On the number of rainbow solutions of linear equations in $\mathbb{Z} / p \mathbb{Z}$

Mario Huicochea
CONACyT/UAZ
Zacatecas
Mexico
dym@cimat.mx

Abstract

Let $n_{1}, n_{2}, n_{3}, m \in \mathbb{Z}$ and p be a prime, and write $b:=m+p \mathbb{Z}$ and $a_{i}:=$ $n_{i}+p \mathbb{Z}$ for each $i \in\{1,2,3\}$. Given a partition of $\mathbb{Z} / p \mathbb{Z}$ into nonempty subsets $\mathbb{Z} / p \mathbb{Z}=A_{1} \cup A_{2} \cup A_{3}$, we say that $\left(s_{1}, s_{2}, s_{3}\right)$ is a rainbow solution of $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}-b=0$ if it is a solution of this equation and $A_{i} \cap\left\{s_{1}, s_{2}, s_{3}\right\} \neq \emptyset$ for each $i \in\{1,2,3\}$; we denote by R the family of rainbow solutions of $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}-b=0$. The first result of this paper is that if $a_{1} a_{2} a_{3} \neq 0+p \mathbb{Z}$ and the coefficients a_{1}, a_{2}, a_{3} are not equal, then $|R|=\Omega\left(\min \left\{\left|A_{1}\right|,\left|A_{2}\right|,\left|A_{3}\right|\right\}\right)$ where the constants are absolute. The second result of this paper is that if $\left|A_{1}\right|,\left|A_{2}\right|,\left|A_{3}\right|$ are almost equal, $n_{1} n_{2} n_{3} \neq 0=m$ and $p \gg 0$, then $|R|=\Omega\left(\min \left\{\left|A_{1}\right|,\left|A_{2}\right|,\left|A_{3}\right|\right\}^{2}\right)$ where the constants depend only on n_{1}, n_{2}, n_{3}.

1 Introduction

In this paper $\mathbb{R}, \mathbb{Z}, \mathbb{Z}^{+}, \mathbb{Z}_{0}^{+}$denote the set of real numbers, integers, positive integers and nonnegative integers, respectively. Let X be a set and $n \in \mathbb{Z}^{+}$. An n-colouring of X is a surjective function $\chi: X \rightarrow\{1,2, \ldots, n\}$; thus an n-colouring is identified with the partition into n nonempty subsets $X=\bigcup_{i=1}^{n} \chi^{-1}(i)$. The sets $\chi^{-1}(1), \chi^{-1}(2), \ldots, \chi^{-1}(n)$ are known as chromatic classes. A subset Y of X is rainbow with respect to χ if it intersects each chromatic class. If it is clear with respect to which colouring we are talking about, then we simply say that Y is rainbow. We say that a subset Y of X is monochromatic with respect to χ if Y is contained in a chromatic class.

The study of rainbow objects has had a very long history. However, the study of rainbow solutions of linear equations $\sum_{i=1}^{n} a_{i} x_{i}=b$ given an n-colouring of a commutative group $\chi: G \rightarrow\{1,2, \ldots, n\}$ is more recent, see $[1-6,8,9,11-13,15-17]$. In this paper, we will work with $\mathbb{Z} / p \mathbb{Z}$ which is the set of congruence classes modulo a prime p with its usual field structure; we write $(\mathbb{Z} / p \mathbb{Z})^{*}:=\mathbb{Z} / p \mathbb{Z} \backslash\{0+p \mathbb{Z}\}$. For any
$a_{1}, a_{2}, a_{3} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and $b \in \mathbb{Z} / p \mathbb{Z}$, we denote the equation $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}-b=0$ (where the variables are $\left.x_{1}, x_{2}, x_{3}\right)$ by eq $\left(a_{1}, a_{2}, a_{3}, b\right)$. For any colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow$ $\{1,2,3\}$, we say that a solution $\left(s_{1}, s_{2}, s_{3}\right)$ of eq $\left(a_{1}, a_{2}, a_{3}, b\right)$ is rainbow (respectively, monochromatic) with respect to χ, if the set $\left\{s_{1}, s_{2}, s_{3}\right\}$ is rainbow (respectively, monochromatic) with respect to χ. The family of rainbow (respectively, monochromatic) solutions (s_{1}, s_{2}, s_{3}) (with respect to χ) of the equation eq $\left(a_{1}, a_{2}, a_{3}, b\right)$ will be denoted by $R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)$ (respectively, $\left.M\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)\right)$. The study of which $a_{1}, a_{2}, a_{3} \in(\mathbb{Z} / p \mathbb{Z})^{*}, b \in \mathbb{Z} / p \mathbb{Z}$ and colourings $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$ satisfy $R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right) \neq \emptyset$ can be found in [8], [11], [15]. In particular, it is proven in [8, Thmáb] that if a_{1}, a_{2}, a_{3} are not equal and $\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|>1$, then $R\left(\operatorname{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right) \neq \emptyset$. Another step in the study of the set of rainbow solutions of a given linear equation eq $\left(a_{1}, a_{2}, a_{3}, b\right)$ was to bound its size. Nonetheless, there are very few results about $\left|R\left(\operatorname{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)\right|$. More specifically, Balandraud in [2, Prop. 1] and Montejano and Serra in [17, Prop. 11] found lower bounds of $|R(\mathrm{eq}(1+p \mathbb{Z}, 1+p \mathbb{Z},-2+p \mathbb{Z}, 0+p \mathbb{Z}), \chi)|$ for some colourings χ; also, some relations between $M\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)$ and $R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)$ were found by Cameron, Cilleruelo and Serra in [3].

The first result of this paper provides a nontrivial lower bound of $\left|R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)\right|$ whenever a_{1}, a_{2}, a_{3} are not equal.

Theorem 1.1. Let p be a prime, $c_{1}:=31 \cdot 10^{-1550}$, $a_{1}, a_{2}, a_{3} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and $b \in \mathbb{Z} / p \mathbb{Z}$. Assume that a_{1}, a_{2}, a_{3} are not equal. Then, for any colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$, we have

$$
\left|R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)\right| \geq \min \left\{c_{1} p-\frac{6}{5}, \frac{1}{13} \cdot \min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|-3\right\} .
$$

In particular, since $\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right| \leq \frac{p}{3}$,

$$
\left|R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)\right| \geq 3 c_{1} \min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|-\frac{6}{5}
$$

To explain the exclusion of the case $a_{1}=a_{2}=a_{3}$ from Theorem 1.1, we give an example that shows that the conclusion of Theorem 1.1 is not always true in this case. Take a prime $p>\frac{6}{5 c_{1}}$ and set $n:=\left\lfloor\frac{p}{3}\right\rfloor$ and $m:=2\left\lfloor\frac{p}{3}\right\rfloor$. Define the colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$ with

$$
\chi(l+p \mathbb{Z}):= \begin{cases}1 & \text { if } 0 \leq l<n \\ 2 & \text { if } n \leq l<m \\ 3 & \text { if } m \leq l<p\end{cases}
$$

