x_{1} \in V\left(G_{1}\right)$ such that $d_{G_{1}}\left(\left\{x_{0}, x_{1}\right\}\right) \leq 4$. On the other hand, by Theorem 1.1, there exists $x_{2} \in V\left(G_{2}\right)$ such that $d_{G_{2}}\left(x_{2}\right) \leq 2$. Then $X=\left\{x_{0}, x_{1}, x_{2}\right\}$ is an independent set and $d_{G}(X) \leq 6$. This contradicts the $\sigma_{3}(G)$ condition. Thus Claim 4.1 holds.

Let $P_{1}=u_{1}, \ldots, u_{s}$ be a longest path in G. Note $s \geq 3$ since $|G| \geq 7$ and G is connected by Claim 4.1.

Claim 4.2. G contains a Hamiltonian path.
Proof. Suppose not, then P_{1} is not a Hamiltonian path in G. Thus $V\left(G-P_{1}\right) \neq \emptyset$. Let $P_{2}=v_{1}, \ldots, v_{t}(t \geq 1)$ be a longest path in $G-P_{1}$. Without loss of generality, we may assume $d_{G}\left(v_{1}\right) \leq d_{G}\left(v_{t}\right)$. Let $X=\left\{u_{1}, u_{s}, v_{1}\right\}$. By Lemma 3.8 (i), (v), and (vi), X is an independent set and $d_{G}(X) \leq 6$. This contradicts the $\sigma_{3}(G)$ condition. Thus Claim 4.2 holds.

By Claim 4.2, P_{1} is a Hamiltonian path in G. Note $s=|G| \geq 7$. If $u_{1} u_{s} \in$ $E(G)$, then $d_{G}(u)=2$ for any $u \in V(G)$, otherwise a chorded cycle exists in G, a contradiction. Then $X=\left\{u_{1}, u_{3}, u_{5}\right\}$ is an independent set and $d_{G}(X)=6$. This contradicts the $\sigma_{3}(G)$ condition. Thus $u_{1} u_{s} \notin E(G)$. Since P_{1} is a Hamiltonian path in G, note $d_{P_{1}}(u)=d_{G}(u)$ for any $u \in V\left(P_{1}\right)$. We also note $d_{P_{1}}\left(u_{i}\right) \leq 2$ for each $i \in\{1, s\}$. Suppose $d_{P_{1}}\left(u_{1}\right)=1$. By Lemma 3.12, $d_{G}\left(u_{i}\right)=2$ for some $3 \leq i \leq 5$. Since $s \geq 7, X=\left\{u_{1}, u_{i}, u_{s}\right\}$ is an independent set and $d_{G}(X) \leq 6$, a contradiction. Thus $d_{P_{1}}\left(u_{1}\right)=2$. Now suppose $u_{1} u_{3} \in E(G)$. By Lemma 3.12, $d_{G}\left(u_{i}\right)=2$ for some $4 \leq i \leq 6$. If $s \geq 8$, then $X=\left\{u_{1}, u_{i}, u_{s}\right\}$ is an independent set and $d_{G}(X) \leq 6$, a contradiction. Thus $s=7$. Then $d_{G}\left(u_{j}\right) \geq 3$ for each $j \in\{4,5\}$, otherwise we get a contradiction, since $X=\left\{u_{1}, u_{j}, u_{7}\right\}$ for some $j \in\{4,5\}$ would be an independent set with $d_{G}(X) \leq 6$. Thus $d_{G}\left(u_{6}\right)=2$ by Lemma 3.12. Since u_{4} does not have a left edge by Lemmas 3.9 and 3.10, u_{4} must have a right edge. Since $d_{G}\left(u_{6}\right)=2$, $u_{4} u_{7} \in E(G)$. By Lemma 3.11, $d_{G}\left(u_{5}\right)=2$, a contradiction. Thus $u_{1} u_{3} \notin E(G)$, that is, $u_{1} u_{i} \in E(G)$ for some $4 \leq i \leq s-1$. By Lemma 3.11, $d_{G}\left(u_{i-1}\right)=2$. Then $X=\left\{u_{1}, u_{i-1}, u_{s}\right\}$ is an independent set and $d_{G}(X) \leq 6$, a contradiction. This completes the proof of Theorem 1.3.

