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Abstract

Given a subset S of the non-identity elements of the dihedral group of
order 2m, is it possible to order the elements of S so that the partial
products are distinct? This is equivalent to the sequenceability of the
group when |S| = 2m−1 and so it is known that the answer is yes in this
case if and only if m > 4. We show that the answer is yes when |S| ≤ 9
and m is an odd prime other than 3, when |S| = 2m−2 and m is even or
prime, and when |S| = 2m−2 for many instances of the problem when m
is odd and composite. We also consider the problem in the more general
setting of arbitrary non-abelian groups and discuss connections between
this work and the concept of strong sequenceability.

1 Introduction

Let G be a multiplicatively-written group with identity element e and let g =
(g1, g2, . . . gk) be a sequence of elements of G\{e}. Define the partial product sequence
of g to be h = (h0, h1, h2, . . . , hk) where h0 = e and hi = g1g2 · · · gi for 1 ≤ i ≤ k.

The following conjecture, which generalises an earlier one of Alspach for cyclic
groups, is investigated in [11]:

Conjecture 1.1. Let G be an abelian group and let S ⊆ G\{e} such that the product
of all of the elements in S is not the identity. Then there exists an ordering of the
elements of S such that the elements in its partial product sequence are distinct.

Conjecture 1.1 is known to be true in the following cases:

• when |S| ≤ 9 [6, 7, 9],

• when |S| ≤ 10 and G is cyclic of prime order [18],
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• when |S| = |G| − 1 [16],

• when |S| = |G| − 2 and G is cyclic [9],

• when |S| = |G| − 3 and G is cyclic of prime order [18],

• when |G| ≤ 21 [9, 11],

• when |G| ≤ 25 and G is cyclic [7].

In [11] the question of dropping the requirement that G be abelian is raised and
quickly rejected upon consideration of a counterexample. The question of which
subsets of which non-abelian groups do satisfy the conditions remains, and that is
the question we study here.

Question 1. Let G be a finite group and let S be a subset of G \ {e} of size k such
that there is some ordering of the elements of S whose product is not the identity. Is
there an ordering of the elements of S such that the elements in its partial product
sequence are distinct?

In order to begin to address this, we introduce some notation and terminology.

Let G be a group of order n. As in the first paragraph, let g = (g1, g2, . . . , gk) be an
arrangement of elements of G\{e} with partial product sequence h = (h0, h1, h2, . . . ,
hk). Suppose the elements of g are distinct and let S = {g1, g2, . . . , gk}.

If the elements of h are all distinct then h is a basic directed S-terrace for G and g
is the associated S-sequencing of G. In the case k = n − 1 (and so S = G \ {e}),
h is a basic directed terrace for G and g is the associated sequencing of G. A group
with a sequencing is called sequenceable. When G has an S-sequencing, we also say
that S is sequenceable.

The study of sequencings in non-abelian groups originated in [16] and is surveyed
in [24]. Note that it is always possible to order the non-identity elements of a non-
abelian group to give a non-identity product.

The three non-abelian groups of orders 6 and 8 are not sequenceable [16], hence
the answer to Question 1 in the cases when S contains all of the non-identity elements
of such a group is no [11]. Keedwell’s Conjecture is that all other non-abelian groups
are sequenceable; that is, that the answer to Question 1 is yes when S contains all
of the non-identity elements of a non-abelian group of order at least 10.

In the next section, when cataloguing possible structures of sets for small k, we
see more instances of sets S for which the answer to Question 1 is no. In Section 3
we use the Non-Vanishing Corollary to Alon’s Combinatorial Nullenstatz to show
that the answer is always yes in dihedral groups of order 2m when m > 3 is prime
and |S| ≤ 9. In Sections 4 and 5 we show that the answer is yes in dihedral groups
of order 2m for k ≥ 2m− 2 when m > 4 is even or prime, and for many instances of
the question for composite m.

Alspach and Kalinowski, see [6], have asked a closely related question regarding
“strong sequenceability” of groups. The main difference to Question 1 is that the



M.A. OLLIS /AUSTRALAS. J. COMBIN. 78 (1) (2020), 35–60 37

product of all the elements of a successful ordering is permitted to be the identity (in
abelian groups one has no control over this value). We give the necessary definitions
and consider the implications of our work for the strong sequenceability question in
Section 6.

2 Small k, general groups

For related conjectures that are more limited in their claims or restricted to abelian
groups a case-based approach has been used prove them for small values of k, in-
cluding Conjecture 1.1 for k ≤ 9 [6, 7, 11]. In this section we start this process for
Question 1.

Theorem 2.1. The answer to Question 1 is yes for k ≤ 4, with the following two
exceptions:

• |S| = 4, with S = {x, x−1, y, z} and xyz = x−1zy = xzx−1y = e,

• |S| = 4, with S = {w, x, y, z} and wxy = wyz = wzx = xzy = e.

Proof. We consider potential S-sequencings and break into cases depending on what
might cause a given sequence not to be an S-sequencing. Those causes will be
subsequences of elements whose product is the identity. An added wrinkle compared
to the abelian case is that it is not immediately obvious when a set of words which
are the identity imply a contradiction. We use the group theory software package
GAP [15] to determine when a set of such words implies that either the subgroup
generated by the elements in question is trivial (which will imply a contradiction)
or abelian (in which case the problem is reduced to one already solved in [7]). We
frequently use that if sx = e for some string of group elements s then also xs = e.

When k ∈ {1, 2} the result is immediate. For k = 3 let S = {g1, g2, g3} ⊆ G \ {e}
and suppose that g1g2g3 �= e. If (g1, g2, g3) is not an S-sequencing then it must be
that either g2 = g−1

1 or g2 = g−1
3 . In the former case (g1, g3, g2) is an S-sequencing,

in the latter case (g2, g1, g3) is.

For the k = 4 case, we consider S of three forms: {x, x−1, y, y−1}, {x, x−1, y, z}
and {w, x, y, z} where any elements that are inverses are so indicated.

If S is of the first form then without loss of generality a sequence whose product
is not the identity is (x, y, x−1, y−1). This is an S-sequencing as the product of none
of the two- or three-element subsequences is the identity.

Next consider S of the form {x, x−1, y, z}. Conjugates of y or z by x cannot be
the identity. There must be an ordering of the form (x, y, z, x−1) whose product is
not the identity. If this is not an S-sequencing, then it must be the case that either
xyz = e or yzx−1 = e; without loss of generality assume xyz = e. Now consider the
ordering (x, y, x−1, z). The product of all four cannot be the identity as this implies
x−1 = e. The only way that this cannot be an S-sequencing is if yx−1z = e. Now
consider (x, z, x−1, y). If zx−1y = e then y and z commute, implying x = x−1. So
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for this not to be an S-sequencing it must be that xzx−1y = e, which gives the first
exception in the statement of the theorem.

Finally, consider S = {w, x, y, z}. There must be at least one sequence of all
4 elements whose product is not e, say (w, x, y, z). If this sequence is not an S-
sequencing, a subsequence of three elements must have product e (as there are no
mutually inverse elements). Assume without loss of generality that wxy = e. If
(y, z, x, w) is not an S-sequencing then yzx = e, zxw = e or yzxw = e. The first
case implies zxy = e and hence z = w and so can be discounted. In the second case,
consider (x, w, y, z). If xwy = e then y = z and if xwyz = e then y = e, so to fail
to be an S-sequencing we must have wyz = e. In this instance either (w, x, z, y)
is a successful S-sequencing or xzy = e, as wxz = e implies y = z and wxzy = e
implies z = e. Considering xzy = e leads to the second exception in the statement
of the theorem. In the third case, consider (z, w, y, x). If zwy = e then x = e and
if wyx = e then z = e, so (z, w, y, x) fails to be an S-sequencing only if zwyx = e.
In this instance (w, z, x, y) is an S-sequencing as wzx = e implies y = e, zxy = e
implies w = e, and wzxy = e implies z = e.

Both exceptions in Theorem 2.1 are necessary. To see this for the first, let

D2m = 〈u, v : um = e = v2, vu = um−1v〉
be the dihedral group of order 2m. Consider S = {u, u2, v, u2v} ⊆ D6. It is straight-
forward to check there is no S-sequencing.

