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Abstract

In this paper we introduce and study the r-Fubini–Lah numbers and
polynomials, in connection with the enumeration of those partitions of a
finite set, where both the blocks and the partition itself are ordered, and
r distinguished elements belong to distinct ordered blocks.

1 Introduction

Bell numbers are well-known objects in enumerative combinatorics. The nth Bell
number Bn =

∑n
k=0

{
n
k

}
(n ≥ 0), where the numbers

{
n
k

}
are Stirling numbers of the

second kind, is the number of partitions of an n-element set into nonempty subsets.

If we count the number of ordered partitions of an n-element set, we obtain the
nth Fubini number Fn =

∑n
k=0 k!

{
n
k

}
(n ≥ 0). These numbers appeared in several

papers from different points of view. Their first mention is due to Cayley [3] in con-
nection with the enumeration of certain trees. A number theoretical interpretation
was given by James [8], who counted ordered factorizations of square-free integers.
Using equivalent combinatorial definitions, Fubini numbers were also investigated by
Gross [5], Good [4] and Tanny [17]. These authors proved, among others, a recur-
rence, a Dobiński type formula, and derived the exponential generating function of
the sequence of Fubini numbers. We remark that Gross gave an additional geomet-
ric interpretation for Fubini numbers. As an extension, Tanny introduced Fubini
polynomials Fn(x) =

∑n
k=0 k!

{
n
k

}
xk (n ≥ 0), as well. We note that Kereskényi-

Balogh and Nyul [9] gave a graph theoretical generalization of Fubini numbers and
polynomials.

Another variant of the above numbers is their r-generalization. The nth r-Bell
number Bn,r =

∑n
k=0

{
n
k

}
r
(n, r ≥ 0), defined by Carlitz [2] and Mező [11], counts

the number of those partitions of a set with n + r elements, where r distinguished
elements belong to distinct blocks. Here

{
n
k

}
r
denotes an r-Stirling number of the

second kind (see [1, 2, 10]) with the parametrization, where
{
n
k

}
r
is the number
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of partitions of an (n + r)-element set into k + r nonempty subsets, such that r
distinguished elements belong to distinct blocks.

Again, if we are interested in the number of ordered partitions of an (n + r)-
element set such that r distinguished elements belong to distinct blocks, then we
arrive at the nth r-Fubini number Fn,r =

∑n
k=0(k + r)!

{
n
k

}
r
(n, r ≥ 0). These

numbers were studied by Mező and Nyul [12], together with the r-Fubini polynomials
Fn,r(x) =

∑n
k=0(k + r)!

{
n
k

}
r
xk (n, r ≥ 0).

If not the partition itself, but the blocks are ordered, then the counting numbers
are relatives of Lah numbers. By the definition due to Nyul and Rácz [14], the nth
summed r-Lah number Ln,r =

∑n
k=0

⌊
n
k

⌋
r
(n, r ≥ 0) is the number of those partitions

of an (n+ r)-element set into ordered blocks, where r distinguished elements belong
to distinct ordered blocks. Here

⌊
n
k

⌋
r
denotes an r-Lah number which counts the

number of partitions on an (n+ r)-element set into k+ r ordered nonempty subsets
such that r distinguished elements belong to distinct ordered blocks (for more details,
see [13]). In [14], the related r-Lah polynomials Ln,r(x) =

∑n
k=0

⌊
n
k

⌋
r
xk (n, r ≥ 0)

are also investigated. We note that one can find a graph theoretical interpretation of
summed r-Lah numbers and r-Lah polynomials in [15], while a further generalization,
the r-Dowling–Lah numbers and polynomials were studied by Gyimesi [6].

In this paper we introduce the Fubini type variants of summed r-Lah numbers and
r-Lah polynomials, which we call r-Fubini–Lah numbers and polynomials. We prove
two recurrences and a Dobiński type formula for them, we determine their exponen-
tial generating functions, finally we give their connection with r-Fubini numbers and
polynomials. Definitions of these notions will be given together with combinatorial
interpretations, which will be used in the proofs when it is possible.

2 r-Fubini–Lah numbers and polynomials

Let n, r be non-negative integers, not both 0. Define the nth r-Fubini–Lah number
FLn,r as the number of ordered partitions of an (n + r)-element set into ordered
subsets such that r distinguished elements belong to distinct ordered blocks. Fur-
thermore, let FL0,0 = 1. From this definition it immediately follows that

FLn,r =
n∑

k=0

(k + r)!