5 Proof of Theorem 1.4

By Theorem 1.3, we may assume $k \geq 2$. Suppose Theorem 1.4 does not hold. Let G be an edge-maximal counter-example. If G is complete, then G contains k vertexdisjoint chorded cycles. Thus we may assume G is not complete. Let $x y \notin E(G)$ for some $x, y \in V(G)$, and define $G^{\prime}=G+x y$, the graph obtained from G by adding the edge $x y$. Since G^{\prime} is not a counter-example by the edge-maximality of G, G^{\prime} contains k vertex-disjoint chorded cycles C_{1}, \ldots, C_{k}. Without loss of generality, we may assume $x y \notin \cup_{i=1}^{k-1} E\left(C_{i}\right)$, that is, G contains $k-1$ vertex-disjoint chorded cycles. Over all sets of $k-1$ vertex-disjoint chorded cycles in G, choose C_{1}, \ldots, C_{k-1} with $\mathscr{C}=\cup_{i=1}^{k-1} C_{i}, H=G-\mathscr{C}$, and with P_{1} be a longest path in H, such that
(A1) $|\mathscr{C}|$ is as small as possible,
(A2) subject to $(\mathrm{A} 1), \operatorname{comp}(H)$ is as small as possible, and,
(A3) subject to (A1) and (A2), $\left|P_{1}\right|$ is as large as possible.
We may assume H does not contain a chorded cycle, otherwise G contains k vertex-disjoint chorded cycles, a contradiction.

Claim 5.1. H has order at least 13.
Proof. Suppose $|H| \leq 12$. First suppose $\left|C_{i}\right| \leq 8$ for each $1 \leq i \leq k-1$. Since by assumption, $|G| \geq 8 k+5$, it follows that $|H| \geq(8 k+5)-8(k-1)=13$, a contradiction. Thus $\left|C_{i}\right| \geq 9$ for some $1 \leq i \leq k-1$. Without loss of generality, we may assume C_{1} is a longest cycle in \mathscr{C}. Then $\left|C_{1}\right| \geq 9$. By Lemma 3.2, C_{1} has at most two chords, and if C_{1} has two chords, then these chords must be crossing. For integers t and r, let $\left|C_{1}\right|=3 t+r$, where $t \geq 3$ and $0 \leq r \leq 2$.
Subclaim 5.1.1. The cycle C_{1} contains $t(\geq 3)$ vertex-disjoint sets X_{1}, \ldots, X_{t} of three independent vertices each in G such that $d_{C_{1}}\left(\cup_{i=1}^{t} X_{i}\right) \leq 6 t+4$.

Proof. For any $3 t$ vertices of C_{1}, their degree sum in C_{1} is at most $3 t \times 2+4=6 t+4$, since C_{1} has at most two chords. Thus it only remains to show that C_{1} contains t vertex-disjoint sets of three independent vertices each. Start anywhere on C_{1} and label the first $3 t$ vertices of C_{1} with labels 1 through t in order, starting over again with 1 after using label t. If $r \geq 1$, label the remaining r vertices of C_{1} with the labels $t+1, \ldots, t+r$. (See Fig. 2.) The labeling above yields t vertex-disjoint sets of three vertices each, where all the vertices labeled with 1 are one set, all the vertices labeled with 2 are another set, and so on. Given this labeling, since $t \geq 3$, any vertex x in C_{1} has a different label than x^{-}and x^{+}. Let C_{0} be the cycle obtained from C_{1} by removing all chords. Then the vertices in each of the t sets are independent in C_{0}. Thus the only way vertices in the same set are not independent in C_{1} is if the endpoints of a chord of C_{1} were given the same label. Note any vertex labeled i is distance at least 3 in C_{0} from any other vertex labeled i. Thus even if we exchange the label of x in C_{0} for the one of x^{-}(or x^{+}), the vertices in each of the resulting t sets are still independent in C_{0}.

Fig. 2. An example when $t=4$ and $r=2$.

