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Abstract

We derive some constraints on the structure of the missing Moore graph.

1 Moore graphs

A Moore graph Γk is a regular graph of degree k with the property that every pair
of adjacent vertices has no common neighbor, and every pair of non-adjacent vertices
has precisely one common neighbor. Equivalently, the graph has diameter two and
girth five. By simple counting, it follows that the adjacency matrix Xk of a Moore
graph is a v × v matrix with v = k2 + 1 satisfying

X2
k +Xk = (k − 1)Iv + Jv, (1)

where Iv (respectively, Jv) is the v × v identity matrix (respectively, all-ones ma-
trix). Using spectral techniques, Hoffman and Singleton showed [9] that the only
possibilities are k = 2 (the 5-cycle), k = 3 (the Petersen graph), k = 7 (the Hoffman-
Singleton graph), and k = 57 (called the ‘missing Moore graph’, because no one
knows whether it exists or not).1

Despite much effort on the problem the existence question remains undecided.
Higman (unpublished, see [4], Proposition 5.4 or [3], Proposition 11.5.2), extend-
ing earlier work of Aschbacher [1], showed that, if Γ57 exists, it cannot be vertex-
transitive. Mac̆aj and Şiráņ [10] and Makhnev and Paduchikh [11] have put limits
on the possible size of the automorphism group of Γ57. In this note we exhibit some
constraints on the possible structure of the adjacency matrix of Γ57.

2

1For more about Moore graphs, see, e.g., Godsil and Royle [7], Miller and Şiráņ [12], and Dalfó [5].
2The Smith form of the Laplacian matrix of Γ57 was almost completely determined by Ducey [6].
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2 The Moore graphs for k ∈ {2, 3, 7}
Before investigating what can be said about X57, we recall the “canonical construc-
tions” for the adjacency matrices of the other Moore graphs. It turns out that
the adjacency matrices of all the known Moore graphs can be built from the cyclic
permutation matrix of size five:

P :=

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

2.1 The 5-cycle

The adjacency matrix of the 5-cycle is just X2 := P +P−1. To see that this satisfies
(1), we first note that P 0 + P 1 + P 2 + P 3 + P 4 = J5, where P 0 = I5. Thus,

X2
2 +X2 = P 2 + P−2 + 2I5 + P + P−1 = I5 + J5.

2.2 The Petersen graph

The adjacency matrix of the Petersen graph is

X3 :=

(
P + P−1 I5

I5 P 2 + P−2

)
.

To see this, observe that(
P + P−1 I5

I5 P 2 + P−2

)(
P + P−1 I5

I5 P 2 + P−2

)

=

(
P 2 + P−2 + 3I5 J5 − I5

J5 − I5 P + P−1 + 3I5

)
.

Hence,

X2
3 +X3 =

(
J5 + 2I5 J5

J5 J5 + 2I5

)
= 2I10 + J10,

and once again, (1) is satisfied.

2.3 The Hoffman-Singleton graph

Based on unpublished work of Robertson, Berlekamp, van Lint, and Seidel [2] con-
structed an adjacency matrix for the Hoffman-Singleton graph, as follows. Define

B :=

⎛
⎜⎜⎜⎜⎝

P 0 P 0 P 0 P 0 P 0

P 0 P 1 P 2 P 3 P 4

P 0 P 2 P 4 P 6 P 8

P 0 P 3 P 6 P 9 P 12

P 0 P 4 P 8 P 12 P 16

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

P 0 P 0 P 0 P 0 P 0

P 0 P 1 P 2 P 3 P 4

P 0 P 2 P 4 P 1 P 3

P 0 P 3 P 1 P 4 P 2

P 0 P 4 P 3 P 2 P 1

⎞
⎟⎟⎟⎟⎠ .
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Note that

BBT =

⎛
⎜⎜⎜⎜⎝

5I5 J5 J5 J5 J5

J5 5I5 J5 J5 J5

J5 J5 5I5 J5 J5

J5 J5 J5 5I5 J5

J5 J5 J5 J5 5I5

⎞
⎟⎟⎟⎟⎠ = 5I25 + J25 − (I5 ⊗ J5),

where M ⊗ N is the Kronecker product of M and N . Also, observe that, although
B is not symmetric, it is normal (i.e., BBT = BTB) and it has the property that

(I5 ⊗ (P + P−1))B +B(I5 ⊗ (P 2 + P−2)) = J25 −B.

Now define

X7 :=

(
I5 ⊗ (P + P−1) B

BT I5 ⊗ (P 2 + P−2)

)
.

Then

X2
7 =

(
I5 ⊗ (P 2 + P−2 + 2I5) +BBT J25 −B

J25 − BT BTB + I5 ⊗ (P 1 + P−1 + 2I5)

)
.