Then the equation $x_{1}+x_{2}+x_{3}-b=0$ has no rainbow solutions so

$$
|R(\mathrm{eq}(1+p \mathbb{Z}, 1+p \mathbb{Z}, 1+p \mathbb{Z}, b), \chi)|=0
$$

while

$$
\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|=\min \{n, m-n, p-m\}=\left\lfloor\frac{p}{3}\right\rfloor
$$

and then the conclusion of Theorem 1.1 does not hold in this case.
For any $n, m \in \mathbb{Z}$, we write $n \nmid m$ if n does not divide m. Let $n_{1}, n_{2}, n_{3}, m \in \mathbb{Z}$. Theorem 1.1 implies that for all p prime satisfying $p \nmid n_{i}$ for all $i \in\{1,2,3\}$ and for any colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$, we have

$$
\begin{equation*}
\left|R\left(\mathrm{eq}\left(n_{1}+p \mathbb{Z}, n_{2}+p \mathbb{Z}, n_{3}+p \mathbb{Z}, m+p \mathbb{Z}\right), \chi\right)\right| \geq 3 c_{1} \min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|-\frac{6}{5} \tag{1}
\end{equation*}
$$

Nevertheless, we think that the term $\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|$ can be improved to $\left(\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|\right)^{2}$ in (1). First we show that if this can be done, this is the best possible. Let p be a prime, $a_{1}, a_{2}, a_{3} \in(\mathbb{Z} / p \mathbb{Z})^{*}, b \in \mathbb{Z} / p \mathbb{Z}$ and $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$ a colouring such that

$$
\left|\chi^{-1}(1)\right|=\left|\chi^{-1}(2)\right| \leq\left|\chi^{-1}(3)\right|
$$

For each $i, j \in\{1,2,3\}$ with $i \neq j$, the number of rainbow solutions $\left(s_{1}, s_{2}, s_{3}\right)$ with $s_{i} \in \chi^{-1}(1)$ and $s_{j} \in \chi^{-1}(2)$ is at most $\left|\chi^{-1}(1)\right| \cdot\left|\chi^{-1}(2)\right|$ (since the term $s_{k} \in\left\{s_{1}, s_{2}, s_{3}\right\} \backslash\left\{s_{i}, s_{j}\right\}$ is determined by s_{i} and $\left.s_{j}\right)$; hence there are at most $6\left|\chi^{-1}(1)\right| \cdot\left|\chi^{-1}(2)\right|$ rainbow solutions so

$$
\left|R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)\right| \leq 6\left|\chi^{-1}(1)\right|^{2}=6\left(\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|\right)^{2}
$$

Thus nothing better than $\left(\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|\right)^{2}$ can be expected in (1) but we conjecture that this is the correct term.
Conjecture 1.2. Let $n_{1}, n_{2}, n_{3}, m \in \mathbb{Z}$. There exist $c_{2}=c_{2}\left(n_{1}, n_{2}, n_{3}, m\right), c_{3}=$ $c_{3}\left(n_{1}, n_{2}, n_{3}, m\right)$ with the following property. Take p a prime satisfying $p \nmid n_{i}$ for all $i \in\{1,2,3\}$, and $p \nmid\left(n_{j}-n_{k}\right)$ for some $j, k \in\{1,2,3\}$. For any colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$, we have that

$$
\left|R\left(\operatorname{eq}\left(n_{1}+p \mathbb{Z}, n_{2}+p \mathbb{Z}, n_{3}+p \mathbb{Z}, m+p \mathbb{Z}\right), \chi\right)\right| \geq c_{2}\left(\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|\right)^{2}-c_{3}
$$

For any $n, m \in \mathbb{Z}^{+}$, the van der Waerden number $w(n, m)$ is the smallest positive number w with the property that for any colouring $\chi:\{1,2, \ldots, w\} \rightarrow\{1,2, \ldots, n\}$, there is a monochromatic arithmetic progressions with length m.

For any prime p and $m \in \mathbb{Z}^{+}$, we say that a colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$ is m-almost equinumerous if

$$
3\left(\sum_{i=1}^{3}\left|\chi^{-1}(i)\right|^{2}\right)-p^{2} \leq \frac{p^{2}-p}{6 w(3, m)^{2}}
$$

The second result of this paper gives some evidence that Conjecture 1.2 is true.
Theorem 1.3. Let $n_{1}, n_{2}, n_{3} \in \mathbb{Z} \backslash\{0\}$ be such that $n_{1}+n_{2}+n_{3}=0$. Set $m:=$ $1+\max _{1 \leq i \leq 3}\left|n_{i}\right|$ and $w:=w(3, m)$. For any prime $p>w$ and for any m-almost equinumerous colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$, we have that

$$
\left|R\left(\mathrm{eq}\left(n_{1}+p \mathbb{Z}, n_{2}+p \mathbb{Z}, n_{3}+p \mathbb{Z}, 0+p \mathbb{Z}\right), \chi\right)\right| \geq \frac{p^{2}-p}{6 w^{2}}
$$

In particular, since $\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right| \leq \frac{p}{3}$ and $p \geq 3$,

$$
\left|R\left(\mathrm{eq}\left(n_{1}+p \mathbb{Z}, n_{2}+p \mathbb{Z}, n_{3}+p \mathbb{Z}, 0+p \mathbb{Z}\right), \chi\right)\right| \geq \frac{1}{w^{2}}\left(\min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|\right)^{2}
$$

We sketch the proofs of the main results of this paper.

- The proof of Theorem 1.1 is divided into two cases: when there are $i, j \in$ $\{1,2,3\}$ such that $a_{i} \notin\left\{ \pm a_{j}\right\}$ (see Theorem 3.1), and when $a_{i} \in\left\{ \pm a_{j}\right\}$ for all $i, j \in\{1,2,3\}$ (see Theorem 3.2). In the proof of Theorem 3.1, first it is shown that if A_{1}, A_{2}, A_{3} are the chromatic classes with $\left|A_{1}\right| \leq\left|A_{2}\right| \leq\left|A_{3}\right|$ and $a_{i} \notin\left\{ \pm a_{j}\right\}$, then $\left|\left(a_{i} A_{1}+a_{j} A_{2}\right) \cup\left(a_{j} A_{1}+a_{i} A_{2}\right)\right|-\left|A_{1}\right|-\left|A_{2}\right|$ is not very small; this is done by contradiction using the structural statements Theorem 2.1 and Theorem 2.3 (which are the main features in the proof and are not used previously in the area for this application). After this is done, it is seen that the number of rainbow solutions of the given equation is at least $\mid\left(a_{i} A_{1}+\right.$ $\left.a_{j} A_{2}\right) \cup\left(a_{j} A_{1}+a_{i} A_{2}\right)\left|-\left|A_{1}\right|-\left|A_{2}\right|\right.$, and this provides the desired conclusion. The proof of Theorem 3.2 is similar but, instead of using Theorem 2.3, the pairwise disjointedness of the chromatic classes is crucial in the proof of this statement.
- The proof of Theorem 1.3 is done in two stages. First we bound the number of monochromatic solutions of eq $\left(n_{1}+p \mathbb{Z}, n_{2}+p \mathbb{Z}, n_{3}+p \mathbb{Z}, 0+p \mathbb{Z}\right)$; this is done using the fact that if $A \subseteq \mathbb{Z} / p \mathbb{Z}$ is a sufficiently long arithmetic progression, then it has a monochromatic solution of the equation. Each solution cannot be in many arithmetic progressions so there are many monochromatic solutions of the equation; this is Theorem 4.1. The second stage is to use Theorem 2.6 which relates the number of rainbow and monochromatic solutions of 3variables linear equations.