For the second, let SL(2, 3) be the special linear group of 2 × 2 matrices with
determinant 1 over the field with three elements. Then there is no S-sequencing for

S =

{(
0 1
2 1

)
,

(
1 1
2 0

)
,

(
2 0
2 2

)
,

(
2 1
0 2

)}

in SL(2, 3).

These two exceptions, and the three with sizes 5 and 7 that come from the non-
sequenceable groups of orders 6 and 8, are not the only instances of sets S that are
not sequenceable. For example, in D8 the set

S = {u2, v, uv, u2v, u3v}
of size 5 does not have an S-sequencing.

As a further example, let Q8 be the quaternion group of order 8 and let z be its
unique involution. Then S = Q8 \ {e, z} is a set of size 6 with no sequencing.

3 Small k, dihedral groups

Before moving to the main method of the section, we give a general construction
that works in all dihedral groups and obviates the need for the most computationally
intensive case in Theorem 3.4, the main result of this section.
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Let Cm = 〈u〉, a normal cyclic subgroup of D2m of order m, and let Cmv be its
coset.

Lemma 3.1. If S ⊆ Cmv ⊆ D2m, then D2m has an S-sequencing.

Proof. Let S = {uaiv : 1 ≤ i ≤ k} with a1 > · · · > ak. Then the sequence
(ua1v, . . . , uakv) is an S-sequencing with partial products

(e, ua1v, ua1−a2 , ua1−a2+a3v, ua1−a2+a3−a4 , . . .).

The ordering of the ai guarantees that these elements are distinct.

We now pursue a new approach that applies specifically to dihedral groups of
order twice an odd prime. It uses Alon’s Non-Vanishing Corollary and we are able
answer Question 1 for these groups up to k = 9. Perhaps more importantly, it
embodies an approach that could plausibly be extended to all values of k in these
groups. This generalises a method developed for cyclic groups in [18].

The Non-Vanishing Corollary was introduced in [3]; for a short direct proof
see [23].

Theorem 3.2. (Non-Vanishing Corollary) Let F be an arbitrary field, and let
f = f(x1, x2, . . . , xk) be a polynomial in F [x1, x2, . . . , xk]. Suppose the degree deg(f)
of f is

∑k
i=1 γi, where each γi is a nonnegative integer, and suppose the coefficient

of
∏k

i=1 x
γi
i in f is nonzero. Then if A1, A2, . . . , Ak are subsets of F with |Ai| > γi,

there are a1 ∈ A1, . . . , ak ∈ Ak so that f(a1, a2, . . . , ak) �= 0.

For m prime, we will take F to be Zm, the integers modulo m considered as a
field.

For a given S, we need a polynomial that is nonzero exactly when we have a
sequencing of S. Suppose our set S ⊆ D2m \ {e} has r elements in Cm and s
elements in Cmv. Then the variables of the polynomial will be xi, for 1 ≤ i ≤ r,
and yj, for 1 ≤ j ≤ s. The xi correspond to elements of Cm in the sense that, in
the notation of the Non-Vanishing Corollary, we take Ai = {x : ux ∈ S}. Similarly,
the yj correspond to the elements of Cmv, using Aj = {y : uyv ∈ S}. If we can find
a monomial such that the exponent on each xi is less than |Ai| and the exponent
on each yj is less than |Aj|, then the Non-Vanishing Corollary will give a positive
answer to that instance of Question 1.

We look for a solution of a particular form, which varies slightly with the parity
of s. Before considering the general case, we look at a small example.

Example 3.3. Consider the case when |S| = 5 with three elements in Cm \ {e} and
two in Cmv. There are various ways in which we might arrange such elements to
look for a sequence with distinct partial products.

One potential form for a successful sequence is

(ux1, uy1v, ux2, ux3, uy2v),
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which has partial products

(e, ux1, ux1+y1v, ux1+y1−x2v, ux1+y1−x2−x3v, ux1+y1−x2−x3−y2).

We want to build a polynomial that is 0 exactly when the sequence fails to be
an S-sequencing. The elements in the sequence itself must be distinct, which is true
exactly when

(x2 − x1)(x3 − x1)(x3 − x2)(y2 − y1) �= 0.

The elements in the partial products must be distinct, which is true exactly when

(x1 + y1 − x2 − x3 − y2)(y1 − x2 − x3 − y2)(−x2 − x3) �= 0.

Note that here we have made use of the fact that e �∈ S. This implies that adjacent
elements of the partial products cannot be equal in any ordering of the elements of S,
and so we do not need to include factors in the polynomial to check for this.

Combining these we get the polynomial

(x2−x1)(x3−x1)(x3−x2)(y2−y1)(x1 +y1−x2−x3−y2)(y1−x2−x3−y2)(−x2−x3)

(which will be called π3,2 in the general method described in the remainder of this
section). This polynomial is nonzero if and only if our sequence has the elements it
must have and has distinct partial products.

To apply the Non-Vanishing Corollary we need a monomial that divides
x2
1x

2
2x

2
3y1y2 with a non-zero coefficient. The polynomial has degree 7, so this is

plausible to ask for. Indeed, there is one: x2
1x2x

2
3y1y2, which has coefficient 6.

Hence for prime m > 3 (to which 6 is coprime) every subset S of size 5 of D2m

that has three elements in Cm \ {e} and two in Cmv has an S-sequencing.

For the general case, we need to arrange the r elements of Cm and s elements of
Cmv. There are many potentially-successful ways to do this. For a given form, we
can get some crude information about how likely it is that it is possible to assign the
elements so that the partial products are distinct based on our knowledge of which
coset each of the partial products is in.

Looking at that list of partial products, a hard rule is that we cannot have more
than m of the products in Cm or in Cmv. Two softer rules that guided the choice
are to a) try to make the number of elements in the partial product in each coset
roughly equal to each other (which tends to lower the degree of the polynomial under
consideration compared to other options), and to b) mimic patterns that have been
successful in finding sequencings for dihedral groups (that is, the case r = m−1 and
s = m).

We first consider the case when s is odd. Let r = 2p + δ, for δ ∈ {0, 1}, and s =
2q + 1. In this case use the form

(ux1, ux2, . . . , uxp, uy1v, uy2v, . . . , uysv, uxp+1, uxp+2, . . . , uxr).
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The sequence of partial products is

(uz0, uz1, . . . , uzp, ut1v, uzp+1, ut2v, . . . , uzp+q , utq+1v, utq+2v, . . . , utq+p+δv).

Each zi and ti is a linear combination of the xi and yi with all coefficients ±1. In
particular,

zi =

⎧⎪⎨
⎪⎩

0 if i = 0

x1 + x2 + · · · + xi if 1 ≤ i ≤ p

zp + y1 − y2 + y3 − y4 + · · · + y2(i−p)−1 − y2(i−p) if p + 1 ≤ i ≤ p + q

and

ti =

{
zp + y1 − y2 + y3 − y4 + y5 + · · · − y2(i−1) + y2i−1 if i ≤ q + 1

tq+1 − xp+1 − xp+2 − · · · − xi−q+p−1 if q + 2 ≤ i ≤ p + q + 1 + δ.

The polynomial∏
1≤i<j≤2p+δ

(xj − xi)
∏

1≤i<j≤2q+1

(yj − yi)
∏

0≤i<j≤p+q

(zj − zi)
∏

1≤i<j≤p+q+1+δ

(tj − ti).

is not 0 if and only if the assignment to the variables x1, . . . , xr, y1, . . . , ys solves our
problem (we know that e �∈ S from the formulation of the problem and so xi �= 0 for
1 ≤ i ≤ r).

The Non-Vanishing Corollary is generally easier to apply when the polynomial in
question has a lower degree. To this end, we look to remove some redundant factors.

We know that e �∈ S, and so when uzi and uzi+1 appear as adjacent elements
we know that zi+1 = zi + xi+1 �= zi. When uzi and uzi+1 are not adjacent, we have
zi+1 = zi+yj−yj+1 for some j. As we do not allow yj = yj+1 we do not need to check
that zi+1 �= zi in this case either. Hence we may omit factors of the form (zi+1 − zi)
from the polynomial. Similar reasoning shows that we may also omit factors of the
form (ti+1 − ti).