Case 1. No chord of C_{1} has both endpoints with the same label.
Then there exist t vertex-disjoint sets of three independent vertices each in C_{1}.
Case 2. Exactly one chord of C_{1} has both endpoints with the same label.
Recall that C_{1} has at most two chords, and if C_{1} has two chords, then these chords must be crossing. Since $\left|C_{1}\right| \geq 9$, even if C_{1} has two chords, each chord has an endpoint x such that there exists some vertex $x^{\prime} \in\left\{x^{-}, x^{+}\right\}$which is equal to no endpoint of the other chord. Choose such an endpoint x of the chord whose endpoints were assigned the same label, and exchange the label of x for the one of x^{\prime}. Then no chord of C_{1} has endpoints with the same label, and the vertices in each of the resulting t sets are independent in C_{1}. Thus there exist t vertex-disjoint sets of three independent vertices each in C_{1}.

Case 3. Two chords of C_{1} each have both endpoints with the same label.
Then the two chords are crossing. Since endpoints of a chord have the same label in this case, recall that these endpoints have distance at least 3 . Suppose there is an endpoint x of one chord of C_{1} which is adjacent to an endpoint $y\left(=x^{+}\right)$of the other chord on C_{1}. (See Fig. 3 (a).) Now we exchange the label of x for the one of y. Then no chord of C_{1} has endpoints with the same label, and the vertices in each of the resulting t sets are independent in C_{1}. Thus there exist t vertex-disjoint sets of three independent vertices each in C_{1}.

Suppose no endpoint of one chord of C_{1} is adjacent to an endpoint of the other chord on C_{1}. (See Fig. 3 (b).) Let $x_{1} x_{2}, y_{1} y_{2}$ be the two distinct chords of C_{1}. Since the two chords are crossing, without loss of generality, we may assume $x_{1}, y_{1}, x_{2}, y_{2}$ are in that order on C_{1}. Now we exchange the labels of x_{1} and x_{1}^{+}, and next the ones of y_{2} and y_{2}^{-}. Then no chord of C_{1} has endpoints with the same label, and the vertices in each of the resulting t sets are independent in C_{1}. Thus there exist t vertex-disjoint sets of three independent vertices each in C_{1}.

Since $\left|C_{1}\right| \geq 9, d_{C_{1}}(v) \leq 2$ for any $v \in V(H)$ by (A1) and Lemma 3.3. Thus, since $|H| \leq 12$ by our assumption, it follows that $\left|E\left(H, C_{1}\right)\right| \leq 24$. Let X_{1}, \ldots, X_{t} be as in Subclaim 5.1.1, and let $\mathscr{X}=X_{1} \cup \cdots \cup X_{t}$. By the $\sigma_{3}(G)$ condition,

Fig. 3. Examples: (a) - the labels of x and y are 1 and 2, (b) - the labels of x_{1} and y_{2} are 1 and 3 . ($[i]$ means i is a new label for a vertex after the exchange.)
$d_{G}(\mathscr{X}) \geq t(9 k-2)$. Suppose $k=2$. Then \mathscr{C} has only one cycle C_{1}. Since $k=2$ and $t \geq 3,\left|E\left(C_{1}, H\right)\right| \geq d_{H}(\mathscr{X}) \geq t(9 k-2)-(6 t+4)=10 t-4 \geq 26$, a contradiction.

Now suppose $k \geq 3$. Then we have

$$
\begin{aligned}
\left|E\left(\mathscr{X}, \mathscr{C}-C_{1}\right)\right| & =d_{G}(\mathscr{X})-d_{C_{1}}(\mathscr{X})-d_{H}(\mathscr{X}) \\
& \geq t(9 k-2)-(6 t+4)-24 \\
& =9 k t-8 t-28
\end{aligned}
$$

and since $t \geq 3$,

$$
\begin{aligned}
9 k t-8 t-28 & =9 t(k-1)+t-28 \geq 9 t(k-1)-25 \\
& >9 t(k-1)-9 t \\
& =9 t(k-2) .
\end{aligned}
$$