This paper is organized as follows. In Section 2 we state the auxiliary results that will be needed in the proofs of the main results. The proof of Theorem 1.1 will be a direct consequence of Theorems 3.1 and 3.2 ; they will be stated and proven in Section 3. The proof of Theorem 1.3 will rely on Theorem 4.1 and the proofs of these statements can be found in Section 4.

2 Preliminaries

In this section we state some auxiliary results needed in the proofs of Theorem 1.1 and Theorem 1.3.

Let p be a prime, A, B nonempty subsets of $\mathbb{Z} / p \mathbb{Z}$ and $c \in \mathbb{Z} / p \mathbb{Z}$. We write

$$
\begin{aligned}
A+B & :=\{a+b: a \in A, b \in B\} \\
-A & :=\{-a: a \in A\} \\
c A & :=\{c a: a \in A\} \\
A+c & :=A+\{c\} .
\end{aligned}
$$

For any $d \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and $l \in \mathbb{Z}_{0}^{+}$, an arithmetic progression with difference d and length l in $\mathbb{Z} / p \mathbb{Z}$ is a subset of the form $\{a+(i+p \mathbb{Z}) d \in \mathbb{Z} / p \mathbb{Z}: i \in\{0,1,2, \ldots, l-1\}\}$ for some $a \in \mathbb{Z} / p \mathbb{Z}$. For any nonempty subset A of $\mathbb{Z} / p \mathbb{Z}$, denote by $\mathcal{A}_{d}(A)$ the family of arithmetic progressions with difference d which contain A; the length of the smallest element of $\mathcal{A}_{d}(A)$ (with respect to \subseteq) will be denoted by $l_{d}(A)$. The first result of this section is a weak version of a result of Grynkiewicz.

Theorem 2.1. Let p be a prime, $r \in \mathbb{Z}_{0}^{+}$and A, B subsets of $\mathbb{Z} / p \mathbb{Z}$. Write $C:=$ $\mathbb{Z} / p \mathbb{Z} \backslash-(A+B)$. Assume that

- $r \leq c_{1} p-\frac{6}{5}$
- $|A|,|B|,|C| \geq r+3$
- $|A+B|=|A|+|B|+r-1$.

Then there is $d \in(\mathbb{Z} / p \mathbb{Z})^{*}$ such that $l_{d}(A) \leq|A|+r, l_{d}(B) \leq|B|+r$ and $l_{d}(C) \leq$ $|C|+r$.

Proof. See [7, Thm. 21.8].
We will use the following consequence of Theorem 2.1.
Corollary 2.2. Let p be a prime, $r \in \mathbb{Z}_{0}^{+}$and A, B subsets of $\mathbb{Z} / p \mathbb{Z}$. Assume that

- $r \leq c_{1} p-\frac{6}{5}$
- $|A|,|B| \geq r+3$
- $|A+B| \leq p-r-3$
- $|A+B| \leq|A|+|B|+r-1$.

Then there is $d \in(\mathbb{Z} / p \mathbb{Z})^{*}$ such that $l_{d}(A) \leq|A|+r$ and $l_{d}(B) \leq|B|+r$.
Proof. Set $r^{\prime}:=|A+B|-|A|-|B|+1$ and $C:=\mathbb{Z} / p \mathbb{Z} \backslash-(A+B)$. Then $r^{\prime} \leq r$ and $|C|=|\mathbb{Z} / p \mathbb{Z} \backslash-(A+B)|=p-|A+B|$. Note that the assumption gives

- $r^{\prime} \leq r \leq c_{1} p-\frac{6}{5}$
- $|A|,|B|,|C| \geq r+3 \geq r^{\prime}+3$
- $|A+B|=|A|+|B|+r^{\prime}-1$.

Hence Theorem 2.1 yields the existence of $d \in(\mathbb{Z} / p \mathbb{Z})^{*}$ such that $l_{d}(A) \leq|A|+r^{\prime}$ and $l_{d}(B) \leq|B|+r^{\prime}$. Finally, since $r^{\prime} \leq r$, we get that $l_{d}(A) \leq|A|+r$ and $l_{d}(B) \leq|B|+r$ and we are done.

We will need also the following statement.

Theorem 2.3. Let p be a prime, $d_{1}, d_{2} \in(\mathbb{Z} / p \mathbb{Z})^{*}, r \in \mathbb{Z}_{0}^{+}$and A a subset of $\mathbb{Z} / p \mathbb{Z}$. Assume that

- $l_{d_{1}}(A) \leq|A|+r$
- $l_{d_{2}}(A) \leq|A|+r$
- $r+3 \leq|A| \leq p-4 r-10$.

Then $d_{1} \in\left\{ \pm d_{2}\right\}$.
Proof. See [10, Thm. 1.1].
We will also need the well-known Cauchy-Davenport Theorem.
Theorem 2.4. Let p be a prime, and A, B nonempty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof. See [18, Thm. 5.4].
In Section 1 we already saw the definition of the van der Waerden numbers; their existence is warranted by van der Waerden's Theorem.

Theorem 2.5. Let $m, n \in \mathbb{Z}^{+}$. There exists $w(n, m) \in \mathbb{Z}^{+}$with the following property. For all $w \in \mathbb{Z}^{+}$with $w \geq w(n, m)$ and for any n-colouring of $\{1,2, \ldots, w\}$, there exists a monochromatic arithmetic progression of length m.

Proof. See [14, Thm. 2.1].
The last result of this section is a particular case of a more general statement of Cameron, Cilleruelo and Serra.

Theorem 2.6. Let p be a prime, $a_{1}, a_{2}, a_{3} \in(\mathbb{Z} / p \mathbb{Z})^{*}, b \in \mathbb{Z} / p \mathbb{Z}$ and $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow$ $\{1,2,3\}$ a colouring. Write $R:=R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)$ and $M:=$ $M\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)$. Then

$$
2|M|-|R|=3\left(\sum_{i=1}^{3}\left|\chi^{-1}(i)\right|^{2}\right)-p^{2}
$$

Proof. See [3, Thm. 4.2].