Hence,

X2
7 +X7 =

(
6I25 + J25 J25

J25 6I25 + J25

)
= 6I50 + J50,

and once again, (1) holds.

3 The pattern ends

The obvious question is whether or not the adjacency matrix of the missing Moore
graph can be written in a similar form (assuming it exists). More precisely, we may
ask if X57 has the following form:

(
I325 ⊗ (P + P−1) B

BT I325 ⊗ (P 2 + P−2)

)
, (2)

where B is some 1625× 1625 0-1 matrix. In this section we show that the answer is
‘no’. Already we can see where things might go wrong. The row (and column) sums
of X57 must be 57. The block matrices in the upper left and bottom right corners
have row sums equal to 2, which means that B must have row sum 55. Each matrix
of the form P k has row sum equal to unity, so we can only have 55 copies of various
powers of P as the blocks of the rows of B. These would have to be augmented by
270 5× 5 zero matrices. But then one suspects intuitively that there are not enough
1’s to satisfy (1). The following result confirms our intuitions.
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Before stating our main result, we need some preliminaries. Suppose the adja-
cency matrix of Γk is written in the form

Xk =

(
A B
BT D

)
, (3)

where A and D are square symmetric matrices of sizes v1 and v2, respectively. The
matrices A and D may be viewed as the adjacency matrices of induced subgraphs ΓA

and ΓD, respectively, of Γk, and these subgraphs partition the vertices of Γk. Hence,

v1 + v2 = v = k2 + 1. (4)

Denote the row sums of A by (a1, . . . , av1), the row sums of B by (b1, . . . , bv1),
the column sums of B by (c1, . . . , cv2), and the row sums of D by (d1, . . . , dv2). By
the degree constraint,

ai + bi = k = cj + dj , (1 ≤ i ≤ v1, 1 ≤ j ≤ v2). (5)

Note that the row sums of A and D are just the degrees of the vertices of the
corresponding induced subgraphs ΓA and ΓD. If ΓA is regular of degree α and ΓD

is regular of degree δ, then we say that {A,D} is a biregular bipartition of Γk of
bidegree (α, δ).

Theorem 3.1. If k = 57, then the only possible biregular bipartition of Γk has equal
size parts and bidegree (32, 32).

Corollary 3.1. The adjacency matrix of Γ57 cannot be of the form (2) (which cor-
responds to a biregular bipartition of bidegree (2, 2)).

Proof. Suppose that the adjacency matrix of a Moore graph Γk is written in the
block form (3). By the Moore graph condition (1), we have

A2 + A+BBT = (k − 1)Iv1 + Jv1 (6)

AB +BD +B = Jv1,v2, (7)

BTB +D2 +D = (k − 1)Iv2 + Jv2 , (8)

where Jm,n is the m× n all-ones matrix.

For any matrix M , set

|M | :=
∑
i,j

Mij .

Then (6), (7), and (8) imply

|A2|+ |A|+ |BBT | = (k − 1)v1 + v21 (9)

|AB|+ |BD|+ |B| = v1v2 (10)

|BTB|+ |D2|+ |D| = (k − 1)v2 + v22. (11)
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Suppose {A,D} is a biregular bipartition of Γk of bidegree (α, δ). Then, for 0 ≤ i ≤
v1 and 0 ≤ j ≤ v2, we have ai = α, bi = k − α, cj = k − δ, and dj = δ. Hence, (9)
implies

α2 + α + (k − δ)2 = (k − 1) + v1.

But |B| = |BT |, so
(k − α)v1 = (k − δ)v2, (12)

whence we obtain

α2 + α + (k − α)2
(
v1
v2

)2

= (k − 1) + v1.

Substituting k = 57 into this equation and expanding (using (4)) gives

v1
3 − (

2α2 − 113α+ 9693
)
v1

2

+
(
6500α2 + 6500α+ 10198500

)
v1

− 10562500 (α + 8) (α− 7) = 0.

A computer check for 1 ≤ α ≤ 56 reveals that there is only one nontrivial integral
solution for v1, namely v1 = 1625, corresponding to α = δ = 32.

Observe that, if B were normal, (6) and (8) would imply A2+A = D2+D. Even
without the assumption of normality, we may still deduce a relationship between
A2 + A and D2 +D, as long as Γ57 admits a biregular bipartition. In what follows,
[M,N ] := MN −NM denotes the commutator of M and N .

Theorem 3.2. Suppose {A,D} is a biregular bipartition of Γ57. Then A2 + A and
D2 +D are cospectral.

Proof. First, we observe that A, D, BBT , and BTB are all real symmetric matrices,
hence diagonalizable by orthogonal transformations. Moreover, as B is square, BBT

and BTB are cospectral (see, e.g., [13], Section 2.5).