Thus $\left|E\left(\mathscr{X}, C^{\prime}\right)\right|>9 t$ for some C^{\prime} in $\mathscr{C}-C_{1}$, since $\mathscr{C}-C_{1}$ contains $k-2$ vertexdisjoint chorded cycles. Let $h=\max \left\{d_{C^{\prime}}(v) \mid v \in \mathscr{X}\right\}$. Let v^{*} be a vertex of \mathscr{X} such that $d_{C^{\prime}}\left(v^{*}\right)=h$. If $h \leq 3$, then $\left|E\left(\mathscr{X}, C^{\prime}\right)\right| \leq 3 \times 3 t=9 t$, a contradiction. Thus $h \geq 4$. By the maximality of $C_{1},\left|C^{\prime}\right| \leq\left|C_{1}\right|=3 t+r$. It follows that $h=d_{C^{\prime}}\left(v^{*}\right) \leq\left|C^{\prime}\right| \leq 3 t+r$. Recall $t \geq 3$ and $0 \leq r \leq 2$. Then

$$
\begin{align*}
\left|E\left(\mathscr{X}-\left\{v^{*}\right\}, C^{\prime}\right)\right| & \geq(9 t+1)-d_{C^{\prime}}\left(v^{*}\right) \geq(9 t+1)-(3 t+r) \\
& =6 t-r+1 \geq 17 . \tag{1}
\end{align*}
$$

Since $h=d_{C^{\prime}}\left(v^{*}\right) \geq 4$, let $v_{1}, v_{2}, v_{3}, v_{4}$ be neighbors of v^{*} in that order on C^{\prime}. Note $v_{1}, v_{2}, v_{3}, v_{4}$ partition C^{\prime} into four intervals $C^{\prime}\left[v_{i}, v_{i+1}\right)$ for all $1 \leq i \leq 4$, where $v_{5}=v_{1}$. By (1), there exist at least 17 edges from $C_{1}-v^{*}$ to C^{\prime}. Thus $C^{\prime}\left[v_{i}, v_{i+1}\right)$ for some $1 \leq i \leq 4$ contains at least five of these edges. Without loss of generality, we may assume $i=4$, that is, $C^{\prime}\left[v_{4}, v_{1}\right)$. Then by Lemma 3.6, $\left\langle\left(C_{1}-v^{*}\right) \cup C^{\prime}\left[v_{4}, v_{1}\right)\right\rangle$ contains a chorded cycle not containing at least one vertex of $\left\langle\left(C_{1}-v^{*}\right) \cup C^{\prime}\left[v_{4}, v_{1}\right)\right\rangle$. Note $v^{*}, C^{\prime}\left[v_{1}, v_{3}\right], v^{*}$ is a cycle with chord $v^{*} v_{2}$, and it uses no vertices from $C^{\prime}\left[v_{4}, v_{1}\right)$. Thus we have two shorter vertex-disjoint chorded cycles in $\left\langle C_{1} \cup C^{\prime}\right\rangle$, contradicting (A1). Hence Claim 5.1 holds.

Claim 5.2. H is connected.
Proof. Suppose not. First we prove the following subclaim.
Subclaim 5.2.1. Let X be an independent set of three vertices in H such that $d_{H}(X) \leq 6$. Then there exists some C in \mathscr{C} such that the degree sequences from the vertices of X to C are $(4,4,2)$ or $(4,3,3)$. Furthermore, then $|C|=4$.

Proof. By the $\sigma_{3}(G)$ condition, $d_{\mathscr{C}}(X) \geq(9 k-2)-6=9 k-8>9(k-1)$. Thus there exists some C in \mathscr{C} such that $d_{C}(X) \geq 10$. By Lemma 3.3, $d_{C}(x) \leq 4$ for any $x \in X$. It follows that the degree sequences from three vertices of X to C are $(4,4,2)$ or $(4,3,3)$. Then by Lemma $3.3,|C|=4$.