Hence we define πr,s for r = 2p + δ, for δ ∈ {0, 1}, and s = 2q + 1 by:

πr,s =
∏

1≤i<j≤2p+δ

(xj − xi)
∏

1≤i<j≤2q+1

(yj − yi)
∏

0≤i<j≤p+q
j �=i+1

(zj − zi)
∏

1≤i<j≤p+q+1+δ
j �=i+1

(tj − ti).

This is the polynomial to which we shall apply the Non-Vanishing Corollary.

If s = 0 then the problem reduces to one in the cyclic group Cm, and is addressed
in [18]. If s ≥ 2 is even, let r = 2p+ δ, with δ ∈ {0, 1} as before, and set s = 2q + 2.
We look for a solution of the form

(ux1, ux2, . . . , uxp, uy1v, uy2v, . . . , uys−1v, uxp+1, uxp+2, . . . , uxr , uysv).

That is, we adjoin the additional element of Cmv to the end of the form used for
odd s. The sequence of partial products is

(uz0, uz1, . . . , uzp, ut1v, uzp+1, ut2v, . . . , uzp+q , utq+1v, utq+2v, . . . , utq+p+1+δv, uzp+q+1).
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Table 1: Some details of πr,s for |S| = 5

r deg(π) monomial coefficient prime factors
1 9 y31y

3
3y

3
4 4 2

2 6 x2y1y
2
2y

2
3 −3 3

3 7 x2
1x2x

2
3y1y2 6 2, 3

4 8 x3
2x

2
3x

3
4 1 −

Now, zi and ti have the same values as before with the addition that zp+q+1 =
tp+q+1+δ − y2q+2. If r �= 0, let πr,s be

(zp+q+1−zp+q)
∏

1≤i<j≤2p+δ

(xj−xi)
∏

1≤i<j≤2q+2

(yj−yi)
∏

0≤i<j≤p+q+1
j �=i+1

(zj−zi)
∏

1≤i<j≤p+q+1+δ
j �=i+1

(tj−ti)

Again πr,s(x1, . . . , xr, y1, . . . , ys) �= 0 if and only if x1, . . . , xr, y1, . . . , ys gives a solution
to the problem.

For completeness, note that when r = 0 and s is even we have zp+q+1 − zp+q =
ys−1−ys and hence we can omit the factor (zp+q+1−zp+q) in this case as the negative
of this factor is included in the second product. However, this case is covered by
Lemma 3.1 anyway.

As πr,s is homogeneous, any monomial where the exponent on each xi is less than r
and the exponent on each yj is less than s is suitable for use in the Non-Vanishing
Corollary.

Theorem 3.4. Let m > 3 be prime. If S ⊆ D2m \ {e} with |S| ≤ 9 then D2m has
an S-sequencing.

Proof. If |S| ≤ 4 the only possible way that S might not be sequenceable is via the
first exception of Theorem 2.1. In this case S has the form {ua, u−a, ubv, ua+bv} for
some a, b with 3a ≡ 0 (mod m). As m is prime and m > 3, this cannot occur.

For larger values of |S|, let r be the number of elements of S that are in Cm

and s = |S| − r the number that are in Cmv. If r = 0 then the result follows from
Lemma 3.1. If r = |S| then, as noted earlier, the result follows from the cyclic group
version of the conjecture which is proved for |S| ≤ 10 for prime m in [18].

For each r with 1 ≤ r ≤ |S|−1 we apply the method of Example 3.3. Tables 1–5
collect the pertinent information concerning the polynomial πr,s and one of its mono-
mials for |S| from 5 through to 9. In each case the coefficient is not congruent to 0
(mod m); the prime factors of the coefficients are included to make this immediately
evident.

Note that in the proof of Theorem 3.4 when |S| = 5 and r = 2 the coefficient is
not coprime to 3 (and neither is the coefficient on any other viable monomial). This
is necessarily the case as D6 is not sequenceable.
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Table 2: Some details of πr,s for |S| = 6

r deg(π) monomial coefficient prime factors
1 14 y22y

4
3y

4
4y

4
5 −4 2

2 12 x2y
3
1y

2
2y

3
3y

3
4 16 2

3 10 x2
1x

2
3y

2
1y

2
2y

2
3 −3 3

4 12 x3
1x

3
2x

2
3x

3
4y2 −4 2

5 14 x2
1x

4
2x

4
4x

4
5 −2 2

Table 3: Some details of πr,s for |S| = 7

r deg(π) monomial coefficient prime factors
1 22 y52y

5
3y

5
4y

5
5y

2
6 −16 2

2 17 x2y
4
2y

4
3y

4
4y

4
5 −4 2

3 16 x2
1x

2
3y

3
1y

3
2y

3
3y

3
4 32 2

4 16 x3
1x

3
2x

3
3x

3
4y2y

2
3 2 2

5 18 x4
1x

4
2x

4
4x

4
5y1y2 12 2, 3

6 21 x5
2x

5
3x4x

5
5x

5
6 −2 2

Table 4: Some details of πr,s for |S| = 8

r deg(π) monomial coefficient prime factors
1 30 y2y

6
3y

5
4y

6
5y

6
6y

6
7 −64 2

2 26 x2y
5
2y

5
3y

5
4y

5
5y

5
6 −72 2, 3

3 22 x2
1x

2
2x

2
3y

4
1y

4
3y

4
4y

4
5 −1 −

4 23 x2
1x

2
2x

3
3x

3
4y

3
1y

3
2y

3
3y

3
4 −48 2, 3

5 24 x4
1x

4
2x

3
3x

4
4x

4
5y2y

2
3 −3 3

6 26 x4
1x

5
2x

5
3x4x

5
5x

5
6y2 48 2, 3

7 30 x6
2x3x

5
4x

6
5x

6
6x

6
7 1 −

Table 5: Some details of πr,s for |S| = 9

r deg(π) monomial coefficient prime factors
1 41 y2y

7
3y

7
4y

7
5y

7
6y

6
7y

6
8 720 2, 3, 5

2 34 x2y
6
2y

6
3y

6
4y

6
5y

5
6y

4
7 −512 2

3 31 x1x
2
2x

2
3y

5
1y

5
2y

5
3y4y

5
5y

5
6 −384 2, 3

4 28 x3
1x

3
2x

3
3x

3
4y

4
1y2y

4
3y

3
4y

4
5 12 2, 3

5 29 x3
1x

4
2x

3
3x

4
4x

4
5y

3
1y

3
2y

3
3y

2
4 8 2

6 30 x1x
5
2x

5
3x

5
4x

5
5x

5
6y

2
1y

2
3 −16 2

7 35 x5
1x

6
2x

6
3x

5
5x

6
6x

6
7y2 64 2

8 40 x7
2x3x

7
4x

4
5x

7
6x

7
7x

7
8 −3 3
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In all cases in the proof of Theorem 3.4 there were many monomials with non-zero
coefficients. The ones in the tables were chosen to have only small prime factors.
Other monomials could have been used in combination, provided that their greatest
common divisor has only small prime factors. A more general theoretical approach
to solving the problem by finding monomial coefficients might take advantage of this.

Thus the answer to Question 1 is yes for |S| ≤ 9 in dihedral groups of order twice
a prime, with the exceptions noted for D6 and |S| ∈ {4, 5} in the previous section.
For D10 this answers the question completely. A deeper understanding of πr,s is a
conceivable route to removing (or weakening) this condition on S.

4 Large k

In this section we consider subsets of D2m\{e} of size at least 2m−2. An affirmative
answer to Question 1 for k = 2m − 1 and m ≥ 5 follows immediately from known
constructions:

Theorem 4.1. [19, 22] The dihedral group of order n is sequenceable if and only
if n ≥ 10.

Existing results also get us some of the way for the 2m− 2 case, via the general
result given in Lemma 4.2. In order to state that we need a notion closely related to
sequenceability.