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. This will be an immediate consequence of Theorems 3.1 and 3.2. The main ideas in both proofs are similar but there are some technical differences; therefore, for the sake of comprehension, we decided to split Theorem 1.1 into these statements.

Theorem 3.1. Let p be a prime, $a_{1}, a_{2}, a_{3} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and $b \in \mathbb{Z} / p \mathbb{Z}$. Assume that there are $i, j \in\{1,2,3\}$ such that $a_{i} \notin\left\{ \pm a_{j}\right\}$. Then, for any colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow$ $\{1,2,3\}$, we have that

$$
\left|R\left(\operatorname{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)\right| \geq \min \left\{c_{1} p-\frac{6}{5}, \frac{1}{13} \cdot \min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|-3\right\} .
$$

Proof. For each $i \in\{1,2,3\}$, set $A_{i}:=\chi^{-1}(i)$, and assume without loss of generality that $\left|A_{1}\right| \leq\left|A_{2}\right| \leq\left|A_{3}\right|$. Also we assume without loss of generality that $a_{1} \notin\left\{ \pm a_{2}\right\}$. Write

$$
\begin{aligned}
r & :=\min \left\{c_{1} p-\frac{6}{5}, \frac{1}{13} \cdot\left|A_{1}\right|-3\right\} \\
B_{1} & :=a_{1} A_{1}+a_{2} A_{2} \\
B_{2} & :=a_{2} A_{1}+a_{1} A_{2} .
\end{aligned}
$$

The first step in the proof is to show that

$$
\begin{equation*}
\left|B_{1} \cup B_{2}\right| \geq\left|A_{1}\right|+\left|A_{2}\right|+r, \tag{2}
\end{equation*}
$$

and this will be done by contradiction. If (2) is false, then

$$
\begin{equation*}
\max \left\{\left|B_{1}\right|,\left|B_{2}\right|\right\} \leq\left|A_{1}\right|+\left|A_{2}\right|+r-1 . \tag{3}
\end{equation*}
$$

In so far as

$$
\begin{aligned}
r & \leq c_{1} p-\frac{6}{5} \\
r+3 & \leq \frac{\left|A_{1}\right|}{13} \leq\left|A_{1}\right| \leq\left|A_{2}\right| \\
r+3 & \leq\left|A_{1}\right|-12 r \leq\left|A_{3}\right|-12 r \leq p-\left|A_{1}\right|-\left|A_{2}\right|-r+1 \leq p-\max \left\{\left|B_{1}\right|,\left|B_{2}\right|\right\},
\end{aligned}
$$

we have by (3) that we can apply Corollary 2.2 to the pairs ($a_{1} A_{1}, a_{2} A_{2}$) and $\left(a_{2} A_{1}, a_{1} A_{2}\right)$, and therefore there exist $d_{1}, d_{2} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ such that

$$
\begin{equation*}
l_{d_{1}}\left(a_{1} A_{1}\right) \leq\left|A_{1}\right|+r, \quad l_{d_{1}}\left(a_{2} A_{2}\right) \leq\left|A_{2}\right|+r \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{d_{2}}\left(a_{2} A_{1}\right) \leq\left|A_{1}\right|+r, \quad l_{d_{2}}\left(a_{1} A_{2}\right) \leq\left|A_{2}\right|+r . \tag{5}
\end{equation*}
$$

Multiplying $a_{1} A_{1}$ by $a_{2} a_{1}^{-1}$, we get from (4) that

$$
\begin{equation*}
l_{a_{2} a_{1}^{-1} d_{1}}\left(a_{2} A_{1}\right) \leq\left|A_{1}\right|+r . \tag{6}
\end{equation*}
$$

Insomuch as

$$
\begin{aligned}
r+3 & \leq \frac{\left|A_{1}\right|}{13} \leq\left|A_{1}\right| \\
\left|A_{1}\right| & =p-\left|A_{2}\right|-\left|A_{3}\right| \leq p-2\left|A_{1}\right| \leq p-4 r-10
\end{aligned}
$$

we can apply Theorem 2.3 to $a_{2} A_{1}$ by (5) and (6). Thus $a_{2} a_{1}^{-1} d_{1} \in\left\{ \pm d_{2}\right\}$, and we assume without loss of generality that

$$
\begin{equation*}
a_{2} a_{1}^{-1} d_{1}=d_{2} \tag{7}
\end{equation*}
$$

On the one hand, since we are assuming that (2) is false,

$$
\left|B_{1} \cup B_{2}\right| \leq\left|A_{1}\right|+\left|A_{2}\right|+r-1
$$

On the other hand,

$$
\left|B_{1} \cup B_{2}\right|+\left|B_{1} \cap B_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right| .
$$

We have

$$
\begin{equation*}
\left|B_{1} \cap B_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right|-\left|B_{1} \cup B_{2}\right| \geq\left|B_{1}\right|+\left|B_{2}\right|-\left|A_{1}\right|-\left|A_{2}\right|-r+1 \tag{8}
\end{equation*}
$$

From Theorem 2.4, we have that for $i \in\{1,2\}$,

$$
\begin{equation*}
\left|B_{i}\right| \geq\left|A_{1}\right|+\left|A_{2}\right|-1 \tag{9}
\end{equation*}
$$

Then (8) and (9) lead to

$$
\begin{equation*}
\left|B_{1} \cap B_{2}\right| \geq\left|A_{1}\right|+\left|A_{2}\right|-r-1 \tag{10}
\end{equation*}
$$

From (4), there are arithmetic progressions C_{1}, C_{2} of difference d_{1} such that $a_{1} A_{1} \subseteq$ $C_{1}, a_{2} A_{2} \subseteq C_{2},\left|C_{1}\right| \leq\left|A_{1}\right|+r$ and $\left|C_{2}\right| \leq\left|A_{2}\right|+r$. Note that $C_{1}+C_{2}$ is an arithmetic progression of difference d_{1} such that

$$
\begin{equation*}
\left|C_{1}+C_{2}\right|=\left|C_{1}\right|+\left|C_{2}\right|-1 \leq\left|A_{1}\right|+\left|A_{2}\right|+2 r-1 \tag{11}
\end{equation*}
$$

Notice that $B_{1} \cap B_{2} \subseteq B_{1} \subseteq C_{1}+C_{2}$. Hence (10) and (11) yield that

$$
\begin{equation*}
l_{d_{1}}\left(B_{1} \cap B_{2}\right) \leq\left|B_{1} \cap B_{2}\right|+3 r . \tag{12}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
l_{d_{2}}\left(B_{1} \cap B_{2}\right) \leq\left|B_{1} \cap B_{2}\right|+3 r \tag{13}
\end{equation*}
$$

Since

$$
\begin{aligned}
3 r+3 & \leq 2\left|A_{1}\right|-r-1 \leq\left|A_{1}\right|+\left|A_{2}\right|-r-1 \leq\left|B_{1} \cap B_{2}\right| \\
\left|B_{1} \cap B_{2}\right| & \leq\left|B_{1}\right| \leq\left|A_{1}\right|+\left|A_{2}\right|+r-1=p-\left|A_{3}\right|+r-1 \leq p-12 r-10,
\end{aligned}
$$

we can apply Theorem 2.3 to $B_{1} \cap B_{2}$ by (12) and (13). Hence we get from Theorem 2.3 that $d_{1} \in\left\{ \pm d_{2}\right\}$. However, this inclusion and (7) imply that $a_{1} \in\left\{ \pm a_{2}\right\}$ which contradicts the assumption, and therefore (2) is true.