Now we consider the following two cases based on $\operatorname{comp}(H)$.
Case 1. Suppose $\operatorname{comp}(H) \geq 3$.
Let H_{1}, H_{2}, H_{3} be three distinct components of H. For each $1 \leq i \leq 3$, let x_{i} be an endpoint of a longest path in H_{i}. Since H does not contain a chorded cycle, $d_{H_{i}}\left(x_{i}\right) \leq 2$ for each $1 \leq i \leq 3$. Note x_{i} for each $1 \leq i \leq 3$ is not a cutvertex of H_{i}, since x_{i} is an endpoint of a longest path. Then $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ is an independent set and $d_{H}(X) \leq 6$. By Subclaim 5.2.1, the degree sequences from three vertices of X to some C in \mathscr{C} are $(4,4,2)$ or $(4,3,3)$, and $|C|=4$. Without loss of generality, we may assume $d_{C}\left(x_{1}\right) \geq d_{C}\left(x_{2}\right) \geq d_{C}\left(x_{3}\right)$. Let $C=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. By the degree sequences, x_{2} and x_{3} have a common neighbor in C. Without loss of generality, we may assume $v_{4} \in N_{C}\left(x_{2}\right) \cap N_{C}\left(x_{3}\right)$. Then $\left\langle H_{2} \cup H_{3} \cup v_{4}\right\rangle$ is connected. Since $d_{C}\left(x_{1}\right)=4, v_{i} \in N_{C}\left(x_{1}\right)$ for each $1 \leq i \leq 3$. Then $C^{\prime}=x_{1}, v_{1}, v_{2}, v_{3}, x_{1}$ is a 4 -cycle with chord $x_{1} v_{2}$. Replacing C in \mathscr{C} by C^{\prime}, we consider the new H^{\prime}. Since $H_{1}-x_{1}$ is connected, $\operatorname{comp}\left(H^{\prime}\right) \leq \operatorname{comp}(H)-1$. This contradicts (A2).

Case 2. Suppose $\operatorname{comp}(H)=2$.
Let H_{1}, H_{2} be two distinct components of H. Recall P_{1} is a longest path in H. Without loss of generality, we may assume H_{1} contains P_{1}. Let $P_{1}=u_{1}, \ldots, u_{s}$. Then $\left|H_{1}\right| \geq\left|P_{1}\right|=s$. By Claim 5.1, $|H| \geq 13$. Thus $\left|H_{i}\right| \geq 7$ for some $i \in\{1,2\}$. Since H_{i} is connected, there exists a path of order at least 3 in H_{i}. Thus $s \geq 3$, since P_{1} is a longest path in H. Also, we let $P_{2}=v_{1}, \ldots, v_{t}(t \geq 1)$ be a longest path in H_{2}. Since P_{i} for each $i \in\{1,2\}$ is a longest path in $H_{i}, d_{H_{1}}\left(u_{j}\right)=d_{P_{1}}\left(u_{j}\right) \leq 2$ for each $j \in\{1, s\}$ and $d_{H_{2}}\left(v_{\ell}\right)=d_{P_{2}}\left(v_{\ell}\right) \leq 2$ for each $\ell \in\{1, t\}$. Let $X=\left\{u_{1}, u_{s}, v_{1}\right\}$. Then $d_{H}(X) \leq 6$.

First suppose $u_{1} u_{s} \notin E\left(H_{1}\right)$. Then X is an independent set. By Subclaim 5.2.1, the degree sequences from three vertices of X to some C in \mathscr{C} are $(4,4,2)$ or $(4,3,3)$, and $|C|=4$. Without loss of generality, we may assume $d_{C}\left(u_{1}\right) \geq d_{C}\left(u_{s}\right)$. Let $C=x_{1}, x_{2}, x_{3}, x_{4}, x_{1}$.

Suppose the degree sequence is $(4,4,2)$. By the degree sequence, since u_{s} and v_{1} have a common neighbor in C, without loss of generality, we may assume $x_{4} \in$ $N_{C}\left(u_{s}\right) \cap N_{C}\left(v_{1}\right)$. Note u_{1} is not a cutvertex of H_{1}, since u_{1} is an endpoint of a longest path. Thus $H_{1}-u_{1}$ is connected, and $\left\langle\left(H_{1}-u_{1}\right) \cup H_{2} \cup x_{4}\right\rangle$ is also connected.