Let a = (a1, a2, . . . , an−1) be a cyclic arrangement of the non-identity elements
of G (i.e. an−1 is considered to be adjacent to a1) and define b = (b1, b2, . . . , bn−1) by
bi = a−1

i ai+1 where the indices are considered modulo (n− 1) (so bn−1 = a−1
n−1a1). If

the elements of b are distinct then a is a directed rotational terrace for G and b is its
associated rotational sequencing. Clearly, the directed rotational terrace determines
the rotational sequencing; the reverse is also true.

(Note: there are several different but equivalent definitions in the literature; see,
for example, [2, 13, 20, 26]. We avoid the more common, but less descriptive, names
“R-sequencing” and “directed R-terrace” for these concepts to bypass confusion with
our S-sequencings and directed S-terraces.)

Lemma 4.2. Let G be a group of order n and let S ⊆ G \ {e} with |S| = n− 2. If
G has a rotational sequencing then it also has an S-sequencing.

Proof. Let S = G \ {e, x} for some x ∈ G. Let b = (b1, b2, . . . , bn−1) be a rotational
sequencing of G indexed so that bn−1 = x. The partial products of (b1, b2, . . . , bn−2)
are all distinct because otherwise there would be a repeat in the directed rotational
terrace associated with b. Hence (b1, b2, . . . , bn−2) is the required S-sequencing.

Bode and Harborth use this method (but not this terminology) to prove Con-
jecture 1.1 for the k = n − 2 case for cyclic groups of odd order. More generally,
the recent proof [5] of a conjecture of Friedlander, Gordon and Miller [13] similarly
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implies that Conjecture 1.1 holds for the k = n − 2 case for all abelian groups that
do not have a single involution.

For dihedral groups, this approach covers the cases where the group has order a
multiple of 4:

Theorem 4.3. Let m be even and S ⊆ D2m \ {e} with |S| = 2m− 2. Then D2m has
an S-sequencing.

Proof. The dihedral group D2m has a rotational sequencing if and only if m is
even [20]. Apply Lemma 4.2.

We also take our cue from Bode and Harborth’s methodology when m is odd.
Their proof that Conjecture 1.1 holds when k = n−2 for cyclic groups of even order
implicitly uses the following result:

Lemma 4.4. If G has a sequencing with first element x then G has an S-sequencing
for S = G \ {e, x}.

Proof. If the sequencing is (x, b2, . . . , bn−1) then (b2, . . . , bn−1) must be an S-sequen-
cing else we would have a repeat somewhere in the directed terrace associated with
the sequencing.

Therefore, for odd m, our task becomes to construct a sequencing for D2m with
first element x, for each possible choice of x. Noting that there is an automorphism
that maps one element to another in D2m (m still odd) if and only if the two el-
ements have the same order reduces the problem to finding sequencings that have
first elements of all possible orders. In order to follow this path, we introduce and
generalise some of the constructions of Isbell [19] for sequencings of dihedral groups.

To begin, we say a bit more about how sequencings function and introduce grace-
ful permutations.

Let G be a group of order n and let g = (g1, g2, . . . gn−1) be a sequencing
with basic directed terrace h = (h0, h1, h2, . . . , hn−1). Then any sequence h′ =
(h′

0, h
′
1, h

′
2, . . . , h

′
n−1) such that h′−1

i−1h
′
i = gi for each i is called a directed terrace

for G. The basic directed terrace h is a directed terrace and a sequence is a directed
terrace if and only if it is of the form xh = (xh0, xh1, xh2, . . . , xhn−1). Not requiring
that directed terraces be basic removes an unnecessary restriction when attempting
to build a sequencing via a directed terrace.

Given a directed terrace h = (h0, h1, h2, . . . , hn−1) for G there are two simple
ways to obtain further directed terraces [8]. First, we may reverse h to give the
directed terrace (hn−1, hn−2, . . . , h0). Second we may find the unique value of i such
that h−1

n−1h0 = gi and produce the directed terrace (hi+1, hi+2, . . . , hn−1, h0, . . . , hi).
Call this the translation of h. Thus from each directed terrace we can produce three
new directed terraces: its reverse, its translation and the reverse of its translation.

Let a = (a1, a2, . . . , an) be an arrangement of the integers {0, 1, . . . , n − 1}. If
the sequence of absolute differences b = (b1, b2, . . . , bn−1) defined by bi = |ai+1 − ai|
consists of the integers {1, 2, . . . , n− 1} then a is a graceful permutation. A graceful
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permutation is equivalent to a graceful labelling of a path with n vertices; see [14]
for more details about graceful labellings.

We shall need graceful permutations with various properties in our constructions
and will investigate them further in the next section. For now, the following example
has the constructions we use to prove the conjecture when m is prime.

Example 4.5. The sequence (0, 2�− 1, 1, 2�− 2, 2, 2�− 3, . . . , �− 1, �) is a graceful
permutation of length 2� and (0, 2�, 1, 2�− 1, 2, 2�− 2, . . . , �, �+ 2, �+ 1) is a graceful
permutation of length 2� + 1. These are known as the Walecki Constructions [4].

When � is odd, the sequence

(�, 0, 2�, 1, 2�− 1, . . . , (�− 1)/2, (3� + 1)/2,

(3�− 1)/2, (� + 1)/2, (3�− 3)/2, (� + 3)/2, . . . , � + 1, �− 1)

is a graceful permutation of length 2� + 1 [19]. The similar construction

(�;2�−1, 0, 2�−2, 1, . . . ,(3�−1)/2, (�−1)/2;(�+1)/2, (3�−3)/2, (�+3)/2, . . . ,�+1, �−1)

is also a graceful permutation, of length 2�. Between the semicolons it has the
absolute differences (2� − 1, 2� − 2, . . . , �), after the second semicolon it has the
absolute differences (�− 2, �− 3, . . . , 2) and the differences �− 1 and 1 appear at the
semicolons.

Isbell [19] gives three constructions for sequencings of dihedral groups D2m where
m is odd. In that paper the concern is to get one sequencing for each order. We
require more, so the following descriptions work with arbitrary sequences of integers
that have the properties on which Isbell relied (graceful permutations in the first two,
a slight generalisation thereof in the third) in place of the specific sequences used by
Isbell. Further, [19] only covers the m ≡ 3 (mod 4) cases for the second and third
constructions; in addition to these we give slight variations that include the m ≡ 1
(mod 4) cases (although we do not have the integer sequences required to make use
of the third construction).

Isbell’s first construction. Let m = 4� + 1. Let (a1, a2, . . . , a2�) be a graceful
permutation of length 2� with differences (b1, b2, . . . , b2�−1) (not absolute differences;
here bi = ai+1 − ai) and such that a2� = �. Consider the ai and bi modulo 4� + 1
rather than as integers, then the sequence

(ub1 , ub2, . . . , ub2�−1; u2�; v, uv, u2v, . . . , u2�−1v; u4�v;

u2�v, u2�+1v, . . . , u4�−1v; u2�+1; u−b2�−1, u−b2�−2 , . . . , u−b1)

is a sequencing for D8�+2 (where semi-colons are used to help indicate the pattern).
The associated directed terrace is
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(ua1 , ua2 , . . . , ua2� ; u3�; u3�v, u3�−1, u3�+1v, u3�−2, . . . , u4�−1v, u2�;

u2�−1v, u4�, u2�v, u4�−1, . . . , u3�+1, u3�−1v; u2�−2−a2�v, u2�−2−a2�−1v, . . . , u2�−2−a1v).

Isbell’s second construction. Let m = 4� + 3 with � odd. Let (a1, a2, . . . , a2�+1)
be a graceful permutation of length 2�+1 with differences (b1, b2, . . . , b2�) (again, not
absolute differences) and such that a1 = � and a2�+1 = �− 1. Consider the symbols
modulo 4� + 3 rather than as integers, then the sequence

(ub1 , ub2, . . . , ub2� ; u2�+2; v, uv, u2v, . . . , u2�v; u4�+2v;

u2�+1v, u2�+2v, . . . , u4�+1v; u2�+1; u−b1, u−b2, . . . , u−b2�)

is a sequencing for D8�+6. The associated directed terrace is

(ua1 , ua2 , . . . , ua2�+1 ; u3�+1; u3�+1v, u3�, u3�+2v, u3�−1, . . . , u2�+1, u4�+1v;

u4�+2, u2�v, u4�+1, u2�+1v, . . . , u3�+2, u3�v; ua1−1v, ua2−1v, . . . , ua2�+1−1v).