⌊
n

k

⌋
r

.

In addition, for n, r ≥ 0, we introduce the nth r-Fubini–Lah polynomial as

FLn,r(x) =
n∑

k=0

(k + r)!

⌊
n

k

⌋
r

xk.

We can give a combinatorial interpretation for these polynomials when n, r are not
both 0. If c is a positive integer, then FLn,r(c) is the number of coloured ordered
partitions of a set with n+ r elements into ordered blocks, such that r distinguished
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elements belong to distinct ordered subsets and ordered blocks containing no distin-
guished element are coloured with c colours.

It follows from the above definitions that the polynomial FLn,r(x) is of degree n
with leading coefficient (n + r)!. Since FLn,r(1) = FLn,r, it will suffice to prove our
results only for polynomials in most cases.

The 0-Fubini–Lah polynomials and numbers are simply FLn,0(x) = n!x(x+1)n−1

and FLn,0 = n!2n−1 (n ≥ 1), which can be proved easily: Starting from a permutation
of the n elements, we colour the ordered block of the first element with c colours,
then we have c+1 possibilities for each of the other n−1 elements, since it can open
a new ordered block and this ordered block is coloured with c colours, or it belongs
to the ordered block of the previous element. Moreover, 1-Fubini–Lah polynomials
and numbers clearly satisfy xFLn,1(x) = FLn+1,0(x) and FLn,1 = FLn+1,0 (n ≥ 0).
In contrast to these, for r ≥ 2, r-Fubini–Lah polynomials and numbers become much
more interesting.

The r-Fubini–Lah polynomials and numbers satisfy the following formulas, which
are recurrences simultaneously in n and r.

Theorem 1. If n ≥ 0 and r ≥ 1, then

FLn,r(x) = r
n∑

j=0

(
n

j

)
(n− j + 1)!FLj,r−1(x) + x

n−1∑
j=0

(
n

j

)
(n− j)!FLj,r(x),

FLn,r = r

n∑
j=0

(
n

j

)
(n− j + 1)!FLj,r−1 +

n−1∑
j=0

(
n

j

)
(n− j)!FLj,r.

Proof. Let c ≥ 1. We count the number of coloured ordered partitions of a set with
n + r elements into ordered subsets such that r distinguished elements belong to
distinct ordered blocks, and we colour the ordered blocks containing no distinguished
element with c colours.

Consider the first ordered block. If it contains a distinguished element, then we
can choose it in r ways. Let j be the number of those non-distinguished elements,
which do not belong to this ordered subset (j = 0, . . . , n). The number of coloured
ordered partitions of these elements, together with the other r−1 distinguished ones,
into ordered subsets, where the ordered blocks containing no distinguished elements
are coloured with c colours, is FLj,r−1(c). The remaining n − j non-distinguished
elements will be placed into the first ordered block. In this ordered block we can
permute the elements in (n− j + 1)! ways. Therefore, the number of possibilities is
r
(
n
j

)
(n− j + 1)!FLj,r−1(c) for a fixed j.

Similarly, if the first ordered block does not contain any distinguished element,
then let j be the number of those non-distinguished elements, which do not belong
to this ordered block (j = 0, . . . , n− 1). The number of ordered partitions of these j
elements together with the distinguished elements into ordered subsets, and colour-
ings of the ordered blocks containing no distinguished element with c colours, is
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FLj,r(c). The remaining n − j non-distinguished elements will be placed into the
first ordered block, which can be done in (n− j)! ways, but this ordered block has to
be coloured. This means that now the number of possibilities is c

(
n
j

)
(n− j)!FLj,r(c)

for a fixed j.

We can prove another recurrence for r-Fubini–Lah polynomials, where the only
running parameter is n. Here the derivative of the polynomials also appears.

Theorem 2. If n, r ≥ 0, then

FLn+1,r(x) = ((r + 1)x+ n + 2r)FLn,r(x) + (x2 + x)FL′
n,r(x).

Proof. We use [13, Theorem 3.1] and some special values of r-Lah numbers to obtain
that

FLn+1,r(x) =
n+1∑
k=0

(k + r)!

⌊
n + 1

k

⌋
r

xk

= r!

⌊
n+ 1

0

⌋
r

+
n∑

k=1

(k + r)!

(⌊
n

k − 1

⌋
r

+ (n+ k + 2r)

⌊
n

k

⌋
r

)
xk

+(n+ r + 1)!