Since $d_{C}\left(u_{1}\right)=4, x_{j} \in N_{C}\left(u_{1}\right)$ for each $1 \leq j \leq 3$. Then $C^{\prime}=u_{1}, x_{1}, x_{2}, x_{3}, u_{1}$ is a 4 -cycle with chord $u_{1} x_{2}$. Replacing C in \mathscr{C} by C^{\prime}, we consider the new H^{\prime}. Then $\operatorname{comp}\left(H^{\prime}\right) \leq \operatorname{comp}(H)-1=2-1=1$. This contradicts (A2).

Suppose the degree sequence is $(4,3,3)$. If $d_{C}\left(u_{1}\right)=4$ and $d_{C}\left(u_{s}\right)=d_{C}\left(v_{1}\right)=$ 3 , then we get a contradiction similar to the case where $(4,4,2)$. Thus $d_{C}\left(u_{1}\right)=$ $d_{C}\left(u_{s}\right)=3$ and $d_{C}\left(v_{1}\right)=4$. Without loss of generality, we may assume $x_{1} \in N_{C}\left(u_{1}\right)$. Since $d_{C}\left(v_{1}\right)=4, x_{i} \in N_{C}\left(v_{1}\right)$ for each $2 \leq i \leq 4$. Then $C^{\prime}=v_{1}, x_{2}, x_{3}, x_{4}, v_{1}$ is a 4-cycle with chord $v_{1} x_{3}$. Replacing C in \mathscr{C} by C^{\prime}, we consider the new H^{\prime}. Assume $\left|H_{2}\right|=1$. Then $\operatorname{comp}\left(H^{\prime}\right)=1$, a contradiction. Thus $\left|H_{2}\right| \geq 2$. Note $H_{2}-v_{1}$ is connected. By $(\mathrm{A} 2), \operatorname{comp}\left(H^{\prime}\right)=\operatorname{comp}(H)$. Then $x_{1}, P_{1}\left[u_{1}, u_{s}\right]$ is a longer path than P_{1} in H^{\prime}. This contradicts (A3).

Next suppose $u_{1} u_{s} \in E\left(H_{1}\right)$. Since H_{1} is connected and P_{1} is a longest path, $C_{1}=P_{1}\left[u_{1}, u_{s}\right], u_{1}$ is a Hamiltonian cycle. Assume $s \geq 4$. Let $X=\left\{u_{1}, u_{3}, v_{1}\right\}$. Since H_{1} does not contain a chorded cycle, $u_{1} u_{3} \notin E\left(H_{1}\right)$ and $d_{H_{1}}\left(u_{i}\right)=2$ for each $i \in\{1,3\}$. Thus X is an independent set and $d_{H}(X) \leq 6$. Now, letting u_{3} play the role of u_{s} in the case where $u_{1} u_{s} \notin E\left(H_{1}\right)$, we get a contradiction, similarly. Hence, $s=3$. Since C_{1} is a Hamiltonian cycle in $H_{1},\left|H_{1}\right|=3$. Note $\left|H_{2}\right| \geq 10$ by Claim 5.1, and H_{2} does not contain a longer path than P_{1}. Thus $H_{2}=K_{1, p}$, where $p \geq 9$. Let $V\left(K_{1, p}\right)=\left\{a_{1}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$, and let $X=\left\{b_{1}, b_{2}, b_{3}\right\}$. Since $d_{H_{2}}\left(b_{i}\right)=1$ for each $1 \leq i \leq 3, d_{H_{2}}(X)=3$. Also, X is an independent set. By Subclaim 5.2.1, the degree sequences from three vertices of X to some C in \mathscr{C} are $(4,4,2)$ or $(4,3,3)$, and $|C|=4$. Let $C=x_{1}, x_{2}, x_{3}, x_{4}, x_{1}$. Without loss of generality, we may assume $d_{C}\left(b_{1}\right) \geq d_{C}\left(b_{2}\right) \geq d_{C}\left(b_{3}\right)$. Since $d_{C}\left(b_{2}\right) \geq 3$ by the degree sequences, without loss of generality, we may assume $x_{i} \in N_{C}\left(b_{2}\right)$ for each $2 \leq i \leq 4$. Then $C^{\prime}=b_{2}, x_{2}, x_{3}, x_{4}, b_{2}$ is a 4 -cycle with chord $b_{2} x_{3}$. Since $d_{C}\left(b_{1}\right)=4, x_{1} \in N_{C}\left(b_{1}\right)$. Replacing C in \mathscr{C} by C^{\prime}, we consider the new H^{\prime}. Note $H_{2}-b_{2}$ is connected. By (A2), $\operatorname{comp}\left(H^{\prime}\right)=\operatorname{comp}(H)$. Then $x_{1}, b_{1}, a_{1}, b_{3}$ is a longer path than P_{1}. This contradicts (A3).