Insomuch as

$$
\left|\left(B_{1} \cup B_{2}\right) \cup\left(-a_{3} A_{3}+b\right)\right| \leq|\mathbb{Z} / p \mathbb{Z}|=p=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|,
$$

we get from (2) that

$$
\begin{align*}
\left|\left(B_{1} \cup B_{2}\right) \cap\left(-a_{3} A_{3}+b\right)\right| & \geq\left|B_{1} \cup B_{2}\right|+\left|a_{3} A_{3}+b\right|-p \\
& \geq\left|A_{1}\right|+\left|A_{2}\right|+r+\left|a_{3} A_{3}+b\right|-p \\
& =\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-p+r \\
& =r . \tag{14}
\end{align*}
$$

Finally, for any $s_{3} \in A_{3}$ such that $-a_{3} s_{3}+b \in B_{1} \cup B_{2}=\left(a_{1} A_{1}+a_{2} A_{2}\right) \cup\left(a_{2} A_{1}+a_{1} A_{2}\right)$, we have that there are s_{1}, s_{2} such that $\left(s_{1}, s_{2}, s_{3}\right) \in R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)$. Then, by (14), there are at least r of these elements and the proof is completed.

Theorem 3.2. Let p be a prime, $a_{1}, a_{2}, a_{3} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and $b \in \mathbb{Z} / p \mathbb{Z}$. Assume that a_{1}, a_{2}, a_{3} are not equal but $a_{i} \in\left\{ \pm a_{j}\right\}$ for all $i, j \in\{1,2,3\}$. Then, for any colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$, we have that

$$
\left|R\left(\mathrm{eq}\left(a_{1}, a_{2}, a_{3}, b\right), \chi\right)\right| \geq \min \left\{c_{1} p-\frac{6}{5}, \frac{1}{5} \cdot \min _{1 \leq i \leq 3}\left|\chi^{-1}(i)\right|-3\right\} .
$$

Proof. Applying a dilation if necessary, we may assume that $a_{1}=a_{3}=-a_{2}=1+p \mathbb{Z}$. For each $i \in\{1,2,3\}$, set $A_{i}:=\chi^{-1}(i)$, and assume without loss of generality that $\left|A_{1}\right| \leq\left|A_{2}\right| \leq\left|A_{3}\right|$. Write

$$
\begin{aligned}
r & :=\min \left\{c_{1} p-\frac{6}{5}, \frac{1}{5} \cdot\left|A_{1}\right|-3\right\} \\
B_{2} & :=A_{1}-A_{2} \\
B_{3} & :=A_{1}-A_{3} .
\end{aligned}
$$

We will show that

$$
\begin{equation*}
\left|B_{2} \cup\left(-B_{2}\right)\right| \geq\left|A_{1}\right|+\left|A_{2}\right|+r \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|B_{3} \cup\left(-B_{3}\right)\right| \geq\left|A_{1}\right|+\left|A_{3}\right|+r \tag{16}
\end{equation*}
$$

and this shall be done by contradiction. Thus we assume that (15) and (16) are false so

$$
\begin{equation*}
\left|B_{2}\right| \leq\left|B_{2} \cup\left(-B_{2}\right)\right| \leq\left|A_{1}\right|+\left|A_{2}\right|+r-1 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|B_{3}\right| \leq\left|B_{3} \cup\left(-B_{3}\right)\right| \leq\left|A_{1}\right|+\left|A_{3}\right|+r-1 . \tag{18}
\end{equation*}
$$

In so far as

$$
\begin{aligned}
r & \leq c_{1} p-\frac{6}{5} \\
r+3 & \leq \frac{\left|A_{1}\right|}{5} \leq\left|A_{1}\right| \leq\left|A_{2}\right| \leq\left|A_{3}\right| \\
r+3 & \leq\left|A_{2}\right|-r+1=p-\left|A_{1}\right|-\left|A_{3}\right|-r+1 \leq p-\max \left\{\left|B_{2}\right|,\left|B_{3}\right|\right\},
\end{aligned}
$$

we have by (17) and (18) that we can apply Corollary 2.2 to the pairs $\left(A_{1},-A_{2}\right)$ and $\left(A_{1},-A_{3}\right)$, respectively. Hence there are $d_{2}, d_{3} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ such that for $i \in\{2,3\}$,

$$
\begin{equation*}
l_{d_{i}}\left(A_{1}\right) \leq\left|A_{1}\right|+r, \quad l_{d_{i}}\left(A_{i}\right)=l_{d_{i}}\left(-A_{i}\right) \leq\left|A_{i}\right|+r . \tag{19}
\end{equation*}
$$

Insomuch as

$$
\begin{aligned}
r+3 & \leq \frac{\left|A_{1}\right|}{5} \leq\left|A_{1}\right| \\
\left|A_{1}\right| & =p-\left|A_{2}\right|-\left|A_{3}\right| \leq p-2\left|A_{1}\right| \leq p-4 r-10
\end{aligned}
$$

we can apply Theorem 2.3 to A_{1} by (19). Then $d_{2} \in\left\{ \pm d_{3}\right\}$, and we assume without loss of generality that $d_{2}=d_{3}$. Applying a dilation if necessary, we assume that

$$
\begin{equation*}
d_{2}=d_{3}=1+p \mathbb{Z} \tag{20}
\end{equation*}
$$

We need some notation. For any $c, d \in \mathbb{Z} / p \mathbb{Z}$, let $n \in\{0,1, \ldots, p-1\}$ be the element satisfying that $d-c=n+p \mathbb{Z}$; then we write

$$
[c, d]:=\{c+(i+p \mathbb{Z}): i \in\{0,1, \ldots, n\}\}
$$

From (19) and (20), there are $b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3} \in \mathbb{Z} / p \mathbb{Z}$ such that $A_{i} \subseteq\left[b_{i}, c_{i}\right]$ and $\left|\left[b_{i}, c_{i}\right] \backslash A_{i}\right| \leq r$ for each $i \in\{1,2,3\}$. Call $C_{i}:=\left[b_{i}, c_{i}\right] \backslash A_{i}$ for each $i \in\{1,2,3\}$. Then, for any $i, j \in\{1,2,3\}$ with $i \neq j$,

$$
\begin{array}{rlr}
\left|\left[b_{i}, c_{i}\right] \cap\left[b_{j}, c_{j}\right]\right| & =\left|\left(A_{i} \cup C_{i}\right) \cap\left(A_{j} \cup C_{j}\right)\right| \\
& \leq\left|A_{i} \cap\left(A_{j} \cup C_{j}\right)\right|+\left|C_{i} \cap\left(A_{j} \cup C_{j}\right)\right| \\
& \left.=\left|A_{i} \cap C_{j}\right|+\left|C_{i} \cap\left(A_{j} \cup C_{j}\right)\right| \quad \quad \text { (since } A_{i} \cap A_{j}=\emptyset\right) \\
& \leq\left|C_{j}\right|+\left|C_{i}\right| \\
& \leq 2 r . \tag{21}
\end{array}
$$