⌊
n+ 1

n+ 1

⌋
r

xn+1

= r!(2r)n+1 +

n−1∑
k=0

(k + r + 1)!

⌊
n

k

⌋
r

xk+1 + (n+ 2r)

n∑
k=1

(k + r)!

⌊
n

k

⌋
r

xk

+
n∑

k=1

k(k + r)!

⌊
n

k

⌋
r

xk + (n+ r + 1)!xn+1

= (n+ 2r)
n∑

k=0

(k + r)!

⌊
n

k

⌋
r

xk +
n∑

k=0

(k + r + 1)!

⌊
n

k

⌋
r

xk+1

+x

n∑
k=1

k(k + r)!

⌊
n

k

⌋
r

xk−1

= (n+ 2r)FLn,r(x) + (r + 1)x

n∑
k=0

(k + r)!

⌊
n

k

⌋
r

xk

+x2
n∑

k=1

k(k + r)!

⌊
n

k

⌋
r

xk−1 + xFL′
n,r(x)

= (n+ 2r)FLn,r(x) + (r + 1)xFLn,r(x) + x2FL′
n,r(x) + xFL′

n,r(x).

The following Dobiński type formula holds for r-Fubini–Lah polynomials and
numbers.
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Theorem 3. If n, r ≥ 0, then

FLn,r(x) =
1

(x+ 1)xr

∞∑
j=0

(j + r)njr
(

x

x+ 1

)j

,

FLn,r =

∞∑
j=0

(j + r)njr

2j+1
.

Proof. First we prove the identity for polynomials. Using [13, Theorem 3.2] and the
binomial series, we have that

∞∑
j=0

(j + r)njrxj =
∞∑
j=0

jrxj
n∑

k=0

⌊
n

k

⌋
r

(j − r)k

=

n∑
k=0

⌊
n

k

⌋
r

∞∑
j=0

jk+rxj =

n∑
k=0

(k + r)!

⌊
n

k

⌋
r

∞∑
j=k+r

(
j

k + r

)
xj

=
n∑

k=0

(k + r)!

⌊
n

k

⌋
r

∞∑
j=0

(
j + k + r

k + r

)
xj+k+r

=

n∑
k=0

(k + r)!

⌊
n

k

⌋
r

xk+r

∞∑
j=0

(−k − r − 1

j

)
(−x)j

=
n∑

k=0

(k + r)!

⌊
n

k

⌋
r

xk+r (1− x)−k−r−1

=
1

1− x

(
x

1− x

)r n∑
k=0

(k + r)!

⌊
n

k

⌋
r

(
x

1− x

)k

=
1

1− x

(
x

1− x

)r

FLn,r

(
x

1− x

)
.

If we substitute x
x+1

for x, then we get

(x+ 1)xrFLn,r(x) =
∞∑
j=0

(j + r)njr
(

x

x+ 1

)j

,

which completes the proof for polynomials.

Now we prove the theorem for r-Fubini–Lah numbers. Let ξ be a random variable
with probability distribution

P(ξ = j) =
1

2j+1
(j ≥ 0).

We calculate the expected value

E
(
(ξ + r)nξr

)
=

∞∑
j=0

(j + r)njr
1

2j+1
,
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which, using [13, Theorem 3.2] and the identity Eξn = n! (see, e.g., [9]), also satisfies

E
(
(ξ + r)nξr

)
= E

(
n∑

k=0

⌊
n

k

⌋
r

(ξ − r)kξr

)

=
n∑

k=0

⌊
n

k

⌋
r

Eξk+r =
n∑

k=0

⌊
n

k

⌋
r

(k + r)! = FLn,r.

The next theorem gives the exponential generating functions of the sequences of
r-Fubini–Lah polynomials and numbers.

Theorem 4. For r ≥ 0, the exponential generating function of (FLn,r(x))
∞
n=0 is

∞∑
n=0

FLn,r(x)

n!
yn =

r!

(1− y)r−1(1− y − xy)r+1
,

while the exponential generating function of (FLn,r)
∞
n=0 is

∞∑
n=0

FLn,r

n!
yn =

r!

(1− y)r−1(1− 2y)r+1
.

Proof 1. We begin with the proof for polynomials. Using [13, Theorem 3.10] and the
binomial series, we can obtain that

∞∑
n=0

FLn,r(x)

n!
yn =

∞∑
n=0

n∑
k=0

(k + r)!