Claim 5.3. H contains a Hamiltonian path.
Proof. Suppose not, then by Claims 5.1 and $5.2,|H| \geq 13$ and H is connected. Recall P_{1} is a longest path in H. Then $V\left(H-P_{1}\right) \neq \emptyset$. Let $P_{1}=u_{1}, \ldots, u_{s}(s \geq 3)$, and let $P_{2}=v_{1}, \ldots, v_{t}(t \geq 1)$ be a longest path in $H-P_{1}$. Without loss of generality, we may assume $d_{H}\left(v_{1}\right) \leq d_{H}\left(v_{t}\right)$. Let $X=\left\{u_{1}, u_{s}, v_{1}\right\}$. Then by Lemma 3.8 (i), (v), and (vi), X is an independent set and $d_{H}(X) \leq 6$. Noting $\sigma_{3}(G) \geq 9 k-2$ and Lemma 3.3, as in Subclaim 5.2.1 in the proof of Theorem 1.4, there exists some C in \mathscr{C} such that the degree sequences from three vertices of X to C are $(4,4,2)$ or $(4,3,3)$, and $|C|=4$. Let $C=x_{1}, x_{2}, x_{3}, x_{4}, x_{1}$ be a 4 -cycle with chord $x_{1} x_{3}$. Without loss of generality, we may assume $d_{C}\left(u_{1}\right) \geq d_{C}\left(u_{s}\right)$.

Suppose $d_{C}\left(u_{1}\right)=4$. By the degree sequence, u_{s} and v_{1} have a common neighbor in C, say x_{ℓ} for some $1 \leq \ell \leq 4$. Note u_{1} is not a cutvertex of H, since u_{1} is an endpoint of a longest path. Thus $H-u_{1}$ is connected. Since $d_{C}\left(u_{1}\right)=4,\left\langle u_{1} \cup\left(C-x_{\ell}\right)\right\rangle$ contains a chorded 4 -cycle, say C^{\prime}. Replacing C in \mathscr{C} by C^{\prime}, we consider the new H^{\prime}. Note H^{\prime} is connected. Then $P_{1}\left[u_{2}, u_{s}\right], x_{\ell}, P_{2}\left[v_{1}, v_{t}\right]$ is a longer path than P_{1} in
H^{\prime}. This contradicts (A3). Thus $d_{C}\left(u_{1}\right) \leq 3$, that is, $d_{C}\left(u_{1}\right)=d_{C}\left(u_{s}\right)=3$ and $d_{C}\left(v_{1}\right)=4$. Since $d_{C}\left(u_{1}\right)=3, x_{1}, x_{3} \in N_{C}\left(u_{1}\right)$ or $x_{2}, x_{4} \in N_{C}\left(u_{1}\right)$.

First suppose $x_{1}, x_{3} \in N_{C}\left(u_{1}\right)$. Recall $x_{1} x_{3}$ is a chord of C. Since $d_{C}\left(u_{s}\right)=3$, without loss of generality, we may assume $x_{4} \in N_{C}\left(u_{s}\right)$. Then $C^{\prime}=u_{1}, x_{1}, x_{2}, x_{3}, u_{1}$ is a 4 -cycle with chord $x_{1} x_{3}$. Since $d_{C}\left(v_{1}\right)=4, x_{4} \in N_{C}\left(v_{1}\right)$. Note $H-u_{1}$ is connected. Replacing C in \mathscr{C} by C^{\prime}, we consider the new H^{\prime}. Then $P_{1}\left[u_{2}, u_{s}\right], x_{4}, P_{2}\left[v_{1}, v_{t}\right]$ is a longer path than P_{1} in H^{\prime}. This contradicts (A3).