Thus, by (21), the intervals $\left[b_{1}, c_{1}\right],\left[b_{2}, c_{2}\right]$ and $\left[b_{3}, c_{3}\right]$ can overlap but in very small segments. Assume that $c_{1}=b_{2}+\left(n_{1}+p \mathbb{Z}\right), c_{2}=b_{3}+\left(n_{2}+p \mathbb{Z}\right)$ and $c_{3}=b_{1}+\left(n_{3}+p \mathbb{Z}\right)$ with $n_{1}, n_{2}, n_{3} \in\{0,1, \ldots, 2 r-1\}$ (the other cases are done in the same way). For each $i \in\{1,2,3\}$ (considering $i \bmod 3$), we have that $A_{i} \subseteq\left[b_{i}, c_{i}\right]=\left[b_{i}, b_{i+1}+\left(n_{i}+\right.\right.$ $p \mathbb{Z})]$ so

$$
\begin{align*}
& {\left[b_{i+2}+\left(n_{i+1}+1+p \mathbb{Z}\right), b_{i}-(1+p \mathbb{Z})\right] } \\
= & \mathbb{Z} / p \mathbb{Z} \backslash\left[b_{i}, b_{i+2}+\left(n_{i+1}+p \mathbb{Z}\right)\right] \\
= & \mathbb{Z} / p \mathbb{Z} \backslash\left(\left[b_{i}, b_{i+1}+\left(n_{i}+p \mathbb{Z}\right)\right] \cup\left[b_{i+1}, b_{i+2}+\left(n_{i+1}+p \mathbb{Z}\right)\right]\right) \\
\subseteq & \mathbb{Z} / p \mathbb{Z} \backslash\left(A_{i} \cup A_{i+1}\right) \\
= & A_{i+2} ; \tag{22}
\end{align*}
$$

furthermore, note that

$$
\begin{align*}
\left|\left[b_{i+2}+\left(n_{i+1}+1+p \mathbb{Z}\right), b_{i}-(1+p \mathbb{Z})\right]\right| & \geq\left|\left[b_{i+2}, b_{i}+\left(n_{i+2}+p \mathbb{Z}\right)\right]\right|-n_{i+1}-2 \\
& =\left|\left[b_{i+2}, c_{i+2}\right]\right|-n_{i+1}-2 \\
& \geq\left|\left[b_{i+2}, c_{i+2}\right]\right|-2 r-1 \\
& \geq\left|A_{i+2}\right|-2 r-1 \tag{23}
\end{align*}
$$

Write

$$
D:=\left[\left(b_{1}-b_{3}\right)+\left(n_{3}+2+p \mathbb{Z}\right),-n_{1}-2+p \mathbb{Z}\right]
$$

From (22), we conclude that

$$
\begin{align*}
B_{2} & =A_{1}-A_{2} \\
& \supseteq\left[b_{1}+\left(n_{3}+1+p \mathbb{Z}\right), b_{2}-(1+p \mathbb{Z})\right]-\left[b_{2}+\left(n_{1}+1+p \mathbb{Z}\right), b_{3}-(1+p \mathbb{Z})\right] \\
& =D, \tag{24}
\end{align*}
$$

and likewise

$$
\begin{equation*}
-B_{2} \supseteq-D . \tag{25}
\end{equation*}
$$

We find a contradiction depending on whether or not D and $-D$ are disjoint.

- Assume that $D \cap(-D) \neq \emptyset$. Then $D \cup(-D)=\left[n_{1}+2+p \mathbb{Z},-n_{1}-2+p \mathbb{Z}\right]$ or $D \cup(-D)=\left[\left(b_{1}-b_{3}\right)+\left(n_{3}+2+p \mathbb{Z}\right),\left(b_{3}-b_{1}\right)-\left(n_{3}+2+p \mathbb{Z}\right)\right]$. If $D \cup(-D)=\left[\left(b_{1}-b_{3}\right)+\left(n_{3}+2+p \mathbb{Z}\right),\left(b_{3}-b_{1}\right)-\left(n_{3}+2+p \mathbb{Z}\right)\right]$, then $D \cap(-D)=$ $\left[n_{1}+2+p \mathbb{Z},-n_{1}-2+p\right]$. Thus, in any case,

$$
D \cup(-D) \supseteq\left[n_{1}+2+p \mathbb{Z},-n_{1}-2+p \mathbb{Z}\right] .
$$

Hence, since $n_{1} \leq 2 r-1$,

$$
\begin{equation*}
|D \cup(-D)| \geq\left|\left[n_{1}+2+p \mathbb{Z},-n_{1}-2+p \mathbb{Z}\right]\right|=p-2\left(n_{1}+2\right)+1 \geq p-4 r-1 \tag{26}
\end{equation*}
$$

Thus

$$
\begin{align*}
\left|A_{1}\right|+\left|A_{2}\right|+r & \geq\left|B_{2} \cup\left(-B_{2}\right)\right| \tag{17}\\
& \geq|D \cup(-D)| \tag{24}\\
& \geq p-4 r-1 \tag{26}\\
& =\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-4 r-1 \\
& =\left(\left|A_{1}\right|+\left|A_{2}\right|+r\right)+\left(\left|A_{3}\right|-5 r-1\right)
\end{align*}
$$

which is impossible since $\left|A_{3}\right| \geq\left|A_{1}\right|>5 r+1$.