Let j be the all-ones vector of size 1625, and let

U := {u ∈ R
1625 : (u, j) = 0}

be the orthogonal complement of the subspace spanned by j. (Here (·, ·) denotes the
ordinary Euclidean inner product.) By Theorem 3.1, we have Aj = Dj = αj (where
α = 32). Hence, A2 + A and D2 +D both share α2 + α as an eigenvalue. As A and
D are symmetric, their remaining eigenvectors can be taken to lie in U .

Define M := (k − 1)I1625 + J1625. As A and D have constant row sums, [A, J ] =
[D, J ] = 0, and therefore [A2 + A, J ] = [D2 + D, J ] = 0. Hence, [A2 + A,M ] =
[D2 +D,M ] = 0. From (6) and (8) we may conclude that [A2 + A,BBT ] = [D2 +
D,BTB] = 0. It follows that A2+A and BBT are simultaneously diagonalizable, as
are, respectively, D2 +D and BTB.
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We have

(α2 + α)j = (A2 + A)j = Mj − BBT j = (k + 1624)j −BBT j.

If Au = μu with u ∈ U , then

(μ2 + μ)u = (A2 + A)u = Mu− BBTu = (k − 1)u−BBTu,

whence we conclude (plugging in k = 57 and α = 32) that

spec (BBT ) = {625, 56− μ2 − μ},
where μ runs over the eigenvalues of A associated to the eigenspaces orthogonal to j.
A similar argument shows that

spec (BTB) = {625, 56− ν2 − ν},
where ν runs over the eigenvalues of D associated to the eigenspaces orthogonal to j.
The theorem now follows.

Remark. The equation μ(μ + 1) = ν(ν + 1) has two solutions, namely, μ = ν and
μ = −(ν + 1), so, although it could be true, we cannot conclude from Theorem 3.2
that A and D are cospectral.

Theorem 3.2 relates the eigenvalues of A2 + A and D2 + D. The next theorem
allows us to relate some of their eigenvectors.

Theorem 3.3. Suppose {A,D} is a biregular bipartition of Γ57. Then

(A2 + A)B = B(D2 +D). (13)

Proof. By Theorem 3.1, JD = AJ = αJ . Now multiply (7) on the left by A and on
the right by D and subtract the two resulting equations.

Suppose Du = νu. Then (13) implies

(A2 + A)Bu = (ν2 + ν)Bu.

Hence, if u �∈ kerB, then Bu is an eigenvector of A2 + A with eigenvalue ν2 + ν.
Similarly, if Au = μu and u �∈ kerBT , then the transpose of (13) implies that BTu
is an eigenvector of D2 +D with eigenvalue μ2 + μ. (The kernel of B is nontrivial;
see Theorem 4.1 below.)

4 More constraints

In this section we see what can be said about general bipartitions {A,D} of Γ57 into
equal size parts (i.e., v1 = v2 = 1625), with or without the assumption of biregularity.
The primary tool used in this section is interlacing (see, e.g., [3], Section 2.5 or [7],
Chapter 9). For brevity, in what follows we write X for X57 and J for J1625.
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4.1 Rank constraints

Let rk(M) denote the rank of M .

Theorem 4.1. Suppose that X is written in the form (3) with v1 = v2 = 1625. Then

rk(B) ≤ 1522,

and rk(A) = rk(D) = 1625. In particular, B is singular, while A and D are both
invertible.

Proof. By ([3], Theorem 2.5.1 or [7], Theorem 9.1.1), the eigenvalues of A and D
interlace those of X. The spectrum of X is well-known (e.g., ([7], Section 10.2) or
[9]) to be (57, 71729, (−8)1520) (where the exponents denote the multiplicities). Let
the spectrum of A be denoted μ1 ≥ μ2 ≥ · · · ≥ μ1625. In this case, the interlacing
inequalities read

λi ≥ μi ≥ λ1625+i, 1 ≤ i ≤ 1625.

Hence,

57 ≥ μ1 ≥ 7, μ2 = · · · = μ105 = 7, and 7 ≥ μj ≥ −8 (j ≥ 106), (14)

and similarly for the eigenvalues of D.

Let E denote the eigenspace of A corresponding to μ = 7. Then

dimE ≥ 104.

Let U be the orthogonal complement of the all-ones vector j in R
1625. By the modular

law of subspaces,

dim(E ∩ U) = dimE + dimU − dim(E + U) ≥ 103.

Let u ∈ E ∩ U be normalized to unity. Then

Au = 7u, (u, u) = 1, and (u, j) = 0.