⌊
n

k

⌋
r

xk 1

n!
yn =

∞∑
k=0

(k + r)!xk

∞∑
n=k

⌊
n

k

⌋
r

1

n!
yn

=

∞∑
k=0

(k + r)!xk 1

k!

(
y

1− y

)k (
1

1− y

)2r

=
r!

(1− y)2r

∞∑
k=0

(
k + r

k

)(
xy

1− y

)k

=
r!

(1− y)2r

∞∑
k=0

(−r − 1

k

)( −xy

1− y

)k

=
r!

(1− y)2r

(
1− xy

1− y

)−r−1

=
r!(1− y)r+1

(1− y)2r(1− y − xy)r+1
.

Now we prove the theorem for r-Fubini–Lah numbers by induction on r.

If r = 0, then using FLn,0 = n!2n−1 (n ≥ 1), we get

∞∑
n=0

FLn,0

n!
yn = 1 +

∞∑
n=1

2n−1yn = 1 +
y

1− 2y
=

1− y

1− 2y
.

Assume that r ≥ 1, and the statement is true for r − 1. Then for r, if n ≥ 0, it
follows from Theorem 1 that

2FLn,r = r

n∑
j=0

(
n

j

)
(n− j + 1)!FLj,r−1 +

n∑
j=0

(
n

j

)
(n− j)!FLj,r.



G. RÁCZ /AUSTRALAS. J. COMBIN. 78 (1) (2020), 145–153 151

Let fr(y) be the exponential generating function of (FLn,r)
∞
n=0. Then the above

formula implies that

2fr(y) = rfr−1(y)
1

(1− y)2
+ fr(y)

1

1− y
.

Using the induction hypothesis for fr−1(y), after some calculation we arrive at the
equality

fr(y) =
r!

(1− y)r−1(1− 2y)r+1
.

�
Proof 2. For r-Fubini–Lah numbers we can provide another proof, where we use
[7, Theorem 2.1], the so-called r-compositional formula.

The exponential generating functions of the sequences

g1(n) = (n+ 1)!, g2(n) =

{
0 if n = 0

n! if n ≥ 1
, h(n) = (n + r)!

are

G1(y) =
1

(1− y)2
, G2(y) =

y

1− y
, H(y) =

r!

(1− y)r+1
,

respectively.

Then FL0,r = 1, and for n ≥ 1 we have

FLn,r =
∑

g1 (|Y1|) · · · g1 (|Yr|) g2 (|Z1|) · · · g2 (|Zk|) h(k),
where the sum is taken for all partitions {Y1 ∪ {a1} , . . . , Yr ∪ {ar} , Z1, . . . , Zk} of
the (n+ r)-element set {a1, . . . , ar, b1, . . . , bn} with distinguished elements a1, . . . , ar.

Then, according to [7, Theorem 2.1], the exponential generating function of the
sequence (FLn,r)

∞
n=0 is

(G1(y))
r H (G2(y)) =

1

(1− y)2r
· r!(

1− y
1−y

)r+1 =
r!(1− y)r+1

(1− y)2r(1− 2y)r+1
.

�
The last identity shows that the sequence of r-Fubini–Lah polynomials is the

r-Stirling transform of the first kind of the sequence of r-Fubini polynomials, and
the same holds for numbers (for r-Stirling numbers of the first kind

[
n
k

]
r
, see [1, 2, 10]).

We note that a very special case of this formula, namely for 0-Fubini–Lah numbers,
appeared in [16].

Theorem 5. If n, r ≥ 0, then

FLn,r(x) =

n∑
j=0

[
n

j

]
r

Fj,r(x),

FLn,r =

n∑
j=0

[
n

j

]
r

Fj,r.
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Proof. Let c ≥ 1. We count the number of coloured ordered partitions of a set
with n+ r elements into ordered blocks such that r distinguished elements belong to
distinct ordered subsets and we colour the ordered blocks containing no distinguished
element with c colours.

First we arrange the elements into j+r disjoint cycles (j = 0, . . . , n), such that the
distinguished elements belong to distinct cycles, this can be done in

[
n
j

]
r
ways. After

that, we partition these cycles in an ordered way such that the cycles containing a
distinguished element belong to distinct blocks, and we colour the blocks containing
no cycles with a distinguished element with c colours. The number of such coloured
partitions is Fj,r(c). If we multiply the cycles in each block, we get a coloured
ordered partition into ordered blocks of the original (n + r)-element set. Therefore,
the number of possibilities is

[
n
j

]
r
Fj,r(c) for a fixed j.
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