- Assume that $D \cap(-D)=\emptyset$. Then

$$
\begin{equation*}
|D \cup(-D)|=|D|+|-D|=2|D| \tag{27}
\end{equation*}
$$

Also

$$
\begin{align*}
|D|= & \left|\left[\left(b_{1}-b_{3}\right)+\left(n_{3}+1+p \mathbb{Z}\right),-\left(n_{1}+2\right)+p \mathbb{Z}\right]\right| \\
= & \mid\left[b_{1}+\left(n_{3}+1+p \mathbb{Z}\right), b_{2}-(1+p \mathbb{Z})\right] \\
& -\left[b_{2}+\left(n_{1}+1+p \mathbb{Z}\right), b_{3}-(1+p \mathbb{Z})\right] \mid \\
= & \left|\left[b_{1}+\left(n_{3}+1+p \mathbb{Z}\right), b_{2}-(1+p \mathbb{Z})\right]\right| \\
& +\left|\left[b_{2}+\left(n_{1}+1+p \mathbb{Z}\right), b_{3}-(1+p \mathbb{Z})\right]\right|-1 \tag{28}\\
\geq & \left|A_{1}\right|+\left|A_{2}\right|-4 r-3 \tag{23}
\end{align*}
$$

Hence

$$
\begin{align*}
\left|A_{1}\right|+\left|A_{2}\right|+r & \geq\left|B_{2} \cup\left(-B_{2}\right)\right| \tag{17}\\
& \geq|D \cup(-D)| \tag{24}\\
& =2|D| \tag{27}\\
& \geq\left(\left|A_{1}\right|+\left|A_{2}\right|+r\right)+\left(\left|A_{1}\right|+\left|A_{2}\right|-9 r-6\right) ; \tag{28}
\end{align*}
$$

however, this is impossible since $\left|A_{2}\right| \geq\left|A_{1}\right|>5 r+3$.
In any case, we have found a contradiction and hence (15) or (16) holds. Assume without loss of generality that (15) is true. In so far as

$$
\left|\left(B_{2} \cup\left(-B_{2}\right)\right) \cup\left(-A_{3}+b\right)\right| \leq|\mathbb{Z} / p \mathbb{Z}|=p=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|
$$

we get from (15) that

$$
\begin{align*}
\left|\left(B_{2} \cup\left(-B_{2}\right)\right) \cap\left(-A_{3}+b\right)\right| & \geq\left|B_{2} \cup\left(-B_{2}\right)\right|+\left|A_{3}+b\right|-p \\
& \geq\left|A_{1}\right|+\left|A_{2}\right|+r+\left|-A_{3}+b\right|-p \\
& =\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-p+r \\
& =r . \tag{29}
\end{align*}
$$

For any $s_{3} \in A_{3}$ such that $-s_{3}+b \in\left(A_{1}-A_{2}\right) \cup\left(A_{2}-A_{1}\right)$, we have that there s_{1}, s_{2} such that $\left(s_{1}, s_{2}, s_{3}\right)$ is a rainbow solution of $x_{1}-x_{2}+x_{3}-b=0$. Thus, from (29), we conclude that there are at least r of these rainbow solutions and we are done.

In Theorems 3.1 and 3.2, when the two smallest chromatic classes have almost the same size, the constant c_{1} can be substituted by a much bigger constant c_{1}^{\prime} using the structural results of [7, Ch. 19] instead of Theorem 2.1.

4 Proof of Theorem 1.3

In this section we show Theorem 1.3. It will be a consequence of Theorems 2.6 and 4.1.

Theorem 4.1. Let $n_{1}, n_{2}, n_{3} \in \mathbb{Z} \backslash\{0\}$ be such that $n_{1}+n_{2}+n_{3}=0$. Set $m:=$ $1+\max _{1 \leq i \leq 3}\left|n_{i}\right|$ and $w:=w(3, m)$. For any prime $p>w$ and for any colouring $\chi: \mathbb{Z} / p \mathbb{Z} \rightarrow\{1,2,3\}$, we have that

$$
\left|M\left(\mathrm{eq}\left(n_{1}+p \mathbb{Z}, n_{2}+p \mathbb{Z}, n_{3}+p \mathbb{Z}, 0+p \mathbb{Z}\right), \chi\right)\right| \geq \frac{p^{2}-p}{6 w^{2}}
$$

Proof. Set $M:=M\left(\operatorname{eq}\left(n_{1}+p \mathbb{Z}, n_{2}+p \mathbb{Z}, n_{3}+p \mathbb{Z}, 0+p \mathbb{Z}\right), \chi\right)$. In so far as $n_{1}+n_{2}+n_{3}=$ 0 , we assume without loss of generality that $n_{3}<0<n_{1} \leq n_{2}$ so $m=1-n_{3}$ and $n_{2}<n_{1}+n_{2}=-n_{3}$. For each $a \in \mathbb{Z} / p \mathbb{Z}$ and $d \in(\mathbb{Z} / p \mathbb{Z})^{*}$, write

$$
A_{a, d}:=\{a+(i+p \mathbb{Z}) d \in \mathbb{Z} / p \mathbb{Z}: i \in\{0,1, \ldots, w-1\}\}
$$

We claim that for each $a \in \mathbb{Z} / p \mathbb{Z}$ and $d \in(\mathbb{Z} / p \mathbb{Z})^{*}$, there is a monochromatic solution (with respect to χ) $\left(s_{1}, s_{2}, s_{3}\right) \in M$ such that $\left\{s_{1}, s_{2}, s_{3}\right\} \subseteq A_{a, d}$ and s_{1}, s_{2}, s_{3} are pairwise distinct. Take the colouring

$$
\chi_{a, d}:\{1,2, \ldots, w\} \longrightarrow\{1,2,3\}, \quad \chi_{a, d}(i)=\chi(a+(i-1+p \mathbb{Z}) d) .
$$

Theorem 2.5 yields that there exist $k \in\{1,2,3\}$ and $q, r \in \mathbb{Z}^{+}$such that

$$
\{q+j r: j \in\{0,1, \ldots, m-1\}\} \subseteq \chi_{a, d}^{-1}(k)
$$

Note that $\left\{a+(q-1+p \mathbb{Z}) d, a+\left(q-n_{3} r-1+p \mathbb{Z}\right) d, a+\left(q+n_{2} r-1+p \mathbb{Z}\right) d\right\} \subseteq A_{a, d}$. Since $\left\{q, q-n_{3} r, q+n_{2} r\right\}$ is monochromatic with respect to $\chi_{a, d}$, the definition of $\chi_{a, d}$ implies that $\left\{a+(q-1+p \mathbb{Z}) d, a+\left(q-n_{3} r-1+p \mathbb{Z}\right) d, a+\left(q+n_{2} r-1+p \mathbb{Z}\right) d\right\}$ is monochromatic with respect to χ. Also notice that

$$
\begin{array}{r}
\left(n_{1}+p \mathbb{Z}\right)(a+(q-1+p \mathbb{Z}) d)+\left(n_{2}+p \mathbb{Z}\right)\left(a+\left(q-n_{3} r-1+p \mathbb{Z}\right) d\right) \\
+\left(n_{3}+p \mathbb{Z}\right)\left(a+\left(q+n_{2} r-1+p \mathbb{Z}\right) d\right)=0+p \mathbb{Z}
\end{array}
$$

so $\left(a+(q-1+p \mathbb{Z}) d, a+\left(q-n_{3} r-1+p \mathbb{Z}\right) d, a+\left(q+n_{2} r-1+p \mathbb{Z}\right) d\right)$ is a solution and therefore

$$
\left(a+(q-1+p \mathbb{Z}) d, a+\left(q-n_{3} r-1+p \mathbb{Z}\right) d, a+\left(q+n_{2} r-1+p \mathbb{Z}\right) d\right) \in M
$$

Furthermore, since $0<n_{2} r<-n_{3} r \leq w<p$, the elements $a+(q-1+p \mathbb{Z}) d, a+$ $\left(q-n_{3} r-1+p \mathbb{Z}\right) d$ and $a+\left(q+n_{2} r-1+p \mathbb{Z}\right) d$ are pairwise distinct and the claim is proven.