From (6), we get
(u,A2u) + (u,Au) + (u,BBTu) = k − 1,

which gives

49 + 7 + (u,BBTu) = 56 ⇒ |BTu|2 = 0 ⇒ BTu = 0.

It follows that dim kerBT ≥ 103, so rk(B) = rk(BT ) ≤ 1522.

Now, X has no zero eigenvalues and so is full rank. In particular, for every

nonzero vector w ∈ R
3250, Xw �= 0. Write w =

(
x
y

)
, where x, y ∈ R

1625. Then, if

x �= 0 or y �= 0, we must have
Ax+By �= 0.

Choose y ∈ kerB. Then Ax �= 0 for every x ∈ R
1625, which shows that A is full rank.

(A similar argument shows that D is full rank.)
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Corollary 4.1. Suppose that {A,D} is a biregular bipartition of Γ57. Then ΓA and
ΓD are connected subgraphs.

Proof. By Theorem 3.1, ΓA and ΓD are regular of degree 32. By (14), the largest
eigenvalue of A (and D) is 32 and the second largest eigenvalue of A (and D) is 7.
Now apply Proposition 1.3.8 in [3].

4.2 Inertia and spectral constraints

As A and D are invertible, their Schur complements exist:

X/A := D − BTA−1B and X/D := A−BD−1BT .

We have
detX = detA · det(X/A) = detD · det(X/D).

As A and D are integer matrices, their determinants are nonzero integers. This
implies that their Schur complements have nonzero rational determinants. In par-
ticular, X/A and X/D are both full rank.

For any matrix M , define the ordered triple

Inert(M) = (n+(M), n−(M), n0(M)),

where n+(M), n−(M), and n0(M) are the numbers of positive, negative, and zero
eigenvalues of M , respectively. By the Haynsworth inertia additivity formula [8],

Inert(X) = Inert(A) + Inert(X/A) = Inert(D) + Inert(X/D).

Theorem 4.2. Suppose that {A,D} is a biregular bipartition of Γ57. Then

[D,BTA−1B] = [A,BD−1BT ] = 0. (15)

Proof. If {A,D} is biregular then v1 = v2, so by (12), AJ = JA = JD = DJ = αJ .
Also, if β := k− α then BJ = JB = BTJ = JBT = βJ . (By Theorem 3.1, β = 25.)
Multiplying (7) on the left by BTA−1 gives

BTB +BTA−1BD +BTA−1B = α−1βJ.

Similarly, multiplying the transpose of (7) on the right by A−1B gives

BTB +DBTA−1B +BTA−1B = α−1βJ.

Subtracting these two equations yields the first equation in (15). The other equation
in (15) follows similarly.

Corollary 4.2. Suppose that {A,D} is a biregular bipartition of Γ57. Then

spec (X/A) = spec (D)− spec (BTA−1B)

spec (X/D) = spec (A)− spec (BD−1BT ),

where the notation means that the eigenvalues of the matrices on the left are differ-
ences of the eigenvalues of the matrices on the right.
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4.3 Average degree constraints

For any vector (x1, . . . , xv/2), define

〈x〉 = 1

v/2

v/2∑
i=1

xi.

Then, as |B| = |BT |, we have
〈b〉 = 〈c〉, (16)

which implies
〈a〉 = 〈d〉. (17)

That is, the average degree of ΓA must equal the average degree of ΓD.

Theorem 4.3. Suppose X is written in the form (3) with v1 = v2 = 1625. Then

24.5 ≤ 〈a〉 ≤ 32. (18)

Similarly, 25 ≤ 〈b〉 ≤ 32.5, 25 ≤ 〈c〉 ≤ 32.5, and 24.5 ≤ 〈d〉 ≤ 32.

Proof. Define

Y :=

(〈a〉 〈b〉
〈c〉 〈d〉

)
=

(〈a〉 〈b〉
〈b〉 〈a〉

)
.

By ([3], Corollary 2.5.4), the eigenvalues of Y must interlace the eigenvalues of X.
The eigenvalues of Y are easily seen to be 〈a〉 + 〈b〉 = k and 〈a〉 − 〈b〉 = 2〈a〉 − k.
Define

y1 := max{k, 2〈a〉 − k} and y2 := min{k, 2〈a〉 − k}.
Then the interlacing inequalities (λi ≥ yi ≥ λv−2+i) give

57 ≥ y1 ≥ −8 and 7 ≥ y2 ≥ −8.

This forces y1 = 57 and
7 ≥ 2〈a〉 − 57 ≥ −8,

from which (18) follows. The other claims follow from Equations (16) and (17).

We conclude that the average degrees of ΓA and ΓD are both approximately half of
the degree of Γ. Observe that this is consistent with Theorem 3.1.
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