Although Isbell did not consider this case, essentially the same construction works for
m = 4� + 1 with � odd. Let (a1, a2, . . . , a2�) be a graceful permutation of length 2�
with differences (b1, b2, . . . , b2�−1) (not absolute differences) and such that a1 = �
and a2� = � − 1. Consider the symbols modulo 4� + 1 rather than as integers, then
the sequence

(ub1 , ub2, . . . , ub2�−1; u2�+1; v, uv, u2v, . . . , u2�−1v; u4�v;

u2�v, u2�+1v, . . . , u4�−1v; u2�; u−b1, u−b2, . . . , u−b2�−1)

is a sequencing for D8�+2. The associated directed terrace is

(ua1 , ua2 , . . . , ua2� ; u3�; u3�v, u3�−1, u3�+1v, u3�−2, . . . , u4�−1v, u2�;

u2�−1v, u4�, u2�v, u4�−1, . . . , u3�+1, u3�−1v; ua1−1v, ua2−1v, . . . , ua2�−1v).

The only reason that this construction does not work for even � is that the required
graceful permutation cannot exist [17]; we shall see more about this in the next
section.

For the third construction we need a new concept, closely related to those of ρ̂-
labellings (also known as nearly graceful labellings) and holey α-labellings described
in [14, Section 3.3]. Let a = (a1, a2, . . . , an) be an arrangement of n of the integers
{0, 1, . . . , n}. If the sequence of absolute differences b = (b1, b2, . . . , bn−1) defined
by bi = |ai+1 − ai| consists of the integers {1, 2, . . . , n− 1} then we call a a cracked
graceful permutation. The missing element of {0, 1, . . . , n} is called the crack.
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Example 4.6. For even values of � we give the cracked permutation of length 2�−
1 with crack � − 2 given by Isbell [19]. For � = 2, 4, 8 the sequences (3, 1, 2),
(5, 0, 6, 7, 3, 1, 4) and

(9, 5, 7, 12, 11, 2, 10, 4, 14, 3, 0, 13, 1, 15, 8)

respectively have the required properties.

For other � the first part of the construction varies as � varies modulo 6, always
having the form of an ad hoc sequence of elements followed by “zigzag” sequences of
length 6 in a regular pattern.

For � ≡ 0 (mod 6) it starts

�+1, �−3, �−1; �+4, �−6, �+3, �−5, �+2, �−4; �+7, �−9, �+6, �−8, �+5, �−7; . . .

For � ≡ 2 (mod 6) with � ≥ 14 it starts

� + 1, �− 6, � + 3, �− 1, �− 3, � + 2, �− 4, � + 4, �− 7, � + 5, �− 5;

� + 8, �− 10, � + 7, �− 9, � + 6, �− 8; � + 11, �− 13, � + 10, �− 12, � + 9, �− 11; . . .

For � ≡ 4 (mod 6) with � ≥ 10 it starts

� + 1, �− 1, �− 5, � + 3, �− 4, � + 2, �− 3;

� + 6, �− 8, � + 5, �− 7, � + 4, �− 6; � + 9, �− 11, � + 8, �− 10, � + 7, �− 9; . . .

In each case the last zigzag sequence of length 6 is

(3�− 4)/2, �/2, (3�− 6)/2, (� + 2)/2, (3�− 8)/2, (� + 4)/2.

At this point we have used the elements [�/2, (3�−4)/2]\{�, �−2} and generated the
differences [2, �−2]\{3}. The cracked graceful permutation concludes with (l−2)/2,
which gives the difference 3, followed by a long zigzag and two final ad hoc elements,

(3�− 2)/2, (�− 4)/2, 3�/2, (�− 6)/2, . . . , 0, 2�− 2; 2�− 1, �,

which gives the remaining elements and differences.

Isbell’s third construction. Let m = 4� + 1 with � even. Let (a1, a2, . . . , a2�−2)
be a cracked graceful permutation of length 2� − 2 with crack � − 4 and differ-
ences (b1, b2, . . . , b2�−3) (not absolute differences) and such that a1 = �−1 and a2�−2 =
�−2. Consider the symbols modulo 4�+1 rather than as integers, then the sequence

(ub1 , ub2, . . . , ub2�−3; u2�+1, u2�−2, u2�+2; v, uv, u2v, . . . , u2�−2v; u4�−2v, u4�−1, u4�v;

u2�−1v, u2�v, . . . , u4�−3v; u2�−1; u−b1, u−b2, . . . , u−b2�−3; u2�, u2�+3)
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is a sequencing for D8�+2. The associated directed terrace is

(ua1 , ua2 , . . . , ua2�−2 ; u3�−1, u�−4, u3�−2; u3�−2v, u3�−3, u3�−1v, u3�−4, . . . , u2�−1, u4�−3v;

u4�, u4�−2v, u4�−1; u2�−3v, u4�−2, u2�−2v, u4�−3, . . . , u3�, u3�−4v;

ua1−2v, ua2−2v, . . . , ua2�−2−2v; u3�−3v, u�−6v).

Let m = 4�+ 3 with � even. Let (a1, a2, . . . , a2�−1) be a cracked graceful permutation
of length 2� − 1 with crack � − 2 and differences (b1, b2, . . . , b2�−2) (not absolute
differences) and such that a1 = �+1 and a2�−1 = �. Consider the symbols modulo 4�+
3 rather than as integers, then the sequence

(ub1 , ub2, . . . , ub2�−2; u2�+2, u2�−1, u2�+3; v, uv, u2v, . . . , u2�−1v; u4�v, u4�+1, u4�+2v;

u2�v, u2�+1v, . . . , u4�−1v; u2�; u−b1, u−b2, . . . , u−b2�−2; u2�+1, u2�+4)

is a sequencing for D8�+6. The associated directed terrace is

(ua1 , ua2 , . . . , ua2�−1 ; u3�+2, u�−2, u3�+1; u3�+1v, u3�, u3�+2v, u3�−1, . . . , u4�v, u2�+1;

u2�−2v, u2�, u2�−1v; u4�+2, u2�v, u4�+1, u2�+1v, . . . , u3�+3, u3�−1v;

ua1−2v, ua2−2v, . . . , ua2�−1−2v; u3�v, u�−4v).

Similarly to the second construction, the parity restrictions on � are because otherwise
the required cracked graceful permutations do not exist. We prove this in the next
section.

Theorem 4.7. Let m be an odd prime. If S ⊆ D2m \ {e} with |S| = 2m − 2, then
D2m has an S-sequencing.

Proof. As m is prime each pair of elements of Cm \ {e} are equivalent by automor-
phisms, as are each pair of elements of Cmv. By Lemma 4.4 it is therefore sufficient
to find a sequencing with first element in Cm\{e} and a sequencing with first element
in Cmv.

Let g = (g1, g2, . . . g2m−1) be the sequencing for D2m constructed from Isbell’s
first construction when m ≡ 1 (mod 4), Isbell’s second construction when m ≡ 7
(mod 8) and Isbell’s third construction when m ≡ 3 (mod 8), in each case using the
(cracked) graceful permutations given in the examples. Let h = (h1, h2, . . . h2m) be
the associated directed terrace.

In all cases g1 = ub1 , where b1 is the first element of the differences of the (cracked)
graceful permutation. We have g1 ∈ Cm \ {e}.

Now consider the translation of h. When m = 4� + 1, the first element of the
associated sequencing of the reverse of the translation is u2�−3v. When m = 4�+3 for
even �, the first element of its associated sequencing is u4�−1v. When m = 4�+ 3 for
odd �, the first element of the associated sequencing of the reverse of the translation
is u4�v. Each is in Cmv.
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To move to composite values of m we need to vary the first element in the se-
quencings we construct. We do this by varying the (cracked) graceful permutations
used in Isbell’s constructions. Note that when m is odd that any two elements
of Cmv are conjugate and hence there is an automorphism of D2m mapping one to
the other. This means that the proof of Theorem 4.7 implies the existence of se-
quencings that start with any such elements for arbitrary odd m. We can therefore
focus on sequencings starting with elements of Cm \ {e}.