Note that for each $\left(s_{1}, s_{2}, s_{3}\right) \in M$ with the elements pairwise distinct, $\left\{s_{1}, s_{2}, s_{3}\right\}$ can be contained in at most $6 w^{2}$ arithmetic progressions $A_{a, d}$. Indeed, assume that $\left\{s_{1}, s_{2}, s_{3}\right\}$ is in at least $6 w^{2}+1$ arithmetic progressions $A_{a, d}$. i Then, since there are six ordered pairs in $\{1,2,3\}$ and the length of the arithmetic progressions $A_{a, d}$ is w, the Pigeonhole Principle yields a pair $i, j \in\{1,2,3\}$ with $i \neq j$, arithmetic progressions $A_{a_{1}, d_{1}}, A_{a_{2}, d_{2}}$ with $\left(a_{1}, d_{1}\right) \neq\left(a_{2}, d_{2}\right)$, and $k_{i}, k_{j} \in\{0,1, \ldots, w-1\}$ with $k_{i} \neq k_{j}$ such that

$$
\begin{aligned}
& s_{i}=a_{1}+k_{i} d_{1}=a_{2}+k_{i} d_{2} \\
& s_{j}=a_{1}+k_{j} d_{1}=a_{2}+k_{j} d_{2}
\end{aligned}
$$

however, the previous equalities imply that $\left(a_{1}, d_{1}\right)=\left(a_{2}, d_{2}\right)$, and this contradiction proves our claim. Hence, insomuch as $a \in \mathbb{Z} / p \mathbb{Z}, d \in(\mathbb{Z} / p \mathbb{Z})^{*}$ are arbitrary, we obtain that M has at least $\frac{\left|\mathbb{Z} / p \mathbb{Z} \times(\mathbb{Z} / p \mathbb{Z})^{*}\right|}{6 w^{2}}=\frac{p^{2}-p}{6 w^{2}}$ elements.

We conclude the proof of Theorem 1.3.
Proof. (Theorem 1.3) Set $R:=R\left(\mathrm{eq}\left(n_{1}+p \mathbb{Z}, n_{2}+p \mathbb{Z}, n_{3}+p \mathbb{Z}, 0+p \mathbb{Z}\right), \chi\right)$ and $M:=M\left(\mathrm{eq}\left(n_{1}+p \mathbb{Z}, n_{2}+p \mathbb{Z}, n_{3}+p \mathbb{Z}, 0+p \mathbb{Z}\right), \chi\right)$. Theorem 2.6 gives us

$$
\begin{equation*}
|R|=2|M|-3\left(\sum_{i=1}^{3}\left|\chi^{-1}(i)\right|^{2}\right)+p^{2} \tag{30}
\end{equation*}
$$

Applying Theorem 4.1,

$$
\begin{equation*}
2|M| \geq \frac{p^{2}-p}{3 w^{2}} \tag{31}
\end{equation*}
$$

Also, insomuch as χ is m-almost equinumerous,

$$
\begin{equation*}
3\left(\sum_{i=1}^{3}\left|\chi^{-1}(i)\right|^{2}\right)-p^{2} \leq \frac{p^{2}-p}{6 w^{2}} . \tag{32}
\end{equation*}
$$

Finally (30), (31) and (32) let us conclude that

$$
|R| \geq \frac{p^{2}-p}{6 w^{2}}
$$

Acknowledgements

We would like to thank the referees for their positive and insightful comments and advice to improve this paper.

References

[1] M. Axenovich and D. Fon Der Flaass, On rainbow arithmetic progressions, Electron. J. Combin. 11 (2004), R1.
[2] E. Balandraud, Coloured solutions of equations in finite groups, J. Combin. Theory Ser. A 114 (5) (2007), 854-866.
[3] P. J. Cameron, J. Cilleruelo and O. Serra, On monochromatic solutions of equations in groups, Rev. Mat. Iberoam. 23 (1) (2007), 385-395.
[4] D. Conlon, Rainbow solutions of linear equations over \mathbb{Z}_{p}, Discrete Math. 306 (2006), 2056-2063.
[5] D. Conlon, V. Jungić and R. Radoičić, On the existence of rainbow 4-term arithmetic progressions, Graphs Combin. 23 (2007), 249-254.
[6] J. Fox, M. Mahdian and R. Radoičić, Rainbow Solutions to the Sidon Equation, Discrete Math. 308 (2008), 4773-4778.
[7] D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics 30 Springer (2013).
[8] M. Huicochea and A. Montejano, The structure of rainbow-free colorings for linear equations on three variables in \mathbb{Z}_{p}, Integers 15 A (2015), A8.
[9] M. Huicochea, An inverse theorem in \mathbb{F}_{p} and rainbow-free colorings, Mosc. J. Comb. Number Theory 7 (2) (2017), 22-58.
[10] M. Huicochea, Almost arithmetic progressions in \mathbb{F}_{p}, Notes Number Theory Discrete Math. 24 (1) (2018) 61-75.
[11] V. Jungić, J. Licht, M. Mahdian, J. Nešetřil and R. Radoičić, Rainbow Ramsey Theory and Anti-Ramsey results, Combin. Probab. Comput. 12 (2005), 599-620.
[12] V. Jungić, J. Nešetřil and R. Radoičić, Rainbow Ramsey Theory, Integers 5 (2) (2005), A9.
[13] V. Jungić and R. Radoičić, Rainbow 3-term Arithmetic Progressions, Integers 3 (2003), A18.
[14] B. Landman and A. Robertson, Ramsey Theory on the Integers, Student Mathematical Library Vol. 73 AMS (2015).
[15] B. Llano and A. Montejano, Rainbow-free colorings for $x+y=c z$ in Z_{p}, Discrete Math. 312 (2012), 2566-2573.
[16] A. Montejano and O. Serra, Rainbow-free three colorings in abelian groups, Electron. J. Combin. 19 (2012), P45.
[17] A. Montejano and O. Serra, Counting patterns in colored orthogonal arrays, Discrete Math. 317 (2014), 44-52.
[18] T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105 Cambridge University Press (2006).