Next suppose $x_{2}, x_{4} \in N_{C}\left(u_{1}\right)$. Since $d_{C}\left(u_{1}\right)=3$, without loss of generality, we may assume $x_{3} \in N_{C}\left(u_{1}\right)$. Since $d_{C}\left(u_{s}\right)=3$, without loss of generality, we may assume $x_{4} \in N_{C}\left(u_{s}\right)$. Then $C^{\prime}=u_{1}, x_{2}, x_{1}, x_{3}, u_{1}$ is a 4 -cycle with chord $x_{2} x_{3}$. Since $d_{C}\left(v_{1}\right)=4, x_{4} \in N_{C}\left(v_{1}\right)$. Note $H-u_{1}$ is connected. Replacing C in \mathscr{C} by C^{\prime}, we consider the new H^{\prime}. Then $P_{1}\left[u_{2}, u_{s}\right], x_{4}, P_{2}\left[v_{1}, v_{t}\right]$ is a longer path than P_{1} in H^{\prime}. This contradicts (A3).

By Claims 5.1, 5.3, and Lemma 3.14, there exists an independent set X of four vertices in H such that $d_{H}(X) \leq 8$. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and let $X_{1}=$ $\left\{x_{1}, x_{2}, x_{3}\right\}, X_{2}=\left\{x_{1}, x_{2}, x_{4}\right\}, X_{3}=\left\{x_{1}, x_{3}, x_{4}\right\}$, and $X_{4}=\left\{x_{2}, x_{3}, x_{4}\right\}$. Then $3|X|=\sum_{i=1}^{4}\left|X_{i}\right|$. Note X_{i} for each $1 \leq i \leq 4$ is an independent set. By the $\sigma_{3}(G)$ condition,

$$
3 \cdot d_{G}(X)=\sum_{i=1}^{4} d_{G}\left(X_{i}\right) \geq 4 \sigma_{3}(G) \geq 4(9 k-2)=36 k-8
$$

On the other hand, by Claim 5.3 and Lemma 3.15,

$$
3 \cdot d_{G}(X)=3\left(d_{\mathscr{C}}(X)+d_{H}(X)\right) \leq 3(12(k-1)+8)=36 k-12,
$$

a contradiction. This completes the proof of Theorem 1.4.

Acknowledgments

The authors would like to thank the referees for their careful reading and helpful suggestions. The first author is supported by the Heilbrun Distinguished Emeritus Fellowship from Emory University. The second author is supported by JSPS KAKENHI Grant Number JP19K03610.

References

[1] S. Chiba, S. Fujita, Y. Gao and G. Li, On a sharp degree sum condition for disjoint chorded cycles in graphs, Graphs Combin. 26 (2010), 173-186.
[2] S. Chiba and T. Yamashita, Degree conditions for the existence of vertex-disjoint cycles and paths: A survey, Graphs Combin. 34 (2018), 1-83.
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
[4] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (4) (1998), 487-492.
[5] D. Finkel, On the number of independent chorded cycles in a graph, Discrete Math. 308 (22) (2008), 5265-5268.
[6] S. Fujita, H. Matsumura, M. Tsugaki and T. Yamashita, Degree sum conditions and vertex-disjoint cycles in a graph, Australas. J. Combin. 35 (2006), 237-251.
[7] Y. Gao, X. Lin and H. Wang, Vertex-disjoint double chorded cycles in bipartite graphs, Discrete Math. 342 (9) (2019), 2482-2492.
[8] R. J. Gould, Graph Theory, Dover Pub. Inc. Mineola, N.Y. 2012.
[9] R. J. Gould, K. Hirohata and A. Keller, On vertex-disjoint cycles and degree sum conditions, Discrete Math. 341 (1) (2018), 203-212.
[10] T. Molla, M. Santana and E. Yeager, Disjoint cycles and chorded cycles in a graph with given minimum degree, Discrete Math. 343 (6) (2020), 111837.
[11] H. Wang, On the maximum number of independent cycles in a graph, Discrete Math. 205 (1-3) (1999), 183-190.