Lemma 4.8. Let (a1, a2, . . . , a2�) be a graceful permutation of length 2� with se-
quence of absolute differences (b1, b2, . . . , b2�−1). Let (c1, c2, . . . , c2�+1) be a graceful
permutation of length 2� + 1 with sequence of absolute differences (d1, d2, . . . , d2�).
Then

1. if a2� = �, then D8�+2 has a sequencing with first element ub1;

2. if a1 = � and a2� = � − 1, then D8�+2 has a sequencing with first element ub1

and a sequencing with first element ub2�−1;

3. if c1 = � and c2�+1 = �− 1, then D8�+6 has a sequencing with first element ud1

and a sequencing with first element ud2�.

Proof. Part 1 follows from Isbell’s first construction. Parts 2 and 3 follow from Isbell’s
second, the first of each clause directly and the second after taking the reverse.
The distinction between absolute differences (here) and differences (in the Isbell
constructions) is rendered moot as they give elements of D2m that have the same
order and hence are equivalent under automorphisms (as m is odd).

Lemma 4.9. Let (a1, a2, . . . , a2�−2) be a cracked graceful permutation of length 2�−2
with sequence of absolute differences (b1, b2, . . . , b2�−2) and crack �−4. Let (c1, c2, . . . ,
c2�−1) be a cracked graceful permutation of length 2� − 1 with sequence of absolute
differences (d1, d2, . . . , d2�−2) with crack �− 2. Then

1. if a1 = �−1 and a2�−2 = �−2, then D8�+2 has a sequencing with first element ub1

and a sequencing with first element u2�+3;

2. if c1 = � + 1 and c2�−1 = �, then D8�+6 has a sequencing with first element ud1

and a sequencing with first element u2�+4.

Proof. These follow from Isbell’s third construction and its reverse.

In the next section we investigate the existence of (cracked) graceful permutations
for use with these lemmas.
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5 Graceful Permutations

Our task in this section is to construct (cracked) graceful permutations that meet
the criteria for use in one of Isbell’s constructions and have endpoints and first/last
differences that give a variety of orders for the first element of the dihedral group
sequencing.

Given a graceful permutation a = (a1, a2, . . . , an) on the symbols {0, . . . , n − 1}
define the complement to be ā = (n− 1− a1, n− 1− a2, . . . , n− 1− an). This is also
a graceful permutation.

The most flexible result from the previous section is the first clause of Lemma 4.8,
which requires a graceful permutation with specified first difference and last element
and gives results for D8�+2. We work with this first. It is known that for a graceful
permutation of length n, a first difference of d, for 1 ≤ d ≤ n− 1, is possible except
when d = 2 and n ∈ {4, 5, 8} [18].

To make the most of these constructions, we need to be able to control the
elements at each end of a graceful permutation. Necessary conditions are known:

Theorem 5.1. [17] Let 0 ≤ x, y ≤ n−1 and x �= y. If there is a graceful permutation
of length n with first element x and last element y then

• |x− y| has the same parity as 
n/2�,
• |x− y| ≤ n/2,

• (n− 1)/2 ≤ x + y ≤ (3n− 3)/2.

Gvözdjak conjectures that these conditions are also sufficient [17]. Call this
Gvözdjak’s Conjecture. It is also known that for any x < n there is a graceful
sequence of length n that starts with x, see any of [10, 12, 17].

Suppose we write n = pq + r, where p, q ≥ 1 and r ≥ p/2. An “imperfect p-
twizzler terrace” g, which is a graceful permutation and here we shall call a p-twizzler
permutation, is one constructed as follows. Start with the Walecki Construction of
length n. Divide the first pq elements into q subsequences of length p. Reverse
each subsequence while keeping the order of the subsequences intact. Rearrange the
final r elements into a translate of a graceful permutation of length r such that the
absolute difference between the pqth and (pq+1)th elements of the sequence is r (the
condition that r ≥ p/2 and the fact that there is a graceful permutation of length r
that starts with any element are the crucial pieces that guarantee this is possible; a
full proof of the construction’s correctness can be found in [25]).

Example 5.2. Consider n = 2� = 22 with p = 4, q = 3 and r = 10. The following
is a p-twizzler permutation with these parameters where the last 10 elements are a
translate of (8, 2, 6, 1, 9, 0, 7, 4, 3, 5):

(20, 1, 21, 0; 18, 3, 19, 2; 16, 5, 17, 4; 14, 8, 12, 7, 15, 6, 13, 10, 9, 11)

(semicolons separate the subsequences).
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Theorem 5.3. Assume Gvözdjak’s Conjecture holds. Then there is a S-sequencing
for any S ⊆ D8�+2 \ {e} with |S| = 8�.

Proof. By Theorem 4.7, and the comment following it that notes that the proof goes
through for missing elements in Cmv regardless of the primality of 4�+1, it is sufficient
to consider the cases where 4�+1 is composite and the non-identity element x missing
from S has order o with 3 ≤ o ≤ 4� + 1. We construct a sequencing for D8�+2 that
has first element x, from which the result follows by Lemma 4.4.

Our general method does not work for l = 2 and o = 9, so we give a sequencing
for D18 that covers this case first:

u, u8v, u7, u3v, u6v, u4, u4v, uv, v, u6, u2v, u2, u5, u5v, u8, u3, u7v.

The associated directed terrace is:

e, u, v, u2v, u8, u5v, uv, u6, u7v, u7, u4, u6v, u4v, u8v, u3, u2, u5, u3v.

For the general case, we want d such that d ∈ [� + 1, 2� − 1] and d has order o
in Z4�+1. If o < 4� + 1 then set d = (4� + 1)(o− 1)/2o. If o = 4� + 1 and � is a not
power of 2, then set d to be the unique power of 2 in [�+ 1, 2�− 1]. If o = 4�+ 1 and
� is a power of 2, then let π be the smallest odd prime that does not divide 4� + 1.
As π < 2� (since � �= 2), there is a unique element of the form 2sπ in [� + 1, 2�− 1];
take this to be d.

We construct a p-twizzler permutation of length 2� = pq + r with p = 2�− d + 1
and q = 1. It shall have first difference d and final element in {�− 1, �}.

Suppose p is even. If Gvözdjak’s Conjecture holds, then there is a graceful per-
mutation g of length r = 2�−p−1 with first element 2�−3p/2−1 and final element
in {� − 1 − p/2, � − p/2}. Add p/2 to each element to get a translate with first
element 2�−p−1 and last element in {�−1, �}. As we are reversing only one section
of the Walecki Construction, we require |(2� − p − 1) − 0| = r for the p-twizzler
construction to be valid, and this is the case. The result now follows by the first part
of Lemma 4.8, possibly after taking the complement.

The odd case is similar.

While the ability to vary q in the twizzler construction was not used in this proof,
we can use this flexibility to exploit that it is known Gvözdjak’s Conjecture holds
for n ≤ 20 [17]:

Theorem 5.4. Suppose that 2� can be written 2� = pq + r with q ≥ 1 and p/2 ≤
r ≤ 20. Then there is an S-sequencing for any S ⊆ D8�+2 \ {e}, where |S| = 8� and
the missing non-identity element of S has the same order as u2�−p+1.

Proof. The method is exactly as in the proof of Theorem 5.3, except we do not
insist that q = 1. In this more general setting, we need the graceful permutation
of length r = 2� − pq to have final element in {� − 1 − pq/2, � − pq/2} and an
appropriate first element. As Gvözdjak’s Conjecture holds for r, we have complete
choice of possible first element.
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Theorem 5.4 implies D8�+2 has an S-sequencing for all S ⊆ D8�+2\{e} with |S| =
8� for many values of �, including all � < 35 for which 4� + 1 is composite and

� ∈ {36, 40, 42, 46, 51, 52, 54, 55, 63, 72, 75, 82, 85, 90, 94}.
It gives partial results for many more. The smallest value of � for which 4� + 1 is
composite and Theorem 5.4 adds no new S-sequencings is 420.

When considering Isbell’s second and third constructions, we need (cracked)
graceful permutations with both first and last element specified. Further, the first
and last elements are both near the center of the possible values. Twizzler permu-
tations, and other similar extension constructions in the literature, tend to push at
least one of the values of the endpoints closer to an extreme and so are not very
helpful for the current situation. We are able to make some partial progress by
introducing a new extension construction for graceful permutations.

Let c = (c1, . . . , c2p) be a graceful permutation of even length 2p on [0, 2p − 1].
Say that c is bipartite if the odd-index elements {c1, c3, . . . , c2p−1} are either all at
most p−1 or all at least p. That is, a bipartite graceful permutation has alternating
“small” and “large” elements.

In the more general theory of graceful labelings of graphs, bipartite graceful
labelings are often known as α-labelings, see [14].

Lemma 5.5. [21] For any x ∈ [0, p − 1] there is a bipartite graceful permuta-
tion (c1, . . . , c2p) with c1 = x. If (c1, . . . , c2p) is a bipartite graceful permutation of
length 2p with c1 < p, then c2p = c1 + p.

We can now give the main construction.

Theorem 5.6. Let a = (a1, . . . , aq) be a graceful permutation of length q. Suppose
a has adjacent elements x and y with x < y < 2(y−x) = p. Then there is a graceful
permutation of length 2p + q with first element a1 + p and last element aq + p.

Proof. Let c = (c1, . . . , c2p) be a bipartite graceful permutation with c1 = y. This
exists by Lemma 5.5. Also by that lemma, we know that c2p = y + p.

Without loss of generality, assume that ai = x and ai+1 = y (if x and y appear
in the other order, replace a with its reverse and then reverse the resulting graceful
permutation once the construction is complete). Consider the sequence

(a1 + p, . . . , ai + p, c1, c2 + q, . . . , c2p−1, c2p + q, ai+1 + p, . . . , aq + p).

That is, the first i elements of a with p added to each, followed by c with q added
to each element in an even position within c, followed by the last q − i elements of
a with p added to each. We have

{c1, c3, . . . , c2p−1} = [0, p− 1], {a1 + p, . . . , aq + p} = [p, p + q − 1]

and
{c2 + q, c4 + q, . . . , c2p + q} = [p + q, 2p + q − 1],
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so the sequence has the required elements.

As a is a graceful permutation, we have the absolute differences [1, q−1]\{y−x}
and as c is a bipartite graceful permutation, we have the absolute differences [q +
1, 2p + q − 1]. Two additional absolute differences are given at the joins:

|c1 − (ai + p)| = (x + 2(y − x)) − y = y − x

and
|(ai+1 + p) − (c2p + q)| = (y + p + q) − (y + p) = q.

Hence our sequence is a graceful permutation. Its first element is a1 + p and its last
element is aq + p.

Call the graceful permutation obtained from a graceful permutation a and a
bipartite graceful permutation c via the method of Theorem 5.6’s proof the insertion
of c into a at i.

Example 5.7. The insertion of

c = (4, 11, 5, 10, 6, 9, 7, 8, 0, 15, 1, 14, 2, 13, 3, 12)

into a = (1, 6, 0, 4, 3, 5, 2) at i = 3 (where x = 0, y = 4, 2(y − x) = p = 8 and q = 7)
is

(9, 14, 8, 4, 18, 5, 17, 6, 16, 7, 15, 0, 22, 1, 21, 2, 20, 3, 19, 12, 11, 13, 10),

a graceful permutation of length 23.

We can often guarantee options to choose as x and y in Theorem 5.6:

Lemma 5.8. Let a be a graceful permutation of length q. There is a valid insertion
point in at least one of a and its complement for a bipartite graceful permutation of
length 2p whenever p is even and 2(q − 1)/3 < p < 2q.

Proof. The conditions that p be even and p < 2q guarantee that p/2 is an absolute
difference of a. Let p/2 = y − x for some adjacent elements x, y of a.

If q ≤ p then 2(y − x) ≥ q > y and the conditions of Theorem 5.6 are met.
Similarly, if q > p > y then the conditions are met, so assume that q > p and p ≤ y.
In the complement of a there are adjacent elements y′ = q− 1−x and x′ = q− 1− y
with y′ − x′ = p/2. Now, y′ = q− 1 − y + p/2 as y− p/2 = x. Using 2(q− 1)/3 < p,
we see that y′ < 2p− y and so y′ < p. We may therefore apply Theorem 5.6 to the
complement of a.

We often care about the end-points of graceful permutations. Taking the com-
plement of a graceful permutation, inserting a bipartite graceful permutation of
length 2p, and taking the complement of the result gives the same end-points as
if we had directly inserted a bipartite graceful permutation of length 2p into the
original graceful permutation.



M.A. OLLIS /AUSTRALAS. J. COMBIN. 78 (1) (2020), 35–60 55

Lemma 5.9. Let n ≡ 3 (mod 4), with n > 3. There is a graceful permutation
of length n with first element (n − 1)/2, last element (n − 3)/2, and first absolute
difference 3.

Proof. We use induction. For base cases we require n ∈ {7, 11, 15, 19}. The con-
struction in Example 4.5 covers the case n = 7. Here are graceful permutations for
the remaining base cases:

(5, 8, 0, 10, 1, 6, 7, 3, 9, 2, 4),
(7, 10, 0, 14, 1, 13, 2, 8, 3, 12, 4, 11, 9, 5, 6),

(9, 12, 0, 18, 1, 17, 2, 16, 3, 7, 13, 5, 14, 4, 15, 8, 6, 11, 10).

Now consider n ≥ 23 and write n = 3q − 2, n = 3q + 2 or 3q + 6 according
to its congruence class modulo 3 and let p = (n − q)/2. As n ≡ 3 (mod 4), we
have 3q ≡ 1 (mod 4) and so q ≡ 3 (mod 4). As n ≥ 23 we have that q ≥ 7, that
2(q − 1)/3 < p < 2q, and that p/2 �= 3.

By the inductive hypothesis, we have a bipartite graceful permutation into a
graceful permutation of length q with first element (q − 1)/2, last element (q −
3)/2, and first absolute difference 3 into which we can insert a bipartite graceful
permutation of length 2p to get a graceful permutation of length n with first element

(q − 1)/2 + p = (q − 1)/2 + (n− q)/2 = (n− 1)/2,

last element

(q − 3)/2 + p = (q − 3)/2 + (n− q)/2 = (n− 3)/2,

and first absolute difference 3.

Combining Lemma 5.9 with Lemma 4.8 we can prove the following result about
the existence of S-sequencings.

Theorem 5.10. Let � be an odd multiple of 3. Let S ⊆ D8�+6 \{e} with |S| = 8�+ 4
and x the non-identity element not in S. If x has order (4� + 3)/3 then D8�+6 has
an S-sequencing.

Proof. We use the third clause of Lemma 4.8 and so are looking to construct graceful
permutations of length 2�+1 with first element � and final element �−1. Lemma 5.9
gives us such a graceful permutation with first absolute difference 3. Hence the
resulting sequencing will have first element with order (4� + 3)/3.

More generally, the method of Lemma 5.9 and Theorem 5.10 can be used to
provide sequencings for D8�+6 \ {e, x} where x has order (4� + 3)/o rather than
(4�+3)/3. The combination of the construction from Example 4.5 with the insertion
method gives sequencings for D8�+6 that start with x for many values of �. However,
to get a complete result along the lines of Theorem 5.10 requires increasingly many
base cases as o grows.

For cracked graceful permutations the same proof as Gvözdjak’s for part 1 of
Theorem 5.1 applies:
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Lemma 5.11. Let 0 ≤ x, y ≤ n and x �= y. If there is a cracked graceful permutation
of length n with first element x and last element y then |x − y| has the same parity
as 
n/2�.

Proof. Let (a1, a2, . . . , an), where a1 = x and an = y, be a cracked graceful permu-
tation. Then

|x− y| ≡ |a1 − a2| + |a2 − a3| + · · · + |an−1 − an|
≡ n(n− 1)/2 ≡ 
n/2� (mod 2)

as required.

This result, along with Theorem 5.1, implies that neither Isbell’s second nor third
constructions can successfully cover all dihedral groups of the form D8�+6 alone.

It is possible to extend the insertion method to cracked graceful permutations and
then employ a similar approach to that of Theorem 5.10. However, we are lacking a
graceful permutation that would get us started in the case m ≡ 3 (mod 8). Rather
than pursue this route here, we use the specific construction of the cracked graceful
permutation in Example 4.6, which allows a more efficient way to cover some small
initial elements of sequencings of D8�+6.

Theorem 5.12. For d ∈ {5, 6, 7} and even � > 2, there is a cracked graceful permu-
tation of length 2� − 1 with crack � − 2 that starts with � + 1, ends with � and has
first absolute difference d, except when � = 4 and d ∈ {6, 7}.

Proof. The main method of proof is to take the Isbell construction given in Exam-
ple 4.6 and replace the start of the sequence with an alternative subsequence that
uses the same elements and gives the same differences.

When � ≡ 0 (mod 6), for any t < �/6 the first 6t + 3 elements of Isbell’s cracked
graceful permutation are a translate of an arrangement of the elements [−3t −
2, 3t+ 2] \ {−1, 1}, starting with 2 and ending with −3t, and having absolute differ-
ences [2, 6t + 4] \ {3}.

When � ≡ 2 (mod 6) with � ≥ 14, for any t < (�− 8)/6 the first 6t+ 11 elements
of Isbell’s cracked graceful permutation are a translate of an arrangement of the
elements [−3t − 6, 3t + 6] \ {−1, 1}, starting with 2 and ending with −3t − 4, and
having absolute differences [2, 6t + 12] \ {3}.

When � ≡ 4 (mod 6) with � ≥ 10, for any t < (�− 4)/6 the first 6t + 7 elements
of Isbell’s cracked graceful permutation are a translate of an arrangement of the
elements [−3t − 4, 3t + 4] \ {−1, 1}, starting with 2 and ending with −3t − 2, and
having absolute differences [2, 6t + 8] \ {3}.

In each case we may substitute an alternative sequence with these properties
to obtain an alternative cracked graceful permutation. Table 6 gives the sequences
required to prove the result, except when (�, d) is one of

(4, 5), (6, 5), (6, 6), (6, 7), (8, 5), (8, 6), (8, 7), (10, 6), (10, 7), (12, 5), (14, 6), (16, 7).
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Table 6: Sequences for use in the proof of Lemma 5.12

� (mod 6) d t sequence
0 5 2 (2,−3, 3,−4, 7,−7, 8,−8, 5,−5, 4, 0,−2, 6,−6)

6 1 (2,−4, 5,−5, 3,−2, 0, 4,−3)
7 1 (2,−5, 5,−4, 4, 0,−2, 3,−3)

2 5 0 (2,−3, 3,−6, 6,−5, 5,−2, 0, 4,−4)
6 1 (2,−4, 3,−2, 0, 4,−6, 7,−8, 8,−9, 9,−5, 6,−3, 5,−7)
7 0 (2,−5, 5,−6, 6,−3, 3,−2, 0, 4,−4)

4 5 0 (2,−3, 3,−4, 4, 0,−2)
6 1 (2,−4, 3,−2, 0, 4,−7, 7,−6, 6,−3, 5,−5)
7 2 (2,−5, 4, 0,−2, 3,−3, 5,−7, 6,−4, 7,−10, 10,−9, 9,−6, 8,−8)

Cracked graceful permutations with the stated properties for these parameters are
given in Table 7.

This immediately implies:

Corollary 5.13. Let � be even. Let S ⊆ D8�+6 \ {e} with |S| = 8� + 4 and x the
non-identity element not in S. If x has order (4� + 3)/d for d ∈ {3, 5, 7} then D8�+6

has an S-sequencing.

6 Strong Sequenceability

As usual, let g = (g1, g2, . . . , gk) be an arrangement of elements of G\{e} with partial
product sequence h = (h0, h1, h2, . . . , hk). Suppose the elements of g are distinct and
let S = {g1, g2, . . . , gk}.

If the elements (h1, . . . , hk) are all distinct with hk = h0 = e then h is a rotational
directed S-terrace for G and g is the associated rotational S-sequencing of G. If
|G| = n and k = n− 1 we get a rotational directed terrace and associated rotational
sequencing of G as in Section 4.

In [6] the following notion is introduced: A group is strongly sequenceable if for
all S ⊆ G \ {e} there is either an S-sequencing or a rotational S-sequencing (or
both). In an abelian group the element hk is independent of the ordering and so we
cannot have both an S-sequencing and a rotational S-sequencing. Thus for abelian
groups, the property of being strongly sequenceable indicates that all subsets have
the sequenceability properties we might wish to use in combinatorial constructions.

Alspach and Kalinowski, see [6], have posed the problem of determining which
groups are strongly sequenceable. As observed in [6], D6 has neither a sequencing
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Table 7: Some cracked graceful permutations

� d cracked graceful permutation
4 5 (5, 0, 1, 7, 3, 6, 4)
6 5 (7, 2, 5, 11, 3, 1, 8, 9, 0, 10, 6)

6 (7, 1, 5, 10, 0, 3, 11, 2, 9, 8, 6)
7 (7, 0, 2, 10, 1, 11, 5, 9, 8, 3, 6)

8 5 (9, 4, 12, 3, 13, 14, 2, 15, 1, 5, 11, 0, 7, 10, 8)
6 (9, 3, 10, 14, 2, 1, 15, 5, 7, 12, 4, 13, 0, 11, 8)
7 (9, 2, 13, 11, 7, 1, 14, 0, 10, 15, 3, 12, 4, 5, 8)

10 6 (11, 5, 13, 15, 0, 1, 19, 2, 18, 4, 16, 3, 12, 9, 14, 7, 17, 6, 10)
7 (11, 4, 13, 15, 0, 5, 6, 12, 9, 17, 7, 18, 1, 19, 3, 16, 2, 14, 10)

12 5 (13, 8, 15, 17, 0, 23, 1, 2, 22, 3, 21, 5, 19, 4, 16, 6, 14, 11, 7, 20, 9, 18, 12)
14 6 (15, 9, 17, 19, 1, 27, 2, 26, 3, 25, 4, 0, 20,

10, 21, 7, 16, 23, 8, 11, 24, 5, 22, 6, 18, 13, 14)
16 7 (17, 10, 19, 21, 1, 31, 2, 30, 3, 29, 4, 28, 5, 27, 6,

0, 18, 15, 11, 25, 20, 8, 23, 7, 26, 9, 22, 12, 13, 24, 16)

nor a rotational sequencing. The same is true for the quaternion group Q8 [13, 16].
Hence we have:

Theorem 6.1. If G has a subgroup isomorphic to either D6 or Q8, then G is not
strongly sequenceable.

The other sets S that do not have S-sequencings discussed in Section 2 either have
rotational S-sequencings or do not imply that any further groups are not strongly
sequenceable. It is known that all abelian groups of order at most 21 and all cyclic
groups of order at most 25 are strongly sequenceable [7, 11]. By the remark at the
end of Section 3 we can add D10 to this list.

In non-abelian groups it is possible for a subset to have both a sequencing and
a rotational sequencing. For example, the dihedral groups of order a multiple of 4
have both sequencings and rotational sequencings [19, 20, 22]. For a combinatorial
construction we might require, for example, that a subset that has an ordering with
product e has a rotational sequencing; strong sequenceability of the group does not
guarantee this for us in the non-abelian setting.

We therefore strengthen the concept of strong sequenceability: a group G is very
strongly sequenceable if every subset S ⊆ G \ {e} with an ordering of the elements
whose product is not the identity has a sequencing and every subset T ⊆ G \ {e}
with an ordering whose product is the identity has a rotational sequencing.

An abelian group is very strongly sequenceable if and only if it is strongly se-
quenceable. For non-abelian groups, very strong sequenceability is more restrictive.
For example, D8 is not sequenceable (and there is an ordering of its non-identity
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elements whose product is not the identity) and so is not very strongly sequenceable.
On the other hand, a computer search shows that D8 is strongly sequenceable.
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